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ABSTRACT The charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research
problem. With the help of wireless energy transfer technology, electrical energy can be transfer from
Wireless Charging Equipment (WCE) to the sensor nodes, providing a new paradigm to prolong the
network lifetime. Existing research usually takes the periodical and deterministic charging approach, but
ignore the limited energy of the WCE and the influences of non-deterministic factors such as topological
changes and node failures, making them unsuitable for real networks. In this study, we aim to minimize
the number of dead sensor nodes while maximizing energy utilization of WCE under the limited energy
of the WCE. Furthermore, the Swarm Reinforcement Learning (SRL) method is firstly introduced to
achieve the autonomous planning ability of WCE. Moreover, to solve the problem of insufficient search
in existing SRL algorithm, we improve the SRL by firefly algorithm. And a novel charging algorithm,
named Swarm Reinforcement Learning based on Firefly Algorithm (SRL-FA), is proposed for the on-
demand charging architecture. To evaluate the performance of the proposed algorithm, SRL-FA is compared
with the existing swarm reinforcement learning algorithms and classic on-demand charging algorithms in
two network scenarios. The Extensive simulation shows that the proposed algorithm can achieve promising
performance in energy utilization of WCE, charging success rate and other performance metrics.

INDEX TERMS Wireless rechargeable sensor networks, on-demand charging algorithm, swarm reinforce-
ment learning, firefly algorithm.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are widely used in mili-
tary, intelligent transportation, human health monitoring and
so on [1]–[3]. These application scenarios require WSN
to work continuously. However, the network lifetime is
restricted by the limited battery capacity of sensor nodes.
So the energy problem of sensor node has become a bot-
tleneck in the research of WSNs. To solve this problem,
scholars have conducted a lot of research. The existing reports
can be divided into three categories, namely energy sav-
ing [4], energy harvesting [5] and Wireless Energy Trans-
fer (WET) [6], [7]. The energy saving scheme extends
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the life of sensor nodes by reducing the energy consump-
tion per unit of time or workload. Whereas the energy
of sensor nodes is still limited, this method cannot solve
the problem fundamentally. The energy harvesting scheme
restores energy through environments (eg., solar energy and
wind energy). However, the great influence by the envi-
ronments and unpredictability in the amount of harvested
energy make energy harvesting scheme unreliable. The main
idea of WET is to charge the sensor nodes using the mag-
netic resonant coupling. And WET can provide a stable
energy supply by controllable charging power. With the help
of promising WET technique, researchers have proposed
a new concept of Wireless Rechargeable Sensor Networks
(WRSNs) [8], [9]. In WRSNs, the sensor nodes can be
charged by the Wireless Charging Equipment (WCE).

84258 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2751-6501
https://orcid.org/0000-0003-0022-4103
https://orcid.org/0000-0002-0907-6517


Z. Wei et al.: Novel On-Demand Charging Strategy Based on SRL in WRSNs

Hence WCE charging schedule becomes a prominent issue
in WRSNs. And different perspectives on charging schedule
have been investigated, including path planning, system per-
formance optimizing and so on.

In existing literatures, charging strategies are two-folds:
periodic strategies and on-demand strategies. In the former
strategies, the WCE usually follows a fixed charging path
to charge all the sensor nodes in the networks [10]–[12].
However, due to the interaction with the surrounding envi-
ronment, the energy consumption rate of the sensor nodes in
the networks was demonstrated significantly different [13].
So the sensor nodes have different energy requirements. It is
not necessary to charge all the sensor nodes in the networks.
Moreover, the energy consumption profiles of the sensor
nodes are high uncertainty. Therefore this charging manner
is not suitable for the dynamic nature of WRSNs. In contrast
to this, the sensor node in the on-demand strategies sends a
charging request when its energy below a known threshold
value. Upon the reception of a request, WCE inserts it to the
charging list, and then charges the sensor nodes according to
the charging strategies. So the on-demand strategies are more
suitable for WRSNs.

As for on-demand strategies, there are many unknown
information, such as the number of charged sensor nodes.
So determining the order of charging the sensor nodes is
difficult. Most studies take the greedy method. They set a
charging priority for the sensor nodes and select the sensor
node with the highest priority in each step. Such a local,
impromptu decision bears a low overhead (no global request
is necessary). Unfortunately, it usually means no global opti-
mality. In this case, if the WCE can learn and adjust the
charging path by interacting with the environment, the WCE
can charge more efficiently and obtain a better charging path
with consideration of global information. Based on this idea,
the on-demand charging strategy with autonomous planning
for WCE is studied.

Solving independent path planning for robots is an impor-
tant branch of Reinforcement Learning (RL) application.
Moreover, RL has been verified to be effective in solving
charging path planning problem in WRSNs. Therefore, RL is
considered to solve the problem in this study. Most reports
use ordinary RL. However, in ordinary RL, only an agent
learns to achieve goal. The agent essentially learns through
trial and error, therefore ordinary RL takes much computation
time to acquire the solution and causes inadequate search for
optimal solution. To solve these problems, RL is improved
by swarm methods, called Swarm Reinforcement Learning
(SRL). There are multiple agents in SRL algorithm. More-
over, the agents learn through their respective experiences
and the information exchanged among them. SRL algorithm
has been recognized that it is able to rapidly find the global
optimal solution. Therefore, SRL algorithm is introduced into
this study.

The performance of SRL algorithm highly depends on
the method of exchanging the information of Q-value. The
existing methods calculate Q-value directly. Therefore, they

are mostly used to solve continuous problems, which have
limitations on solving discrete problems. FA [14], [15] is an
optimization method inspired from behavior of firefly move-
ment. FA can solve discrete problem and is similar to method
used in PSO-Q (a kind of SRL). Therefore, to maintain the
advantages and to overcome the disadvantages of existing
SRL algorithms, we improve the SRL algorithm by Firefly
Algorithm (FA), named SRL-FA.

Most on-demand charging strategies design the charging
path according to the greedy method and cannot obtain the
global optimal solution. Moreover, they ignore the limited
energy of WCE and the charging strategies is not practical.
To solve these problems, the WCE in this study can inde-
pendently design global optimal charging path through inter-
acting with the network. Furthermore, we aim to ensure the
stability of the system while maximizing energy utilization
of WCE under the limited energy of the WCE. The main
contribution of this paper are as follows.

1) The improved Swarm Reinforcement Learning is intro-
duced into the on-demand charging problem. By inter-
acting with the network, the WCE can independently
select the charged sensor nodes and the charging path.

2) SRL is improved according to Firefly Algorithm (FA),
named SRL-FA. The performance of SRL highly
depends on the information exchanging methods,
which are mostly used to solve continuous problems
and have limitations on discrete problems. Therefore,
the information exchanging method is redesigned.

3) Comprehensive simulations are conducted to compare
the performance of our SRL-FA with other charging
strategies (named First Come First Serve (FCFS), Near-
est JobNext with Preemption (NJNP)) and other swarm
reinforcement learning algorithms (named BEST-Q,
AVG-Q and PSO-Q). Then salient features of SRL-FA
are demonstrated in comparison.

The remainder of study is organized as follows. Section II
gives a brief overview of charging strategies on WRSNs
and reinforcement learning. In Section III and IV, we detail
system model, problem statement, as well as learning model.
Algorithm descriptions are given in Section V. Evaluations
and comparisons are shown in Section VI and we conclude
this study in Section VII.

II. RELATED WORK
In this section, works about this study are introduced, includ-
ing on-demand charging strategies and reinforcement learn-
ing. In the reinforcement learning part, the application of
reinforcement learning in WRSNs is also introduced.

A. ON-DEMAND CHARGING STRATEGIES
The on-demand charging strategies can be divided into two
categories. One focuses on the performance of the networks,
and the other improves the performances of both networks
and the WCE. In the former research, the First Come First
Serve (FCFS) algorithm is proposed [16]. FCFS schedules the
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incoming charging requests based on their temporal property
and can lead to the back-and-forth charger movement in the
space. To overcome the drawback of FCFS, He et al. propose
a charging Strategy based on the Nearest-Job-Next with Pre-
emption (NJNP) discipline [17], which can increase through-
put by always selecting the spatially closest requesting sensor
nodes as the next charging node, but it ignores sensor nodes in
urgent need of charging. To balance the fairness of charging,
Kaswan et al. [18] consider both temporal and spatial priori-
ties of the sensor nodes. They present a Linear Programming
(LP) formulation for the WCE scheduling problem and a
charging strategy based on gravitational search algorithm is
presented to solve this problem. Zhu et al. [19] present a
charging strategy that chooses the sensor nodes which make
the least number of other request nodes suffer from energy
depletion as the charging candidates. Lin et al. [20] present a
Primary and Passer-by Scheduling (P2S) algorithm for large-
scaleWRSNs. After choosing the sensor nodes to be charged,
they use a local searching algorithm to find surrounding
sensor nodes and add them to the charging path. However,
the above literatures do not consider the limited energy of
WCE, therefore ignoring the charging cost of the WCE.

To optimize the WCE charging performance at the same
time, Fu et al. [21] consider different network parameters,
such as the travel distance of the WCE and the energy
received by the sensor nodes. And then they construct a set
of nested TSP tours based on the energy consumption of
the sensor nodes, and only sensor nodes with low remaining
energy are involved in each charging round. With the similar
network parameter considerations, Zhao et al. [22] propose to
jointly optimize the charging scheduling and charging time
allocation. Tomar et al. [23] propose a fuzzy logic based
scheduling scheme to maximize the survival ratio and energy
usage efficiency. Unlike the above charging mode, the WCE
in [24] can charge the sensor nodes by one-to-more manner.
Not fully charging the sensor nodes, Xu et al. [25] propose
a charging strategy that only supplements the sensor nodes
with partial energy, and then these two articles designed the
charging path with a priority strategy that can maximize the
sum of sensor lifetime and minimize the traveling distance
of the WCE. Although the above reports can improve the
performances of the WCE and the networks, none of them
consider the autonomy of the WCE.

B. REINFORCEMENT LEARNING (RL)
The main idea of RL is to achieve experience through inter-
action between the agent and the environment [26], [27].
As shown in Fig.1, there are three representations. Firstly,
the state represents the decision-making factors under con-
sideration being observed by an agent. Secondly, the action
represents an optimal action being selected by the agent,
which may change or affect the state and reward. Thirdly,
reward represents the gains or losses in network performance
for taking an action on a particular state.

It is assumed that every state update of agent is a time step.
At any time step t , the agent observes state x (t) and learns

FIGURE 1. Diagram of reinforcement learning framework.

the long-term reward of each state-action pair, decides and
carries out an appropriate action a (t) on the environment in
a trial-and-error manner. And then the agent reaches the next
state x (t + 1) and receives the reward r (t). Next, the agent
updates the Q-value of this state-action pair according to
Eq.(1) [28]. Repeats this operation until the agent reaches the
final state.

Q (x (t), a (t))=ψr (t)+ψ
(
γ max
a(t+1)

Q (x (t + 1) , a (t+1))

−Q (x (t) , a (t))
)

(1)

where ψ is the update factor, and γ (0 < γ < 1) is the dis-
count factor.

In recent years, RL is widely used in path planning, espe-
cially in robot path planning. The robot, treated as the agent,
has its own ‘‘brain’’ to plan a path in an environment [29].
To improve the ability of WCE’s autonomous path planning
in WRSNs, Wei et al. [30] proposes a novel charging strategy
called CSRL. CSRL uses Simulated Annealing (SA) to select
the action and original RL to obtain the charging path for all
the sensor nodes in the networks. However, Original RL uses
an agent to learn which may cause a slow convergence speed.
To solve the problem of original RL, Iima and Kuroe [31]
proposes Swarm Reinforcement Learning (SRL) in which
multiple agents are set and they learn through not only their
respective experiences but also exchanging Q-value among
them. And SRL has been recognized that they are able to
rapidly find an optimal solution than original RL. Therefore,
we consider using SRL in this study.

To adapt to the changeable network environment as well as
improve the autonomous planning capability of the WCE in
on-demand charging strategies, The SRL is introduced into
this study. And to overcome the drawback that the existing
SRL often falls into local optimum, firefly algorithm is used
to improve the SRL.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
As shown in Fig.2. A WRSN consists of N sensor nodes,
a Charging Service Station (CS) and a WCE, which is
deployed over a 2-D monitored area. The set of the sensor
nodes is denoted as Vs = {n1, n2 · · · ni · · · nN }. All the posi-
tions of the sensor nodes are fixed and the sensor nodes are
powered by the same type of battery that the capacity is Emax.
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FIGURE 2. Diagram of network topology.

TABLE 1. Symbol and definition.

The WCE can provide energy for sensor node one-to-one.
The energy for charging the sensor nodes and the energy
for driving are Emax

c , Emax
d respectively. When the remaining

energy of the WCE is insufficient, it will return to the CS
for energy replenishment. The WCE stays at the CS as a
vocation, and the time at the CS is the vocation period.
The symbols used in this study are shown in TABLE 1.

B. CHARGING MODEL
The sensor node will die if its energy is lower than Emin.
To prolong the survival time, ni will send a charging request
RMi =

(
ni, pi, tr,i

)
to the WCE when its energy is below

a threshold R. RMi contains the time point tr,i issuing the

request, the sensor node ID ni and its energy consumption
rate pi.
The WCE accepts the charging request and stores the

request in the order of tr,i. When the vocation period ends,
the WCE accepts M charging requests and puts the corre-
sponding sensor nodes to Vc, then designs a charging path
for the sensor node in the Vc.
After designing the charging path, the WCE sets off from

the CS to charge the sensor nodes, and then goes back to the
CS. This period is defined as a charging round.

C. PROBLEM FORMULATION
The problem in this study is to determine which sensor nodes
will be charged and the charging strategy for the WCE, so as
to improve both the number of sensor nodes that will be
charged and the charging efficiency of the WCE under the
limited energy.

Firstly, to measure the charging efficiency of WCE,
the concept of WCE energy utilization η is introduced.
We assume the charging path W = (π0, π1 · · ·πL , π0). π0
represents the CS, L is the number of the sensor nodes in the
charging path. Therefore, η can be calculated as Eq.(2).

η (W ) = EUc/EUd (2)

EUc is the energy used by theWCE to charge the sensor nodes
in a charging round. EUd is the driving energy used byWCE.
EUc, EUd satisfy Eq.(3) and Eq.(4).

EUc =
L∑
j=1

ecj, EUc ≤ Emax
c (3)

EUd =
L∑
j=1

edj, EUd ≤ Emax
d (4)

The WCE should ensure that the sensor node πq has been
charged before the energy of πq is below Emin. We assumed
ρ is the charging loss rate and U is the charging power of
WCE. Then, we have:

0 ≤ (1− ρ) ecj ≤ Emax − Emin (5)

Each sensor node can only be charged at most once in a
charging round. Assume the duration of a charging round is
T . The energy of the sensor node in a charging round should
satisfy the Eq.(6).

(1− ρ) ecj − pjT ≥ 0 (6)

To ensure theWCE can reach the sensor node πq and return to
the CS after charging the sensor node πq, the driving energy
of the WCE should meet Eq.(7).

Emax
d − µ

q∑
j=0

lj,j+1

v
− µ

lq+1,0
v
≥ 0 (7)

It is assumed that v is the driving speed and µ is the driv-
ing energy consumption rate of WCE. lj,j+1 is the distance
between πj and πj+1. And π0 represents the CS.
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Then, the On-demand Charging Planning Problem (OCPP)
can be formulated as follows,

cObj : arg
W

max η(W )

s.t. (2)− (7)

IV. LEARNING MODEL OF THE WCE
As described above, the On-demandCharging Planning Prob-
lem (OCPP) in this study is to plan a charging path for the
WCE inWRSNs, the objective is optimizing networks and the
WCE performance. And OCPP is similar to the mobile robot
path planning problem. As the mobile robot path planning
problem is to search an optimal path from the start point to
the end point with the goal of no collision. And solving the
mobile robot path planning problem is an important branch of
the Reinforcement Learning (RL) application. With the help
of RL, the mobile robot has ‘‘brain’’, it can autonomously
learn the path. In the OCPP, the charging nodes and charging
path for each charging round is uncertain. Hence, the WCE
can charge more efficiently and the charging strategy is flex-
ible if WCE can autonomously learn and adjust the charging
path. Therefore, the RL is introduced to solve the OCPP in
this study.

And the relationship between RL and OCPP are as follows:
WRSNs is considered as the environment in RL; TheWCE in
WRSNs is considered as the agent in RL; the state of WRSNs
and the WCE is considered as the state in RL; the action of
the WCE to the next charging sensor node is considered as
the action in RL. Therefore, the learning model in WRSNs
can be represented by a triple 〈X ,A,R〉. X is the state space,
which represents the state of the WRSNs and WCE. A is the
action space, which represents the action set of the WCE. R
is the reward generated by actions of the WCE.

A. STATE MODEL
Due to the different states, the location of the WCE,
the remaining travel energy of the WCE, and the energy
of the sensor nodes of the network will change. Therefore,
the definition of the state space considers both the WCE and
the state of the sensor nodes in the network. The state space
is defined as a two-tuple X = 〈XWCE ,Xnetwork 〉.

XWCE = 〈x,ERc,ERd 〉

Xnetwork =
〈
−→e ,
−→
d ,
−→
trd
〉

XWCE = 〈x,ERc,ERd 〉 indicates the state of the WCE.
Renumber the sensor nodes in Vc to (1, 2 · · ·M), we assume
Nc = {0, 1, · · ·M ,N + 1}. x represents the current location
states of the WCE, x = 0 indicates that WCE has not yet
left the CS, x = N + 1 indicates the WCE has completed a
charging task and back to the service station for the energy
replenishing. x = m (1 ≤ m ≤ M) indicates that the WCE
is charging the sensor node numbered m in Vc. ERc is the
remaining charging energy and ERd is the remaining driving
energy of the WCE. Initially, ER1c = Emax

c , ER1d = Emax
d .

Xnetwork =
〈
−→e ,
−→
d ,
−→
trd
〉
means the state of the sensor

nodes in the networks. −→e = (e1, e2 · · · ei · · · eN ) means
the current energy state of the networks.

−→
d = (d1 · · · dM )

means the distance between the WCE and the sensor nodes.
−→
trd = (trd1 · · · trdm · · · trdM ) indicates the flag of the sensor
node in Vc. If the sensor node numbered m in Vc is traversed
by the WCE, the flag trdm is set to 1. Otherwise, the value of
trdm is 0.

B. ACTION MODEL
For the WCE, to select an action is to determine the next
sensor node to be charged. We assumed that all sensor nodes
are reachable in the network. Because the sensor nodes can
only be charged at most once in a charging round, the WCE
can only select the sensor node in Vc whose flag is 0. In this
paper, the action space is defined as A = {a|a ∈ Nc}. a = m
means the next sensor node to be charged is the sensor node
numbered m in Vc.

C. STATE TRANSITION PROCESS
It is assumed that every state update of agent is a time step.
At time step k , the WCE stays at state xk , selects action ak

according to SA, and then reaches the state xk+1. At time step
k + 1, the sensor node numbered xk+1 in Vc has been fully
charged. Assume that the duration between time step k to time
step k + 1 is 1tk . Next, we will discuss the state as the time
step k + 1.
As for sensor nodes, remaining energy ek+1i of ni can be

calculated by Eq.(8).

ek+1i =


Emax ni ∈ Vc and m = xk+1

Emax − pi1tk ni ∈ Vc and m = xk

eki − pi1t
k others

(8)

1tk consists of two parts as shown in Eq.(9): 1) the driving
time from the sensor node numbered xk to the sensor node
numbered xk+1 in Vc. 2) the charging time for the sensor node
numbered xk+1 in Vc. And U is the charging power.

1tk =
dkm
v
+

Emax −

(
ekm − pm

dkm
v

)
U − pm

,
(
m = xk+1

)
(9)

As for the WCE, at time step k + 1, the ecm and edm can
be calculated by Eq.(10), Eq.(11). And then the ERk+1c and
ERk+1d are shown as Eq.(12) and Eq.(13) respectively.

ecm =
Emax −

(
ekm − pm

dkm
v

)
1− ρ

,
(
m = xk+1

)
(10)

edm = µ
dkm
v
,

(
m = xk+1

)
(11)

ERk+1c = ERkc − ecm (12)

ERk+1d = ERkd − edm (13)

D. REWARD MODEL
In the RL, the agent learns by reward value, so the set-
ting of the reward function is especially important, which
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determines whether the algorithm can converge and the speed
of convergence. The problem in this study is to maximize the
energy utilization of WCE in a charging round. Therefore,
after performing an action ak , the reward rk of ak should
consider two aspects: 1) to maximize EUc. 2) to minimize
EUd . The reward function is as Eq.(14),

rk = α1
ecm
Emax

+ α2
K
edm

(14)

As shown in Eq.(14), 0 < α1, α2 < 1, α1 + α2 = 1. α1 and
α2 respectively represent the proportions of the two factors.
K represents the unit energy value. The higher ecm

(
m = xk

)
is, the higher rk is. In addition, the lower edm

(
m = xk

)
is,

the higher rk is.

V. PROPOSED ALGORITHM: SRL-FA
To overcome the shortcoming of the original reinforcement
learning too much invalid learning, the swarm reinforce-
ment learning (SRL) is introduced. In SRL, multi agents
learn simultaneously. However, the existing SRL often falls
into local optimum. Meanwhile, for optimization problems,
a population-based method such as Firefly Algorithm (FA)
have been recognized that they are able to find rapidly optimal
solutions. Therefore, in this section, a Swarm Reinforcement
Learning based on FA (SRL-FA) is proposed.

In SRL-FA, agents all learn concurrently with two stages,
Individual Learning the Charging Path and Learning through
Exchanging Information. The improvement of SRL in this
study is shown in the latter stage. And these two stages are
discussed in detail in subsection A and subsection B. And the
learning framework of the WCE is shown as Fig.3. Y is the
number of interaions.

A. INDIVIDUAL LEARNING THE CHARGING PATH
In this stage, each agent learns individually by using a usual
RL. As for the agent agi, the learning process in an iteration
is as follows: Simulated Annealing (SA) is used to select
the action. After selecting, WCE judges whether it can reach
this action and return to the CS. If it can, WCE adds this
action to the charging path and calculates the reward of this
action. Then update the Q-value 1Qiag according to Eq.(15);
Otherwise, the WCE will back to the CS.

1Qiag(x
k , ak ) = ψ(rk + γ max

ak+1
Qiag(x

k+1, ak+1)

−Qiag(x
k , ak )) (15)

where ψ is the update factor, and γ (0 < γ < 1) is the dis-
count factor. Qiag is the learned experience of agi, and 1Qiag
is the new Q-value in this iteration.

After an iteration ends, theWCEwill evaluate the charging
path W i

ag obtained by agi in this iteration y. The evaluation
indicator V i

ag can be calculated through Eq.(16). Then theQ
i
ag

is updated as Eq.(17),

V i
ag = η(W

i
ag) (16)

Qiag (y) = Qiag (y− 1)+ V i
ag ×1Q

i
ag (17)

Based on the above statement, the Individual Learning
Algorithm is shown as Algorithm 1:

Algorithm 1 Individual Learning Algorithm
Input: Y and the number of the agents na.
Output: Q-value and charging path of all agents.
1: for y← 1 to Y do
2: for ag← 1 to na do
3: for k ← 1 to M + 1 do
4: Select the action ak according to SA;
5: Calculate ERk+1c , ERk+1d according to

Eq.(12), Eq. (13);
6: if WCE can reach ak and back to the CS and

ERkc then
7: Calculate rk according to Eq.(14);
8: Calculate 1Qiag according to Eq.(16);
9: W i

ag(k)← ak ;
10: else
11: WCE backs to the CS;
12: Break;
13: end if
14: end for
15: end for
16: end for

B. LEARNING THROUGH EXCHANGING INFORMATION
In this stage, each agent learns through updating its Q-value
by referring to the other agent. The Q-value update method
is important, it determines the performance of the algorithm.
The existing SRL algorithms update Q-value directly. This
update method is only suitable for the continuous problems.
However, the charging path planning problem in this study is
a discrete problem. Therefore, this stage should be improved.
Suppose the agents have independently learned for Y itera-
tion. Then the improvement idea is shown in Fig.4. Qbest is
the best Q-value of all the agents at only the previous iteration.
Gbest is the best Q-value found by all the agents so far. Piag is
the best Q-value found by the agent agi so far. V is a so-called
velocity. ω, C1, C2 are weight parameters. R1, R2 are uniform
random number in the range from 0 to 1.

As figure shows, the improvement idea is that we update
theQ-value by updating the path of agent. Among the existing
SRL algorithms, PSO-Q can update the path. PSO-Q is the
combination of PSO and SRL algorithm. However, PSO is
easy to fall into local optimality. Firefly Algorithm (FA) is
similar to PSO and performs better than PSO. Therefore,
to maintain the advantages of PSO combined with SRL and
improve the SRL, FA is introduced into Q-value Update
method. And the Q-value Update Algorithm based on FA is
proposed. And the details of the algorithm are described in
the following sections.

1) RELATIONSHIP BETWEEN FIREFLY ALGORITHM AND OUR
STUDY
Firefly Algorithm (FA) regards the value of the objective
function as the absolute brightness of a firefly. The Fireflies
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FIGURE 3. Learning framework of the WCE.

FIGURE 4. The improvement idea of SRL in this study.

are hermaphroditic. Therefore the main idea of FA is that
a little brighter firefly will move towards the brightest one
within the visible distance range. And if there is no brighter
one than a particular firefly, it will move randomly.

This study considers updating the Q-value by transforming
the charging path of each agent. Therefore, we regard the
charging path W i

ag as the solution of the firefly ff yi, and the

corresponding fitness value η
(
W i
ag

)
as the absolute bright-

ness F iffy of the ff y
i. And then the way of updating Q-value is

as follows: For each firefly ff yi, find the other firefly ff ymax

with the highest fitness value in its visible distance range.
If ff ymax exists, move ff yi toward ff ymax. Otherwise, ff yi will
move randomly. Then calculate the Q-value corresponding to
the new charging path.

Since the solution of a firefly in this study is discrete, and
the WCE has limited energy, it will back to the CS if it would
use up its energy. Therefore the dimensions of the charging
path for each learning process may vary. We cannot simply
calculate the distance using Euclidian distance. Then we
define the distance between any two fireflies as the number
of different arcs between them. To be specific, we assume the

FIGURE 5. The distance between ff y i and ff y j .

solution of ff yi and ff yj are shown in Fig.5. The green solid
lines are the same arcs between ff yi and ff yj, and black dotted
lines are different arcs between ff yi and ff yj. Therefore the
distance between them is 4.

2) THE WAY OF FIREFLY MOVING
In this section, we will introduce the way the fireflies move.
And there are two situations of firefly moving. Let Di be the
visible distances range of ff yi. Then we take firefly ff yi as the
example.
Situation 1: There are no fireflies that the fitness value is

larger than ff yi within Di.
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FIGURE 6. The random movement process of ff y i .

The Way of Firefly Moving 1: In situation 1, ff yi moves
randomly. In this study, the 2-opt operation is performed
on ff yi. The main idea of 2-opt is: Firstly, generate two
random numbers Ri, Rj

(
Ri < Rj < PiL

)
as two positions in

W i
ag, where P

i
L is the length of the W i

ag. Then, to obtain the
new charging path 1W i

ag, the path before Ri and after Rj in
W i
ag is added to the1W

i
ag. The path between Ri and Rj inW

i
ag

is reversed, and then added it to the 1W i
ag. To be specific,

we assume the solution of ff yi is shown in Fig.6 (a). And the
randommovement process of ff yi and the new solution1ff yi

are shows in Fig.6.
Situation 2: There is a ff ymax with the highest fitness value

within Di. In this Situation, if ff yi moves directly to ff ymax,
it is easy to fall into local optimality. To enhance the global
search capability, we accept the randomly generated new
firefly ff yi with a certain probability P. The probability P can
be calculated by Eq.(18).

P =

exp
(
−Fmaxffy /F iffy

)
, Fmaxffy > F iffy

1, Fmaxffy 6 F iffy
(18)

Based on the above statement, there are two ways of moving.
The rand() function randomly generates a real number in
range [0, 1]. Then, the details are as follows.
The Way of Firefly Moving 2: If rand() >P, ff yi moves

directly to ff ymax. Then the solution of ff ymax is assigned to
ff yi. Therefore, the update formula is shown as Eq.(19),

W i
ag ← Wmax

ag

Qiag ← Qmax
ag (19)

The Way of Firefly Moving 3: If rand ()6 P, ff yi is updated
by ffyi. Then the solution of ffyi is assigned to ff yi. Therefore,
the update formula is shown as Eq.(20),

W i
ag ← W i

ag

Qiag ← Qiag (20)

Inspired by the idea of Firefly Algorithm, the Q-value
Update Algorithm based on FA is shown as Algorithm 2:

Algorithm 2 Q-Value Update Algorithm Based on FA

Input: na, firefly flyi and absolute brightness F ifly.
Output: new charging path of agi and new 1Qiag.
1: repeat
2: count ← 0, k ← 1;
3: while k ≤ na do
4: Calculate the distance di,k between flyi and
flyk ;

5: if di,k < Di then
6: if F ifly < Fkfly then
7: count ← count + 1;
8: Save the number k and its corresponding

path;
9: end if
10: end if
11: end while
12: if count = 0 then
13: Move flyi around randomly;
14: else
15: Calculate P according to Eq.(18);
16: if P < rand() then
17: Find the one with the highest fitness value in

the saved path and move flyi to it;
18: else
19: Randomly generate a new solution and move

flyi to it;
20: end if
21: end if
22: Get a new 1flyi and calculate the new 1Qiag;
23: until i = na

VI. PERFORMANCE EVALUATION
In this section, experimental simulations are carried out
to demonstrate the advantages of the proposed algorithm
Swarm Reinforcement Learning based on Firefly Algo-
rithm (SRL-FA). We compare our algorithm with other rein-
forcement learning algorithms and charging scheduling algo-
rithms in Performance Comparison.Moreover, we investigate
the impact of several important parameters on algorithm per-
formance in Properties Analysis.

A. SIMULATION ENVIRONMENT
As listed in TABLE 2, 100 to 200 sensor nodes are deployed
in a 2000m × 2000m square. To analyze the performance of
SRL-FA in different kinds of networks, the sensor nodes in
this study has two ways of distribution, random and uniform.
The corresponding networks named C1 and C2 respectively.
Uniform distribution means the spacing of each sensor node
is the same. The other parameters listed in TABLE 2 have
been chosen mostly based on [30].

B. PERFORMANCE COMPARISON
In this section, the Swarm Reinforcement Learning based
on Firefly Algorithm (SRL-FA) is compared with other
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FIGURE 7. Performance comparison between SRL-FA and CSRL [30] in terms of (a)(d) the number of charged
sensor nodes, (b)(e) total driving distance and (c)(f) energy utilization in two network scenarios respectively.

TABLE 2. Parameters used in this study.

Reinforcement Learning (RL) algorithms and two classic
charging algorithms, FCFS and NJNP under the on-demand
charging architecture to analyze its performance.

1) COMPARISONS WITH RL ALGORITHMS
Firstly, we perform an analysis concerning the performance
of the redesigned reinforcement learning algorithm in this
study. Under the same two networks setting where 200 sen-
sor nodes are deployed randomly(C1) and uniformly(C2)
respectively, we compare SRL-FA with 1) the original RL
algorithm with an agent [30] and 2) the existing three Swarm
Reinforcement Learning (SRL) algorithm named BEST-Q,
AVG-Q and PSO-Q [31], [32]. Different performance
metrics are considered, including energy utilization η of

TABLE 3. Simulation results of five reinforcement learning algorithms in
two network scenarios.

WCE, the number nc of sensor nodes that have been charged
and the driving distance ofWCE. The results are shown below
and they are average of 30 runs. The red line in Fig.7 and
Fig.8 represent our algorithm.

In Fig.7, we compare the SRL-FA with CSRL. The fig-
ure shows that the optimization accuracy of SRL-FA is better
than CSRL. Since CSRL is based on original RL. There is
only one agent in CSRL to explore. SRL-FA is based on
SRL. There are multiple agents in SRL-FA. Moreover, agents
learn through exchanging information. Therefore, the ability
to explore is increased. As shown in TABLE3, in two network
scenarios, 1) the energy utilization obtained by SRL-FA is
19% and 7% higher than CSRL; 2) the number of charged
sensor nodes obtained by SRL-FA is 19% and 8% higher
than CSRL respectively. Therefore, the result confirms that
SRL-FA based on SRL is superior to CSRL based on
original RL.
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FIGURE 8. Performance comparison between SRL-FA and other swarm reinforcement learning algorithm [31], [32]
in terms of (a)(d) the number of charged sensor nodes, (b)(e) total driving distance and (c)(f) energy utilization in
two network scenarios respectively.

SRL-FA is improved by SRL algorithm. To verify the
superiority of SRL-FA, we compare SRL-FA with the exist-
ing SRL algorithms. The SRL algorithms being compared
are BEST-Q, AVG-Q and PSO-Q. From Fig.8, it can be
observed that, SRL-FA performs better than the other three
algorithms. Moreover, as listed in TABLE3, in two network
scenarios, 1) the energy utilization obtained by SRL-FA is
17% and 12% higher than BEST-Q, 15% and 11% higher than
AVG-Q and 2% and 7% higher than PSO-Q respectively.
2) the number of charged sensor nodes obtained by SRL-FA
is 16% and 7% higher than BEST-Q, 13% and 7% higher than
AVG-Q and 6%and 3% higher than PSO-Q respectively. Due
to the performance of the SRL algorithm highly depends on
the method of exchanging information, therefore the result
confirms that SRL-FA is well designed.

2) COMPARISONS WITH ON-DEMAND CHARGING
SCHEDULING ALGORITHMS
To measure the performance of SRL-FA on on-demand
charging scheduling algorithms, we compare our algorithm
with two classic on-demand charging scheduling algorithms,
FCFS and NJNP in two network scenarios.

As demonstrated in Fig.9(b)(e), the energy utilization of
SRL-FA is always higher than FCFS and NJNP. This is
because we use TSP solutions to formulate the charging path,
which can achieve global optimization. FCFS schedules the
incoming charging requests based on their temporal property
and ignores the driving distance, therefore it has the least
energy utilization. Although NJNP overcomes the drawback

of FCFS, it always selects the nearest sensor node and ignores
the residual energy of the sensor node. And the charging
energy used byNJNPmay not be high, resulting in less energy
utilization. Next Fig.9(c)(f) compares charging success rate,
which is defined as the ratio of the number of sensor nodes
which have been successfully charged to the number of sen-
sor nodes sending the charging request. As Figure shows,
the SRL-FA performs well. And the energy of the WCE is
limited, the sensor nodes that the corresponding charging
request does not be responded may not be dead. Thus the
charging success rate does not reflect the survival rate of
the sensor nodes. And then we compare the number of dead
sensor nodes of three algorithms to evaluate system stability,
the result is shown in Fig.9(a)(d). From the results, it can be
observed that, with the growth of the number of the sensor
nodes, the charging success rate decreases and the number
of dead sensor nodes increases. It is because the charging
requests will increase with the growth of the number of the
sensor nodes and the energy of the WCE is limited. WCE
cannot serve such a large number of sensor nodes. But the
simulation results show that SRL-FA performs better than
FCFS and NJNP.

C. PARAMETERS ANALYSIS
In this section, we will study the impact of different parame-
ters such as the number of the agents, the speed of WCE and
the update factor on the performance of SRL-FA. And we fix
the network scale at 200 sensor nodes in a 2000m × 2000m
field.
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FIGURE 9. Performance comparison between SRL-FA, FCFS [16] and NJNP [17] in terms of (a)(d) the number of the dead
sensor nodes, (b)(e) energy utilization and (c)(f) charging success rate in two network scenarios respectively.

FIGURE 10. Impact of the number of agents on the charging process (a) energy utilization, (b) total driving distance and
(c) the number of the charged sensor nodes.

1) IMPACT OF THE NUMBER OF AGENTS
SRL-FA is based on SRL. The number of agents may influ-
ence the algorithm performance. Therefore, we study the
impact of it by varying its value from 1 to 6. Fig.10 shows
that with the growth of the number of the agents, the energy
utilization as well as the number of charged sensor nodes
increases and the driving distance decreases. The reason is
that multiple agents learn simultaneously to make exploration
more full. However, when the number of agents more than 4,
the growth is not obvious, which implies that the performance
of SRL-FA is near optimal.

2) IMPACT OF THE SPEED OF WCE
An important factor that determines the mobile charger’s
ability in performing charging tasks is its driving speed v.
We explore the performance of SRL-FA with varying v from

5 to 10 m/s. The results are shown in Fig.11. It can be clearly
observed that with the speed increases, the SRL-FA performs
better. It is becauseWCE can accomplish charging faster with
larger speed. However, the driving energy consumption of
WCE is related to speed. The higher the speed is, the higher
the consumption is. Therefore, as shown in Fig.11, when the
speed of WCE more than 8m/s, there is no obvious improve-
ment in performance.

3) IMPACT OF THE VALUE OF UPDATE FACTOR
According to Eq.(15).ψ is the update factor and it can be seen
as the equilibrium between the new Q-value and the learned
Q-value during the learning process. If ψ set at 1, it means
the learned Q-value has no effect during the learning process.
To study the impact of the update factor on the performance
of SRL-FA, we set ψ as 01.-0.9, and the result as shown
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FIGURE 11. Impact of the speed of WCE on the charging process (a) energy utilization, (b) total driving distance and
(c) the number of the charged sensor nodes.

FIGURE 12. Impact of the value of update factor on the charging process (a) energy utilization, (b) total driving distance
and (c) the number of the charged sensor nodes.

in Fig.12. We can see that there is a significant improvement
in the value of charged sensor nodes and energy utilization
between ψ = 0.1 and ψ = 0.2. And the performance of the
algorithm turns to be worse with the increase ofψ . Therefore,
the algorithm performs better when ψ = 0.2.

VII. CONCLUSION AND FUTURE WORK
In this study, an on-demand charging algorithm based
on Swarm Reinforcement Learning is proposed, named
SRL-FA.With the application of reinforcement learning algo-
rithm, SRL-FA can helpWCE achieve autonomous path plan-
ning. Moreover, SRL-FA totally consider the performance of
theWCEwith limited energy and the response to the charging
requests. Therefore, SRL-FA can improve the performance of
WCE and sensor networks.

And then a large number of experiments are conducted
to verify the performance of SRL-FA, which is compared
with the existing swarm reinforcement learning algorithms
and classic on-demand charging algorithms. The simulation
results demonstrate that SRL-FA is well designed and can
effectively prolong the lifespan of networks as well asWCE’s
energy utilization under the limited energy of the WCE.
We further analyze how the parameters affect SRL-FA, such
as the number of agents, the speed of the WCE and update
factor.

In the future, we are planning to extend this work by using
multiple WCEs and considering the energy consumption of
the sensor nodes are dynamic. It may lead tomore cooperative
works among them to address more practical problem in
WRSNs.
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