
Received March 13, 2020, accepted April 22, 2020, date of publication May 6, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991949

Synthetic Datasets Generator for Testing
Information Visualization and Machine
Learning Techniques and Tools
SANDRO DE PAULA MENDONÇA , YVAN PEREIRA DOS SANTOS BRITO ,
CARLOS GUSTAVO RESQUE DOS SANTOS , RODRIGO DO AMOR DIVINO LIMA ,
TIAGO DAVI OLIVEIRA DE ARAÚJO , AND BIANCHI SERIQUE MEIGUINS
Post-Graduate Program of Computer Science, Universidade Federal do Pará, Belém 66075-110, Brazil

Corresponding author: Carlos Gustavo Resque dos Santos (carlosresque@ufpa.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES)–Finance Code
001–and in part by the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP/UFPA).

ABSTRACT Data generators are applications that produce synthetic datasets, which are useful for testing
data analytics applications, such as machine learning algorithms and information visualization techniques.
Each data generator application has a different approach to generate data. Consequently, each one has
functionality gaps that make it unsuitable for some tasks (e.g., lack of ways to create outliers and non-random
noise). This paper presents a data generator application that aims to fill relevant gaps scattered across other
applications, providing a flexible tool to assist researchers in exhaustively testing their techniques in more
diverse ways. The proposed system allows users to define and compose known statistical distributions
to produce the desired outcome, visualizing the behavior of the data in real-time to analyze if it has the
characteristics needed for efficient testing. This paper presents in detail the tool functionalities and how to
create datasets, as well as a usage scenario to illustrate the process of data creation.

INDEX TERMS Synthetic dataset generator, benchmark datasets creation, data creation system.

I. INTRODUCTION
The ideal scenario for testing machine learning algorithms
and information visualization techniques is to use real data.
However, obtaining the data can be a relevant problem,
since data may require a prolonged time to get, have asso-
ciated costs, and have privacy concerns. In this context,
the researchers are compelled to reuse the same, old, or well-
known dataset to perform the tests. As an effort to mitigate
these issues, researchers are either manually creating syn-
thetic datasets or proposing applications that support this task.
The researchers use these applications to have better control
of the data characteristics, so they can create datasets to attack
specific problems, such as outlier detection, missing values,
and noisy information. [1], [2].

Synthetic data applications are commonly referred to as
data generators, and they work by manipulating descrip-
tive information of the data through mathematical formulas,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shahzad Mumtaz .

probability distribution functions, category sets, and other
generators. In some generators, users can easily share a
blueprint of the generated dataset by saving a description
of generators, which are usually lightweight files, instead of
concrete data points.

One of the benefits of having a synthetic dataset generator
is controlling data characteristics such as patterns, trends,
data type, data format, outliers, dimensions, or missing val-
ues [3]. Data generators control data aspects so that their
characteristics fit a specific problem, providing a diversity
of slightly different datasets to exhaustively test visualization
techniques or machine learning algorithms in a controlled
manner [4], [5]. For example, in some generators, researchers
can analyze not only if the technique is robust to the presence
of outliers, but also what threshold of outlier proportion the
technique can effectively handle.

However, no perfect data generator application exists.
Every tool has its limitations, and as more of them are being
created, the harder it becomes to choose one that fits the prob-
lem at hand. This difficult happens because the limitations are

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 82917

https://orcid.org/0000-0001-5909-9867
https://orcid.org/0000-0001-5647-5556
https://orcid.org/0000-0002-2193-5783
https://orcid.org/0000-0001-8726-951X
https://orcid.org/0000-0002-4971-9951
https://orcid.org/0000-0001-5872-4827
https://orcid.org/0000-0003-2606-2405


S. D. P. Mendonça et al.: Synthetic Datasets Generator

scattered across many applications, so each one of existent
data generators—while able to fills some gaps—leaves others
untreated.

Hence, this work presents an application that generates
synthetic datasets, providing a hub of functionalities that
makes the application flexible enough to fills several gaps
in previous approaches. The proposed data generator uses
a combination of known distributions—called generators—
that includes random distributions, data sequences, corre-
lation functions, and modifiers. This approach enables the
creation of data that can be applied in many domains, gradual
changes in data characteristics by modifying parameters of
generators, and creation of complex data distributions by
combining a sequence of known ones.

Additionally, the proposed data generator supports visual
feedback-driven design by plotting a sample of the current
data model, and a faster way to collaborate and present
data by sharing a lightweight description of the data instead
of a large dataset file. The application is an open-source
project and is available on the authors’ research laboratory
website.1

This paper is an extended version of a previous work [6],
adding in-depth details about the functionalities and imple-
mentations present in the proposed data generator. New gen-
erators have been added since then, as well as new built-in
visualization techniques. Additionally, a new usage case sce-
nario is also presented to illustrate how researchers can test
algorithms and techniques using synthetic datasets in the
context of machine learning.

The next sections of this paper introduce the related
works (section II), present the proposed system (section III),
demonstrate usage scenario for the application (section IV),
and conclude the work, providing future research directions
(section V).

II. RELATED WORKS
Generation of synthetic datasets for testing has importance
in many areas of computing, such as data visualization, data
mining, software engineering, and artificial intelligence. Sran
Popić et al. [7] wrote a survey about works in the area of
synthetic data generation that focuses on application test-
ing, highlighting the system architectures and the intended
usage of the applications, showing the pros and cons of the
surveyed techniques. Demillo and Offut [8] have described
a failure-based application to generate synthetic data units
for performing tests for software modules. Even in the area
of evolutionary computing, there are works of genetic algo-
rithms which generate data for software tests [9], [10].

Albuquerque et al. [11] have described a framework to
generate multi-dimensional data. The user can build a rep-
resentation of the desired data by manipulating statistical
distributions through the graphical interface. However, [11]
is limited to integer and floating numbers, not addressing
the generation of categorical data. Moreover, [11] did not

1http://labvis.ufpa.br/datagen

mention any way to preview the data, during the statistical
distribution setup, to show the possible behavior of the gen-
erated data.

Wang et al. [12] have presented an application where it
is possible for the user to scribble the distribution for the
data manually. Thus, the system creates the data model of the
generators based on what the user has drawn. Kwon et al. [13]
used a similar approach, making use of design-based interac-
tions to guide the creation of the data visualization with many
dimensions according to the user’s level of knowledge.

Liu [14] have created a synthetic data generator for assess-
ing learning rules classification. The work generates learning
rules based on the attributes entered by the user to build
relationships between these attributes, and the technique used
for the data was decision tree algorithms. Other similar works
have appeared in the literature proposing data synthesizers for
testing in data mining tools [15], [16] [17]. These works gen-
erate data for testing in data mining tools since obtaining real
data can be very costly or limited by privacy rights. However,
there are jobs that produce data for specific problems such
as [18] who wrote a paper on the data generation system for
health care applications, limiting the generation of new data
only for such cases.

García and Millán [19] have created a system to generate
synthetic data that can be used by a wide range of scientific
areas. The authors compared their application with the tools
that already exist in the market and have shown the pros and
cons of their generator system. The software is available in a
free version.

In some cases, applications generate synthetic data related
to network data [20]. For instance, Brodkorb et al. [21]
proposed the generation of synthetic network data with
geo-location connected to the nodes. In this way, the user can
explore the generated network through interaction with the
map displayed and adjust the results obtained later.

Kofinas et al. [22] have created a methodology to generate
synthetic data for simulating water consumption in two cities.
The implemented approach registers the randomness of the
daily water consumption by a local residence and validates
the data generated by this methodology through validation
algorithms which compare several evaluation metrics for real
and synthetic data.

Sun et al. [23] have described a Gaussian matrix to model
correlations between the weights of a neural network and
to perform training and test for it. In addition to real data,
they produced and used synthetic data. Kang et al. [24] have
made a similar work using synthetic data to generate tasks to
perform tests with multi-tasking learning. Ma et al. [25] have
presented a trained artificial neural network with both real
data and synthetic data, and they highlighted the synthetic
data allowed a better investigation of the robustness of the
model concerning its initialization and the randomness of the
data. However, the generations of synthetic data performed in
these last works are specific to their respective problems, and
it is not possible a priori to reuse the same data for different
applications.

82918 VOLUME 8, 2020



S. D. P. Mendonça et al.: Synthetic Datasets Generator

There are few works that generate synthetic data facilitat-
ing themanipulation of data characteristics as well as creating
complex patterns of data, without the need for programming
skills, aiming at testing tools or machine learning algorithms
or visualizing the information with a general context.

III. PROPOSED APPLICATION
The main goal of this work is to present a data generator
application to assist researchers in testing information visu-
alization techniques and machine learning algorithms. The
tool allows manipulation of statistical generators to produce
synthetic data according to users specification. Thus, the shar-
ing of synthetic datasets can be done through a lightweight
descriptive file that other researchers can use to re-create
dataset profiles, easing replication of studies. Figure 1 shows
a flow chart of the tool usage.

FIGURE 1. A typical use flow of the application.

The typical flow of the application consists of three phases:
setup, use, and sharing. The creation of a synthetic dataset is
an iterative process that starts when the user creates a data
model (1). The creation of a data model is the specification
and composition of generators to create a description of
data behavior (e.g., a correlation between certain dimensions,
or the presence of outliers). After any changes in the genera-
tors, the application produces a small-size sample dataset (2)
for visual feedback of data behavior (3), which allows users
to evaluate the used generators and update them if needed (4).
It is important to highlight that the data that will be generated
in the final file are not the same of the preview: the purpose
of the preview is only to quickly show the behavior of the
generators that the model will use to produce the final dataset.

After the setup step, users can decide to generate the data to
test their applications, or to share the constructed data model
for experiment replication. Aside from generating a dataset
file that follow the generators of the model, users have a few
extra options to create data: generating large volumes of data
if necessary (5.1), feeding the tested technique or algorithm
through a data generation streaming (5.2), and creating a set
of similar datasets with slight differences in its features (5.3).

In this typical data flow, a user could choose to share the
model with fellow researchers to reproduce experiments (6).
The researchers receiving this data model could generate
their own dataset following the same distribution defined by
the generators (7). While the underlying randomness of the
generation process implies that two datasets created from the
same model are not identical, the data points are equivalent as
they share the same characteristics and behavior (e.g., same
correlations, probabilities, outliers). This way, researchers
can easily reproduce experiments (8) even if they are working
with massive synthetic datasets, leading to a quick compari-
son of results (9).

A. SYSTEM ARCHITECTURE OVERVIEW
Figure 2 shows an overview of the application architecture:
the gray boxes represent the main components, and the blue
boxes represent the output type of the generated data. The
output can either be a lightweight description of the model,
a file with control data points, or a visualization of the data.

FIGURE 2. An overview of the application architecture.

1) MANAGER
The manager module receives requests through the graphical
user interface, and it is responsible for forwarding those
requests to its submodules. It is a cross-cutting module that
coordinates the flow of information through the whole appli-
cation, intermediating the user interface with the generation
logic. The submodules are:
• Parameter Iterator:
• Configurations:
• Saved States:
• Data Manager:
• Communication Manager:
• Visualization Manager:

2) DATA MODEL
The data model has the responsibility of handling the data
dimensions of the dataset and the generators that produce
the values. The data model is a representation of a dataset,

VOLUME 8, 2020 82919



S. D. P. Mendonça et al.: Synthetic Datasets Generator

composed of specifications that describe data behavior. The
data models can generate not only the final complete dataset
but also data samples, which are small-size datasets (default
size of 100 rows) that have the same specified behavior. The
data samples enable visual feedback, as they can be quickly
visualized to validate if its characteristics match the testing
requirements. It is important to highlight that when using the
same data model to create more than one dataset (or to create
data samples), the resulting data are similar (i.e., has the same
behavior), but not necessarily have the same data values.

It is possible to export the data model and share it with
fellow researchers, which eases the reproduction of an exper-
iment since the exported data model is often lighter than a
massive dataset, thus being easier to store and download.

3) DIMENSIONS
The data model is composed of dimensions, each containing
a chain of generators. The dimensions have the responsi-
bility of holding the rules that drive data generation. Each
dimension has four elements: order number, title, data type,
and generator chain. The data type of the dimension depends
on the generation rules associated with them and can be
numerical, categorical, time, or mixed.

4) GENERATORS
The generators are responsible for creating and modifying
values. Several generators can sequentially compose a gen-
erator chain, implemented with the Decorator design pat-
tern [26]. Every generator has a reference to its parent and
to its child, so the communication through the chain can be
bilateral. The results of a generator depends on the result of its
children, simulating a cascade system with the data returned
by each generator.

Figure 3 shows a general scheme of the generator chain,
with its inputs and outputs. For each generator in the chain,
the user defines parameters and an operator (·). The parame-
ters are the arguments that generators need in order to produce
values (e.g., mean µ and standard deviation σ in Gaussian
generators). The operator combines the value returned by one
generator with the value returned by its child, and it can be
sum, subtraction, multiplication, division, and modulo.

FIGURE 3. A general scheme of the generator chain for one dimension d .

Consider that a dataset DS is a set of n entries
DS = {E1,E2, . . . ,En}, where each entry Ei|16i6n is
a set of m values Ei = {v(i,1), v(i,2), . . . , v(i,m)}, and
each value v(i,j)|16j6m is related to a data dimension.
Besides, each data dimension has a chain of generators
Gj = {g(j,1), g(j,2), . . . , g(j,ω)}, which is responsible to gen-
erate the values {v(1,j), v(2,j), . . . , v(n,j)}.

In order to create a value v(i,j), the generators recursively
operate their results as follows:

rk = g(j,k) · rk−1,

r1 = g(j,1)
Being r1 the initial step, and rω = v(i,j), which is the result

of the recursion when it reaches the last generator g(j,ω).
The current version of the application has 36 different

generators; each one has a unique behavior to generate data,
which may change depending on its child generator. Hence,
each generator in the chain is a building block to design a
customized data distribution. There are five major types of
generators: Random, Geometric, Accessory, Function, and
Sequence.

a: THE RANDOM GENERATORS
produce each new value independently and randomly follow-
ing a probability density or rule. For example, the Gaussian
generator creates values based on a predefined mean µ and
standard deviation σ , while the Uniform generator creates
values between a minimum min and maximum max values
with the same probability to any value in the range. Random
generators can be composed using the user-defined opera-
tions to create new distributions (e.g., a uniform distribution
might be summed up with a Gaussian distribution).

Table 1 shows the list of Random generators currently
available in the application. The params are constants that can
be of type real R or categorical C . The output column shows
illustrations of the probability density functions that drives
value generation.

b: THE GEOMETRIC GENERATORS
create numerical data following geometrical primitives. The
user specifies parameters of shapes in a spaceR2, and the gen-
erator produces data points following the specified pattern.

Since geometrical shapes are specified on the space R2,
a single data dimension can not represent the values: the out-
put is not a value on, but actually an ordered pair (on1, on2).
In order to generate such 2-dimensional information, an extra
data dimension is also needed.

When associating a Geometric generator to the generator
chain of a certain dimension, the generator only returns the
first element on1 of the ordered pair. If users want to generate
the other element on2 of the pair, they need to add a new
dimension to the data model and use a particular generator
called Get Extra; the subsection on Accessory generators
details the behavior of the particular generator.

Table 2 shows the list of Geometric generators. The params
are constants (a1, a2, a3) of type real R that describe the

82920 VOLUME 8, 2020



S. D. P. Mendonça et al.: Synthetic Datasets Generator

TABLE 1. The list of Random generators.

TABLE 2. The list of Geometric generators.

behavior of the shapes, such as control points. The output
column illustrates how each generator distributes data points
through the specified shape.

The Figure 4 illustrates how to use the geometric gen-
erators. The Cubic Bezier Stroke generator is assigned to
dimension D1, which corresponds to the first element on1
of the pair. A Get Extra Accessory then gets the second
element on2 and associates it with dimension D2. The user
can create different chains for each dimension, for instance,
adding noise only to dimension D2.

c: THE ACCESSORY GENERATORS
are responsible for modifying the values returned by other
generators. For example, the Missing Value Accessory
generator is responsible for randomly transforming the values

FIGURE 4. Using the Geometric generators and Get Extra Acessory.

generated from the child generator into missing values; the
user may choose the percentage amount of missing values.
The output on can be deterministic (e.g., MinMax, Linear
Scale), or probabilistic (e.g., Constant Noises, Missing
Values).

Since generators can only create a single value at a time,
generators are not able to return data in the format of a n-tuple
(a1, a2, . . . , an), thus returning only the first element a1.
In order to access the other elements, a Get Extra Accessory
enables retrieving a specific element from a returned tuple.
Consequently, to access all values of an n-tuple generator,
n− 1 extra dimensions must be created, each one with a Get
Extra Accessory.

Table 3 shows all Accessory generators and their respective
parameters and outputs. The params are constants (a1, a2, a3)
that can be of type real R, probability P, or natural N. In the
case of random noise, an additional parameter is the probabil-
ity distribution r(α) of the noise (e.g., Gaussian or uniform).
If an accessory receives a value that does not fit its constraints
(e.g., Range Filter receives a value outside the range) the
value is invalidated, and the accessory makes another call to
the child ch(A) to obtain a new value.

TABLE 3. The list of Accessory generators.

d: THE FUNCTION GENERATORS
transform the values generated in a previous dimension into
new ones, enabling the creation of correlated dimensions.
To use a Function generator, the user need to specify the

VOLUME 8, 2020 82921



S. D. P. Mendonça et al.: Synthetic Datasets Generator

dimension d that provides the values to be transformed
(i.e., the domain of the function). Function generators can be
linear, logarithmic, exponential, sinusoidal, quadratic, poly-
nomial, categorical, numerical piecewise, and time piecewise.
For instance, the user can make one dimension be inversely
correlated to another by using a linear function generator that
has a negative slope.

Table 4 shows the list of Function generators currently
available in the application. The params can be of type realR,
or time T . Function generators modify values generated in
another dimension d , so the output on always depends on the
value dn. Hence, the value dn coming from another dimension
is the domain of the function, and the output on is the image.

TABLE 4. The list of function generators.

The Categorical, Piecewise Time, and Piecewise genera-
tors act as a switch-case function, where each case has a
particular chain of generators. Thus, being z the number of
cases in the switch-case, the Function generator ramifies the
chain into z children ch1, ch2, . . . , chz. The children used to
generate the output on depends on the value dn of another
dimension.

e: THE SEQUENCE GENERATORS
create values according to an algorithm guided by parameters
(a1, a2, . . . , az), the data index (n), and the previous value
(on−1). The sequences can be arithmetic, geometric, or recur-
sive and can have characteristics such as: being an increasing
or decreasing sequence, have convergent values, or bounded
ranges.

TABLE 5. The list of Sequence generators.

Table 5 shows the list of Sequence generators currently
available in the application. The params can be of type
mixed M , real R, time T , categorical C , or natural N.
Additionally, the Poisson Time Sequence Generator requires
the parameter λ of the Poisson distribution.
When a sequence requires a previous output on−1, it needs

an initial step for the first value generated o1. The Sinusoidal
generator depends on previous angles cn instead of outputs,
so the initial value is given by c1.
In the Custom Sequence generator, the user defines the

custom sequence logic through a textual rule that specifies
the values of each on using arithmetic operations (e.g., sum,
multiplication, subtraction, and division), the previous value
x = on−1 and data index n. For instance, the user can create a
counter sequence typing ‘n’ as the text rule, so the values are
equal to the index.

5) OUTPUT DATA
After finishing the data model, the user has a few options
on how to export it: export data points, export data model
specification, stream data through web service, and export a
data model diagram.

If the data model is ready to create the final dataset, users
can start the generation process to save data points into the
file system. Alternatively, the system can generate a stream
of data through a Web Service, in which data is generated
and served upon URL (Uniform Resource Locator) requests.

If the user wants to export only the data model instead
of the complete dataset, the system can generate a JSON
(JavaScript Object Notation) file of themodel. This JSONfile
saves the whole model in a lightweight hierarchical structure
that preserves generators, operators, and parameters, so it can
be later imported to the system to restore the data model.
Another way to export the data model is through a DOT

82922 VOLUME 8, 2020



S. D. P. Mendonça et al.: Synthetic Datasets Generator

FIGURE 5. The main graphical interface of the application.

file, which can be loaded into GraphViz [27] to produce a
human-readable diagram of the model.

B. USER INTERFACE
Figure 5 shows the graphical user interface highlighting
seven parts: Menu Bar (A), Opened Models Tabs (B), Model
Setup Panel (C), Generator Properties (D), Dimension Prop-
erties (E), Data Preview (F), and Generate Button (G).

Figure 5 (A) shows the application’s menu bar with the
menus File, Edit, Data Model, Visualize, and Help.

The File menu presents the functions New model, New
dimension, Open model, Save model, Save model as, and
Import Dataset. The Edit menu has two options Undo and
Redo. In the Visualize menu, the user can choose from
several visualization techniques to see the data samples of
the current model; the currently implemented techniques are
[28], [29]: bar chart, histogram, scatterplot matrix, beeswarm
plot, treemap, sunburst, parallel coordinates, and bundled
parallel coordinates [30]. The Model menu has the options
Rename,Delete,Export.DOTFile,CopyModel ID,CopyURI
Web Service, Toggle Web Service, Open Web Service.
Figure 5 (B) shows the tabs of opened models. Each tab

contains a data model specification in a setup panel (C), that
includes the title and data type of dimensions, the generator
chains, and utility buttons such as filter, add generator, delete
generator, and delete dimension. Users can add a new dimen-
sion to the model through the + button at the bottom-right
of the panel. Additionally, it is also possible to add, remove,
and change the position of generators. The user can also filter
out dimensions, so they are omitted from both data preview

and final dataset. When users select a generator, information
is displayed about its associated dimension (E) and its own
properties (D).

The generator properties panel (D) is where the user
defines the generator type, and inputs its parameters and
operators. After any changes in the model, the Data Preview
panel (F) updates a parallel coordinates visualization that
shows the data samples, allowing for quick visual feedback
of data behavior.

The blue button ‘‘generate’’ (G) at the bottom-right of
the window opens the dialog for creating the final dataset,
in which users configure name, path, and number of lines.
Clicking the gear button displays a new window to config-
ure the Parameter Iterator which generates a sequence of
datasets varying some parameters iteratively.

Besides the Preview Panel, the system has a built-in visu-
alization analysis tool to show the data samples of the model
(Menu > Visualize). This feature becomes essential because
the user can visually verify in real time if the data model is
generating data according to the expectations.

In the visualization window—which can be a different
window from the main one—users can choose the visualiza-
tions they prefer to use. Figure 6 shows that the visualization
window has a flexible layout, allowing the user to resize each
visualization by dragging the dotted line, as well as split
an area to add new ones. The visualizations are coordinated
through the colors, filters, and selections, so it is easier to
relate data items from different views.

Also, the user can open more than one window at a time to
see them on different screens if needed.

VOLUME 8, 2020 82923



S. D. P. Mendonça et al.: Synthetic Datasets Generator

FIGURE 6. The visualization window shows sample data of the model, the red lines show the coordinated brushing between them.

IV. USAGE SCENARIOS - GENERATING DATASETS FOR
MACHINE LEARNING CLASSIFICATION
This scenario is an example of how to generate a test dataset
for machine learning with variation in specific data charac-
teristics. To this end, the proposed tool will generate datasets
varying the number of outliers, class separation, amount of
missing values, class imbalance, amount of bad features, and
amount of classes [31]–[37].

The variations are specified on top of a default dataset,
which has the following characteristics:

• 1.000 entries
• No outliers
• No missing values
• Two dimensions (one relevant feature and one class,
no bad features)

• 80% Class separation
• Two Classes
• No Class Imbalance

Figure 7 shows how the system generates this default
dataset. A Categorical Function act as the switch-case that
correlates the class dimension (Dimension 1) with the feature
dimension (Dimension 2). The chains in Dimension 2 contain
a Uniform generator whose parameters depend on the value
of Dimension 1: for class A1 the parameters are Min = 0
and Max = 1.2, and for class A2 they are Min = 1 and
Max = 2. These parameters create an 20% overlap in the
feature dimension, so only 80% of the classes are separated.

Thus, six types of datasets were generated, one for each of
the six characteristics in the default dataset. In each type of
dataset, the system generated four datasets with slight differ-
ences in the associated characteristic. For instance, to vary the
effect of the number of outliers, the system created datasets

FIGURE 7. The generators that builds the default dataset.

with 10%, 20%, 30%, and 40% of outliers, without changing
the other characteristics. The variations of the characteristics
are the following:
• Amount of outliers: [10%, 20%, 30%, 40%]
• Class separation: [90%, 80%, 70%, 60%]
• Amount of missing values: [10%, 20%, 30%, 40%]
• Class imbalance: [50%-50%, 40%-60%, 30%-70%,
20%-80%]

• Bad features: [1-1, 1-3, 1-5, 1-7]
• Amount of classes: [2, 12, 22, 32]

A. AMOUNT OF OUTLIERS
The Amount of Outliers is the proportion of outliers in the
data. Figure 8 shows how the Noise Generator can be used
to produce the outliers. The noise generator was configured
to change the original value adding it with a gaussian noise
(mean 0 and standard deviation 1) multiplied by 20 (force
parameter) and occurring in a certain percentage (varied from
10% to 40%) using the uniform distribution.

82924 VOLUME 8, 2020



S. D. P. Mendonça et al.: Synthetic Datasets Generator

FIGURE 8. Adding noise generators to the uniform distributions creates
outliers.

FIGURE 9. The accuracy of the models with varying amount of outliers.

Figure 9 shows the generated datasets varying the number
of outliers. The beeswarm plot shows the majority of the
data around 0 and 1.8 and some outliers above and below.
By visualizing the sequence of charts from 10% to 40%, it is
evident that as the ‘Prob’ parameter (see Figure 8 in box
Noise) increases, the number of outliers increases.

B. CLASS SEPARATION
The Class Separation characteristic refers to the amount of
overlap in the distributions of each class. Figure 10 shows
how the parameters (‘Min’ and ‘Max’) of the Uniform
generators can be changed to create an overlap between
distributions. For instance, to create a class separation

FIGURE 10. Sliding the interval of the uniform distribution of one class
increases or decreases the class separation.

of 60%, 40% of the dimension range should be shared by
the Uniform Generators (e.g., C1:Min = 0 and Max = 1.4;
C2: Min = 0.6 and Max = 2; the interval [0.6, 1.4] is shared
by both generators).

Figure 11 shows the amount of separation between classes.
The Histogram presents accumulated value for each class of
the dataset, with a clear separation in the 0.96 mark for 90%
separation. From there, the overlap of the distributions of
each class increases. These datasets could be used to test how
the accuracy of classifiers decreases as the overlap between
classes increases.

FIGURE 11. The distribution of values with varying class separation.

C. AMOUNT OF MISSING VALUES
The amount of missing values is the proportion of empty
values in the data. Figure 12 shows how the MCAR (Missing
Completely at Random) generator produces this character-
istic. This generator gets the value generated by another
generator (in this case, a Uniform generator) and changes it
to a missing value according to a probability, the parameter
‘Prob.’

FIGURE 12. Adding an MCAR accessory before the uniform distributions
create missing values randomly according to a probability.

Figure 13 presents the missing values of datasets. The red
color is used to map the missing values, and the ratio of
change from 10% to 40% is shown in Dimension 2 as the red
increases, as the class remains unchanged, being the desired
scenario to evaluate the classification approaches with miss-
ing values. An opacity value of 0.2 is used on the red color to
not clutter the visualizations.

VOLUME 8, 2020 82925



S. D. P. Mendonça et al.: Synthetic Datasets Generator

FIGURE 13. The amounts of missing value by its probability.

The datasets generated in this case could be used to test the
robustness of a classifier when there are missing values in the
features. Other types of missing values could be generated by
the presented system, such as theMAR (Missing at Random).
It could also be used to test the imputation algorithms.

D. CLASS IMBALANCE
The Class Imbalance is the proportion of each class in the
dataset. The class imbalance presents a list of challenges that
could be tested with new approaches in classification [38].
Figure 14 shows how the Weighted Categorical generator
produces this characteristic, with the weight (or likelihood) of
each category being the proportion it appears in the dataset.

FIGURE 14. Changing the categorical generator to weighted categorical
allows the generation of class-imbalanced datasets.

Figure 15 shows the class imbalance on beeswarm plots.
On the balanced plot, the thickness of both plots are equal,
but as the imbalance starts, the thickness of both distributions
start to change. At the end (20%-80%) the thickness of A1 is
drastically reduced, and the thickness of A2 grew.

E. BAD FEATURES
The Bad Features characteristic refers to the number of
features that are unrelated to the class, e.g., there is no
correlation between the class and the feature, being ‘bad’
for classification. Figure 16 show that adding dimensions
with Uniform Generators is enough, as the dimensions are
unrelated by default.

Figure 17 shows the bad features on a Parallel Coordinates.
The visual distinction of the good feature presents is clear, and

FIGURE 15. Imbalance of classes on beeswarm plots.

FIGURE 16. Adding dimensions without categorical functions creates bad
features unrelated to the class.

the values of the bad features are shown with clutter and irrel-
evant patterns. These datasets could be used to test whether a
classifier well separates the good features of useless features.

FIGURE 17. Parallel Coordinates showing bad features.

F. AMOUNT OF CLASSES
The amount of classes refers to the number of different
categories in the class dimension. Figure 18 shows how the
Categorical Generator can accept many categories as param-
eters, and how they impact the switch case (the Categorical
Function) in the feature dimension.

Figure 19 shows the number of classes on a beeswarm plot
binned by class. The color labels each class along with the
position. The size of the class plots gets very small from
22 classes onward, but the distribution of data presents the
separation of different classes. These datasets could be used
to test which classifiers are robust when classifying many

82926 VOLUME 8, 2020



S. D. P. Mendonça et al.: Synthetic Datasets Generator

FIGURE 18. Adding categories to the Categorical Generator increases the
number of classes.

FIGURE 19. The accuracy of the models with varying amount of classes.

classes, also test if the accuracy of classifiers remains bal-
anced between classes.

V. CONCLUSION
This work presented a synthetic data generator for the eval-
uation of information visualization techniques and machine
learning systems. The application is flexible and gives the
user the freedom to create custom generation profiles by
composing several data distribution primitives, such as uni-
form and normal distributions. It also contains accessories,
functions, sequences, and geometric generators that allow
highly customizable datasets.

The descriptive model file can be exported and imported,
favoring the reproducibility of research tests and experiments.
The application also offers a data stream web service to ease
the interoperability of the system and its generated data in
external applications.

This article also presents how the application can be
used in the context of evaluating machine learning algo-
rithms. It showed how different datasets could be generated,
allowing control of the system over common problems on
machine learning tasks. The visualizations built for each
scenario show the consistency of the tool on validating

each situation. The datasets created for this article are freely
available in the IEEE DataPort under the following link:
http://dx.doi.org/10.21227/5aeq-rr34.

As future works, the extraction of generators from real data
can be explored. The modeling language that describes how
to compose a chain of generators can be used as an idiom
to understand how real data behaves. Breaking through this
problem would open possibilities to edit real data, changing
the parameters that drive their distributions to create synthetic
data from real ones. Another option is the use of machine
learning techniques to make the generated synthetic data
more realistic by adding noises that are common in real data
without severely changing the underlying distribution.

Additionally, the authors intend to add: more types of
generators, new ways to display generators to facilitate the
understanding of themodel’s design, a constant seed to enable
the generation of a unique dataset, new visualizations for
data validation, and new interaction possibilities, such as
zoom in/out, filter, and re-ordering. Another extension to
future work could add a verification or comparison compo-
nent either visually or using a quantitative metric. Besides
that, another increment to the system will be the usage of
real-world data to generate new synthetic data with corre-
sponding characteristics where the user could compare both
each other.

REFERENCES
[1] B. S. Santos and P. Dias, ‘‘Evaluation in visualization: Some issues and

best practices,’’ Vis. Data Anal., vol. 9017, Feb. 2013, Art. no. 90170O.
[Online]. Available: http://proceedings.spiedigitallibrary.org/proceeding.
aspx?doi=10.1117/12.2038259

[2] B. S. Santos, ‘‘Evaluating visualization techniques and tools: What are the
main issues?’’ inProc.Workshop Beyond Time Errors Novel Eval. Methods
Vis. (BELIV), 2008, pp. 1–2.

[3] R. Redpath and B. Srinivasan, ‘‘Criteria for a comparative study of visu-
alization techniques in data mining,’’ in Intelligent Systems Design and
Applications. Berlin, Germany: Springer, 2003, pp. 609–620.

[4] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale, ‘‘Empirical
studies in information visualization: Seven scenarios,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 18, no. 9, pp. 1520–1536, Sep. 2012.

[5] S. Liu, W. Cui, Y. Wu, and M. Liu, ‘‘A survey on information visual-
ization: Recent advances and challenges,’’ Vis. Comput., vol. 30, no. 12,
pp. 1373–1393, Dec. 2014.

[6] Y. P. dos Santos Brito, C. G. R. dos Santos, S. de Paula Mendonca,
T. D. Araujo, A. A. de Freitas, and B. S. Meiguins, ‘‘A prototype appli-
cation to generate synthetic datasets for information visualization evalua-
tions,’’ in Proc. 22nd Int. Conf. Inf. Vis. (IV), Jul. 2018, pp. 153–158.

[7] S. Popić, B. Pavković, I. Velikić, and N. Teslić, ‘‘Data generators: A short
survey of techniques and use cases with focus on testing,’’ in Proc. IEEE
9th Int. Conf. Consum. Electron. (ICCE-Berlin), Sep. 2019, pp. 189–194.

[8] R. A. DeMilli and A. J. Offutt, ‘‘Constraint-based automatic test data gen-
eration,’’ IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, Sep. 1991.

[9] M. Mann, O. P. Sangwan, P. Tomar, and S. Singh, ‘‘Automatic goal-
oriented test data generation using a genetic algorithm and simulated
annealing,’’ inProc. 6th Int. Conf.-Cloud Syst. Big Data Eng. (Confluence),
Jan. 2016, pp. 83–87.

[10] S. Rani and B. Suri, ‘‘An approach for test data generation based on genetic
algorithm and delete mutation operators,’’ in Proc. 2nd Int. Conf. Adv.
Comput. Commun. Eng. (ICACCE), May 2015, pp. 714–718.

[11] G. Albuquerque, T. Lowe, and M. Magnor, ‘‘Synthetic generation of high-
dimensional datasets,’’ IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12,
pp. 2317–2324, Dec. 2011.

[12] B. Wang, P. Ruchikachorn, and K. Mueller, ‘‘SketchPadN-D: WYDIWYG
sculpting and editing in high-dimensional space,’’ IEEE Trans. Vis. Com-
put. Graphics, vol. 19, no. 12, pp. 2060–2069, Dec. 2013.

VOLUME 8, 2020 82927



S. D. P. Mendonça et al.: Synthetic Datasets Generator

[13] B. C. Kwon, H. Kim, E. Wall, J. Choo, H. Park, and A. Endert,
‘‘AxiSketcher: Interactive nonlinear axis mapping of visualizations
through user drawings,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1,
pp. 221–230, Jan. 2017.

[14] R. Liu, B. Fang, Y. Y. Tang, and P. P. K. Chan, ‘‘Synthetic data generator
for classification rules learning,’’ in Proc. 7th Int. Conf. Cloud Comput. Big
Data (CCBD), Nov. 2016, pp. 357–361.

[15] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C. Rendón, D. Holt,
and R. Xiao, ‘‘Development of a synthetic data set generator for building
and testing information discovery systems,’’ in Proc. 3rd Int. Conf. Inf.
Technol., New Gener. (ITNG), 2006, pp. 707–712.

[16] D. R. Jeske, P. J. Lin, C. Rendón, R. Xiao, and B. Samadi, ‘‘Synthetic data
generation capabilties for testing data mining tools,’’ in Proc. IEEE Mil.
Commun. Conf. (MILCOM), Oct. 2007, pp. 1–6.

[17] M. Pasinato, C. E. Mello, M.-A. Aufaure, and G. Zimbrão, ‘‘Generat-
ing synthetic data for context-aware recommender systems,’’ in Proc.
1st BRICS Countries Congr. Comput. Intell. (BRICS-CCI), Sep. 2013,
pp. 563–567.

[18] J. Dahmen and D. Cook, ‘‘SynSys: A synthetic data generation system for
healthcare applications,’’ Sensors, vol. 19, no. 5, p. 1181, 2019.

[19] D. García and M. Millán, ‘‘A prototype of synthetic data generator,’’ in
Proc. 6th Colombian Comput. Congr. (CCC), May 2011, pp. 1–6.

[20] Graph Generation With Prescribed Feature Constraints, Soc. Ind. Appl.
Math., Philadelphia, PA, USA, Apr. 2009.

[21] F. Brodkorb, M. Kopp, A. Kuijper, and T. Von Landesberger, ‘‘A modu-
lar rule-based visual interactive creation of tree-shaped geo-located net-
works,’’ in Proc. 12th Int. Conf. Signal-Image Technol. Internet-Based
Syst. (SITIS), 2016, pp. 397–403.

[22] D. T. Kofinas, A. Spyropoulou, and C. S. Laspidou, ‘‘A methodology for
synthetic household water consumption data generation,’’ Environ. Model.
Softw., vol. 100, pp. 48–66, Feb. 2018.

[23] S. Sun, C. Chen, and L. Carin, ‘‘Learning structured weight uncer-
tainty in Bayesian neural networks,’’ Proc. Mach. Learn. Res., vol. 54,
pp. 1283–1292, Apr. 2017.

[24] Z. Kang, K. Grauman, and F. Sha, ‘‘Learning with whom to share in multi-
task feature learning,’’ in Proc. Int. Conf. Mach. Learn., 2011, pp. 1–8.

[25] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, ‘‘Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts,’’
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), New York, NY, USA, Jul. 2018, pp. 1930–1939.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1995.

[27] J. Ellson, E. Gansner, L. Koutsofios, N. C. Stephen, and G. Woodhull,
‘‘Graphviz—Open source graph drawing tools,’’ in Proc. Int. Symp. Graph
Drawing. Berlin, Germany: Springer, 2001, pp. 483–484.

[28] S. Few, Now You See it: Simple Visualization Techniques for Quantitative
Analysis. El Dorado Hills, CA, USA: Analytics Press, 2009.

[29] R. Spence, Information Visualization: An Introduction. London, U.K.:
Springer, 2014.

[30] R. S. A. Divino, C. G. R. Santos, and B. S. Meiguins, ‘‘A visual rep-
resentation of clusters characteristics using edge bundling for parallel
coordinates,’’ in Proc. 21st Int. Conf. Inf. Vis. (IV), Jul. 2017, pp. 90–95.

[31] J.M. Johnson and T.M. Khoshgoftaar, ‘‘Survey on deep learningwith class
imbalance,’’ J. Big Data, vol. 6, no. 1, p. 27, Dec. 2019.

[32] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, ‘‘A survey of machine learning
for big data processing,’’ EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 67, Dec. 2016.

[33] A. Tajer, V. V. Veeravalli, and H. V. Poor, ‘‘Outlying sequence detection
in large data sets: A data-driven approach,’’ IEEE Signal Process. Mag.,
vol. 31, no. 5, pp. 44–56, Sep. 2014.

[34] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, ‘‘A survey
on addressing high-class imbalance in big data,’’ J. Big Data, vol. 5, no. 1,
p. 42, Dec. 2018.

[35] S. Das, S. Datta, and B. B. Chaudhuri, ‘‘Handling data irregularities in clas-
sification: Foundations, trends, and future challenges,’’ Pattern Recognit.,
vol. 81, pp. 674–693, Sep. 2018.

[36] A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and
G. Bontempi, ‘‘Learned lessons in credit card fraud detection from
a practitioner perspective,’’ Expert Syst. Appl., vol. 41, no. 10,
pp. 4915–4928, Aug. 2014.

[37] Q. Xiang, X. Dai, Y. Deng, C. He, J. Wang, J. Feng, and Z. Dai, ‘‘Missing
value imputation for microarray gene expression data using histone acety-
lation information,’’ BMC Bioinf., vol. 9, no. 1, p. 252, Dec. 2008.

[38] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, ‘‘Classification with class
imbalance problem: A review,’’ Int. J. Adv. Soft Comput. Appl., vol. 7, no. 3,
pp. 176–204, 2015.

SANDRO DE PAULA MENDONÇA received the
master’s degree from the Federal University of São
Carlos. He is currently pursuing the Ph.D. degree
with the Laboratory of Visualization, Interaction,
and Intelligent Systems, Federal University of Pará
(UFPA). His research topics are information data
quality and visual analytics.

YVAN PEREIRA DOS SANTOS BRITO has been
pursuing the master’s degree in computer science
with the Laboratory of Visualization, Interaction,
and Intelligent Systems, Federal University of Pará
(UFPA), since 2020. His research interest includes
information visualization.

CARLOS GUSTAVO RESQUE DOS SANTOS
received the master’s and Ph.D. degrees from the
Federal University of Pará, in 2015 and 2017,
respectively. He is currently a Tenured Professor
with Federal University of Pará. His research inter-
ests are in information and scientific visualization,
virtual and augmented reality, and human com-
puter interaction.

RODRIGO DO AMOR DIVINO LIMA is cur-
rently pursuing the master’s degree with the
Laboratory of Visualization, Interaction, and
Intelligent Systems, Federal University of Pará
(UFPA), where his researches are information
visualization and visual analytics topics.

TIAGO DAVI OLIVEIRA DE ARAÚJO received
the master’s degree from the Laboratory of Visu-
alization, Interaction, and Intelligent Systems,
Federal University of Pará (UFPA), where he is
currently pursuing the Ph.D. degree. His research
interests are information and visualization, virtual
and augmented reality, and computer vision.

BIANCHI SERIQUE MEIGUINS received the
master’s degree from the Pontifical Catholic Uni-
versity of Campinas, in 1999, and the Ph.D. degree
from the Federal University of Pará, in 2003. He is
currently a Tenured Professor with Federal Uni-
versity of Pará. His research interests are in infor-
mation and scientific visualization, virtual and
augmented reality, and human computer
interaction.

82928 VOLUME 8, 2020


