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ABSTRACT This article presents a rehabilitation technique based on a lower-limb exoskeleton integrated
with a human–machine interface (HMI). HMI is used to record and process multimodal signals collected
using a foot motor imagery (MI)-based brain–machine interface (BMI) and multichannel electromyographic
(EMG) signals recorded from leg muscles. Current solutions of HMI-equipped rehabilitation assistive
technologies tested under laboratory conditions demonstrated a great deal of success, but faced several
difficulties caused by the limited accuracy of detecting MI electroencephalography (EEG) and the reliability
of online control when executing a movement by patients dressed in an exoskeleton. In the case of lower-
limb representation, there is still the problem of reliably distinguishing leg movement intentions and
differentiating them in BMI systems. Targeting the design of a rehabilitation technique replicating the
natural mode of motor control in exoskeleton walking patients, we have shown how the combined use of
multimodal signals can improve the accuracy, performance, and reliability of HMI. The systemwas tested on
healthy subjects operating the exoskeleton under different conditions. The study also resulted in algorithms
of multimodal HMI data collection, processing, and classification. The developed system can analyze up to
15 signals simultaneously in real-time during a movement. Foot MI is extracted from EEG signals (seven
channels) using the event-related (de)synchronization effect. Supplemented by EMG signals reflectingmotor
intention, the control system can initiate and differentiate the movement of the right and left legs with a high
degree of reliability. The classification and control system permits one to work online when the exoskeleton
is executing a movement.

INDEX TERMS Brain–computer interfaces, human–robot interaction, electroencephalography, electromyo-
graphy, exoskeletons.

I. INTRODUCTION
Today, exoskeletons are regarded as a powerful instrument
for the clinical rehabilitation of patients with impaired
lower-limb function (for a recent review, see Refs. [1], [2]).
However, controlling the exoskeletons typically requires a
physical action such as the push of a button, which is quite
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different from how normalmotor actions are initiated. Amore
natural and intuitive way of interacting with exoskeletons
and other neuroprosthetic devices is to use endogenous brain
signals. This can be implemented using brain–machine inter-
face (BMI) systems based on electroencephalographic (EEG)
signals generated independently from external stimulation.
Therefore, this approach allows the movement to be fully
controlled by a subject. A typical example of such a BMI
is a system based on sensorimotor rhythms such as motor
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imagery (MI) [3]. The two possible amplitude modulations
of the sensorimotor rhythms include event-related desynchro-
nization (ERD) and event-related synchronization (ERS).
Motion-related tasks in both a real movement and MI are
associated with a decrease in EEG power or ERD. As in
the case of BMI-mediated upper-limb techniques, lower-
limb movement, which follows the activation of appropriate
motor areas of the cortex, is believed to be able to accelerate
the rehabilitation of patients by promoting neural plastic-
ity [4]–[6]. Consequently, BMI systems based on the detec-
tion of ERD can be considered a promising technique to
accelerate rehabilitation.

Although several studies demonstrate the efficiency of the
BMI-assisted therapy of upper limbs [7]–[11], there is a lack
of similar research on patients with lower-limb impairments.
Similar to hand MI, BMI based on foot MI and integrated
with a lower-limb exoskeleton would induce plastic changes
in the affected brain areas and, hence, stimulate rehabilitation
[1]. Anatomically, the left and right foot representation areas
in the human sensorimotor cortex are located not only near
the margo superior cerebri (the deep region inside the inter-
hemispheric fissure) but also very close to each other [12].
That is why, in contrast to hand control, the classification
of left and right foot imagery is quite difficult to imple-
ment. Very few studies discriminate between right or left foot
imagery [13]–[17]. It should also be noted that all these stud-
ies were carried out under comfort conditions with long-term
prior training. Such studies involved a large number of elec-
trodes and used a long epoch in the EEG for classification.
Unfortunately, these technologies cannot be implemented for
the real-time control of an exoskeleton based rehabilitation
device.

Moreover, even the use of general foot MI-based BMIs,
which detect only footMIwithout discriminating between the
left or right side, creates difficulties in the real-time imple-
mentation of lower-limb exoskeleton control [1], [18]–[22].
Developing lower-limbMI-based BMIs for exoskeleton oper-
ation is considered difficult because of EEG signal contam-
ination by artifacts from exoskeleton electronics, intensive
body movements, and tonic muscle activity.

To enhance the reliability of a real-time EEG-based control
system, BMI can be complemented with signals of other
modalities, particularly with the electromyographic (EMG)
recording of muscle activity. There have been several studies
integrating the EMG and EEG modalities in the control sys-
tem of upper-limb [8], [23], [24] and lower-limb [25]–[27]
exoskeletons. This allows one to improve BMI system safety
and to increase the degrees of freedom of assistive devices.
The integration of EMG into an EEG-based control system of
the lower-limb exoskeleton was crucially important not only
for the quality of movement prediction but also for system
adaptability to the long-term dynamics (evolution) of muscle
activity during the rehabilitation process. For totally disabled
subjects or subjects in the early stages of rehabilitation ther-
apywithweakmuscular activity, it was important to detect the
user’s movement intention by registering motor-related EEG

signals and, subsequently, to provide feedback after execution
of a corresponding movement by the exoskeleton. During the
rehabilitation of patients with improving muscular activity,
the reliable prediction of movement onset by EMG becomes
more important for training more precise movements.

It is necessary to involve muscle activity (resid-
ual or appearing in the process of rehabilitation) in the control
loop to form the correct stereotypes of limb movements.
In this case, forming an imaginary reflex function (e.g.,
the activity of a local part of the motor cortex in the brain
is not sufficient), the activity of the entire motor chain
(somatosensory cortex, primary and secondary motor cortex,
spinal cord motor neurons) has to be restored for the proper
rehabilitation of motor functions.

Summarizing this brief review of HMI-equipped rehabil-
itation exoskeletons, we note that the major problems to
be addressed include intention detection accuracy and con-
trol system performance in the integration of HMI into the
exoskeleton control system. Specifically for the lower-limb
exoskeletons, there are natural limitations in the separation
of EEG patterns regarding the intention and execution of dif-
ferent leg actions because the corresponding representation
areas are located quite close to each other. Other modali-
ties, including leg EMG signals, can be helpful at certain
stages of rehabilitation. Finally, the main challenge still to
be addressed is the design of a reliable exoskeleton machine
that can imitate the natural movement (e.g., step walking) of
a patient dressed in an exoskeleton and naturally control it
by brain signals using the MI of stepping legs (not the other
limbs) with the synchronized detection and stimulation of
leg muscles that should implement movement under healthy
conditions. This provides very specific and physiologically
correct activations of the brain areas synchronously with the
muscle system, thus improving the rehabilitation procedure.

In this paper, we propose a novel multimodal human–
machine interface (mHMI) with integrated EEG and EMG
modalities, which can provide real-time control of a lower-
limb exoskeleton. The exoskeleton follows a motor intention
(leg lift) by decoding foot MI or motor execution. EEG
modality was implemented via BMI based on ERD correlated
withMI ormotor execution. EMGmodalitywas implemented
via HMI based on the detection of muscular activity cor-
related with leg movement. The experiment, which led to
development of the technique, was conducted in eight healthy
subjects. The results showed a high accuracy rate in motion
intention and execution classification tasks for the EEG and
EMG modalities of our mHMI, respectively. Data analysis
showed that the combination of EEG and EMG modalities
can (i) improve the reliability of movement prediction by
decreasing the false positive rate and (ii) enhance the positive
detection rate of EEG-based classifications.

II. SYSTEM SETUP
The exoskeleton control system based on multimodal EEG–
EMG HMI consists of the following parts: (1) an EEG and
EMG signal recording module, (2) an EEG and EMG signal
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FIGURE 1. Components of the online lower-limb exoskeleton control
system: (a) EEG-based HMI and (b) EMG-based HMI.

FIGURE 2. EEG electrode distribution in the 10–10 system.

processing and classifier module, (3) the control system of
the exoskeleton, and (4) a lower-limb exoskeleton.

The signal recording module recorded the EEG signal dur-
ing the MI by subjects and EMG signals during the leg move-
ments. Furthermore, the EEG and EMG data were sent to the
processing and classification module, where raw data were
preprocessed by a feature extraction procedure. The classifier
analyzed the preprocessed data to recognizemotion intention.
After motion intention is predicted, the control system sends
the corresponding command to the exoskeleton, which finally
executes the target movement. The scheme of our mHMI-
based exoskeleton control system is given in Fig. 1.

A. EEG SIGNAL RECORDING MODULE
EEG signals were recorded using a certified NVX 52 ampli-
fier (LLC ‘‘Medical Computer Systems,’’ Russia). Seven
electrodes were used to record EEG (C5, C3, C1, Cz, C2, C4,
C6) arranged according to the international 10–10 scheme

FIGURE 3. Distribution of EMG electrodes on the leg.

(Fig. 2). Such a scheme provides a denser coating of the
interest area compared with other schemes (e.g., 10–20). The
reference electrode was placed on the ear lobe. The grounding
electrode was placed on the forehead. The signal sampling
rate was 500 Hz. Resistance under the electrodes did not
exceed 10 k�. The value of the automatically measured
impedance of the skin contact (nomore than 15 k�) wasmon-
itored to control contact during the application procedure.

B. EMG SIGNAL RECORDING MODULE
Disposable gel electrodes were attached to the wires of the
NVX 52 amplifier. Two electrodes with one common refer-
ence for all channels were used for each EMG channel. Four
EMG channels, which recorded the EMG of the musculus
tensor fasciae latae (MTFL), musculus rectus femoris (MRF),
musculus biceps femoris (MBF), and musculus gastrocne-
mius (MG), were used for each leg. Fig. 3 shows the location
of the EMG electrodes on the leg. Electrode placement on the
muscles, their alignment in accordance with fiber direction,
and the distance between them were set according to the
recommendations of the SENIAM project (surface EMG for
the noninvasive assessment of muscles project) [28], [29].

C. LOWER-LIMB EXOSKELETON
The lower-limb exoskeleton shown in Fig. 4 was designed by
the Scientific and Production Company ‘‘MADIN’’ (Nizhny
Novgorod, Russia) in collaboration with the National
Research Lobachevsky State University (Nizhny Novgorod,
Russia). The exoskeleton was designed to help with rehabili-
tation training or walking assistance.

The exoskeleton is composed of the mechanical body and
control and sensor systems. The mechanical body consists of
a frame with a mounted control unit and battery, and two legs
attached to the frame. Each leg consists of a femoral and knee
drive connected by sliding units. The lengths of the legs were
made adjustable to fit patients of different heights. Each leg
ends with an insole with return springs. The drives consist of
a reducer, electric motor, and analog angle sensor operated
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FIGURE 4. Laboratory setup of the lower-limb exoskeleton integrated
with mHMI.

by a drive controller connected to the central control unit.
The control unit commands the drives to perform the required
movements while analyzing the readings from the sensors to
control the accuracy of set movements. The exoskeleton can
perform movements such as standing up, sitting down, and
various types of walking. Motion initiation can be performed
by control signals arising from the EMG and/or EEG signal
classifiers. For safety reasons, in the case of incorrect classi-
fication results, the system control can always be intercepted
from a button console.

III. METHOD
A. DATA PREPROCESSING
The raw EEG and EMG data were filtered by bandpass filters
with frequency ranges from 8 to 15 Hz and from 10 to 300Hz,
respectively. We also applied the Notch filter to remove the
power voltage interference at 50 Hz.

B. EMG FEATURE EXTRACTION: ROOT MEAN SQUARE
After digital filtration, we extract the envelope of signals by
root mean square (RMS) calculation:

RMS(t) =

√
1
N

∑N−1

i=0
x2(t − τi), (1)

where x is an input EMG signal, N is the number of elements
of the input data set, and t is time. Fig. 5 shows raw EMG
data and the corresponding RMSs.

C. EEG FEATURE EXTRACTION: COMMON SPATIAL
PATTERN FILTER
The discriminated features of the EEG signal in the case ofMI
were extracted using a common spatial pattern filter (CSP),
which is considered to be one of the most effective filters in
MI-based BMI technology [30], [31].

FIGURE 5. Example of EMG signals used in the experiment and
corresponding RMS signals (envelopes). LL: left leg; RL: right leg; TFL:
tensor fasciae latae; RF: rectus femoris; BF: biceps femoris; G:
gastrocnemius.

In analytical form, CSP can be described as

XCSP = W TX, (2)

where X is a multichannel EEG signal of M × N dimension,
XCSP represents signal decomposition components (matrix of
M × N dimension), and W is a decomposition matrix of M
× M dimension. The decomposition matrix W is calculated
according to the following algorithm. An intraclass average
covariance matrix for the EEG signals from classes 1 and 2 is
calculated as follows:

Ci =
1
Ni

∑Ni

l=1
Cl, i = 1, 2, (3)

where i indicates class 1 or class 2, N is the number of EEG
signals from class i, and Cl is the covariance matrix for signal
Xl . The average covariance matrix for the entire data is

C6 = C1 + C2. (4)

Then, the eigenvalues (3) and the eigenvectors (U) of matrix
C6 are obtained as follows:

C6U = U3. (5)

The whitening transformation matrix is P = 3−1/2UT ,

and matrix C1 is transformed into

PC1PT = K . (6)

Diagonalization of matrix K gives

K = UT
K3KUK , (7)

where 3K is the diagonal matrix of the eigenvalues and UK
is a matrix of eigenvectors (ordered in descending order of
the corresponding eigenvalues). The decompositionmatrixW
has to satisfy the following conditions:

W TC1W = 31, W TC2W = 32, 31 +32 = I , (8)
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FIGURE 6. Example of classification of EMG signals from one subject:
(a) ranking of output classes against the background of commands;
(b) fuzzy matrix of classification results. The accuracy for one class is
shown in the green cells, and the percentage of wrong classification
results to the number of samples of the target class is shown in the red
cells. LL: left leg class; RL: right leg class.

where 31, 32 are the diagonal matrixes of the C1, C2 eigen-
values, respectively, and I is the unity matrix. Taking into
account Eqs. (6)–(8), the resulting decomposition matrix W
is determined as follows:

W = PTUK . (9)

The maximum dispersion values for the signal XCSP =

W TX will be observed in the first k channels. For MI-based
BMI technologies, k = 3 is commonly used. Thus, the feature
vector is formed by the dispersion values in the first three
channels of the signal XCSP.

D. LINEAR DISCRIMINANT ANALYSIS
Both the EMG- and EEG-based classifications were per-
formed using a linear discriminant analysis (LDA) method.
Thismethod is a generalization of Fisher’s linear discriminant
and can be effective for the EMG/EEG classification problem
because of its lower computational requirements. Similar to
the statistical criterion in ANOVA, LDA aims to maximize
the distance between the means of data classes and minimize
the standard deviations of classes.

LDA implies a threshold classification according to

(Ex, Ew) > c, (10)

where Ex represents input data to be classified, Ew is a normal-
ized vector (defining the hyperplane separating classes), and
c defines the threshold constant. Next, Ew and c are calculated
as

Ew = 6−1 ( Eµ1 − Eµ0) ,

c =
1
2

(
T − EµT06

−1
Eµ0 + Eµ

T
16
−1
Eµ1

)
, (11)

where 6 is a class covariance (LDA assumes that the class
covariances are identical), Eµ0, Eµ1 are means of classes to
be separated, and T is a certain threshold. LDA was imple-
mented using the standard classify function of MATLAB.
Fig. 6 shows examples of classification with the LDA

method. It should be noted that here we performed EMG-
based multiclass recognition (see Section IV B).

E. CLASSIFICATION PERFORMANCE METRICS
The obtained classification systems were evaluated using an
accuracy value equal to the number of correct predictions
divided by the total number of predictions.

Statistical measures of the performance of the binary clas-
sification test consisted of the true positive rate (TPR), false
positive rate (FPR), true negative rate (TNR), and false nega-
tive rate (FNR). These performance metrics were defined as
follows:

TPR = TP/P = TP/(TP+ FN ) = 1− FNR,

FPR = FP/N = FP/(FP+ TN ) = 1− TNR, (12)

where TP is the number of correctly classified leg movement
trials, P is the total number of leg movement trials, FN is
the number of incorrectly classified leg movement trials, FP
is the number of incorrectly classified rest trials, N is the
total number of rest trials, and TN is the number of correctly
classified rest trials.

Another measure of performance was balanced accuracy
(BA), which was used to evaluate the performances obtained
from the two types of signals (EEG/EMG) and their combi-
nations (AND/OR) together. BA was defined as follows:

BA = 1/2(TPR+ TNR). (13)

F. ERD ANALYSIS
To evaluate the degree of ERD/ERS of sensorimotor rhythm
during MI, patterns corresponding to the resting task were
taken as the reference state [32]. The EEG signals were spa-
tially filtered using the surface Laplacian for all the channels.
Then, the power spectral density was constructed for each
signal with a step of 1 Hz, and ERD was calculated as the
difference in the signal powers during MI and the rest signal,
which was divided by the signal power corresponding to the
rest task.

IV. EXPERIMENTS
For experimental purposes, we recruited eight healthy vol-
unteers of either sex aged from 20 to 27. The study complied
with the Helsinki declaration adopted in June 1964 (Helsinki,
Finland) and revised in October 2000 (Edinburgh, Scotland).
The Ethics Committee of the Lobachevsky State University
of Nizhny Novgorod approved the experimental procedure
(protocol No. 28 of January 1, 2019). All participants gave
their written consent. All subjects previously had no expe-
rience with BMI. Before the experiments, the subjects were
interviewed to find out which of their legs was dominant.
After application of the EMG and EEG electrodes, each
subject put on the exoskeleton and took a neutral stance,
leaning on crutches. The exoskeleton was adjusted to fit each
subject. Throughout the experimental session, the subject
remained in the exoskeleton. The duration of the experiment
did not exceed 90 min. The experiment consisted of two parts
and was carried out by an online procedure. The first part
consisted of training and testing the performance of HMI
to control the exoskeleton using only foot MI. The second
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FIGURE 7. Interface for command presentation for MI.

FIGURE 8. Stages of the training (a) and testing (b) sessions of the MI
experiment. FB: presence of feedback.

part consisted of testing with real foot movements. During all
the experiments, the EEG and EMG signals were collected
simultaneously from 15 channels (seven EEG channels and
eight EMG channels).

A. HMI BASED ON MI
To develop the scheme of the EEG-based HMI for exoskele-
ton control, we adapted the approach proposed in our previ-
ous work [33]–[35].

To improve the classification accuracy in our study,
we used BMI based on the MI of only one dominant foot.
Throughout the training and testing sessions, the subject
stood wearing the exoskeleton. During classifier training,
the subjects performed one of two commands: virtual imaging
ofmovement of the dominant leg or rest, when the subject had
to concentrate on his/her breathing. Commands were given to
the subjects via a light-emitting diode display. The examples
of images are shown in Fig. 7. An image of a ‘‘right/left’’
arrow corresponded to the MI of leg movement, and a cross
corresponded to the rest state. Between the commands, a gray
monitor without any images was shown to the subjects dur-
ing the intervals of rest and the preparation stage. Each 4-s
command was presented 5 times. The interstimulus interval
was 3 s (empty screen). The stimuli were presented randomly.
The classifier training duration amounted to 1 min and 10 s.
The scheme of the training session is shown in Fig. 8a.

When training of the classifier was completed, each subject
had three testing sessions controlling the exoskeleton. Each
command was repeated 5 times during a testing session.
The duration of the command was 4 s, and the interstimulus
interval was increased to 10 s. The commands were presented
randomly. When testing HMI, the classifier analyzed EEG
every 500 ms, and the results of mental task recognition were
shown to the operator via visual feedback every 500 ms: a
green scale beginning in the circle in the screen center, where
subjects were to fix their eyes, filled down to the edge of the
screen if the classifier recognized the task to be in agreement
with the given command; the scale would stop filling when
another task was recognized (Figs. 7 and 8b). If HMI obtained

FIGURE 9. Classification results of foot MI experiments.

the correct classification result for 4 s of MI, the exoskeleton
made a step by moving the corresponding leg. In the case of
incorrect classification, the exoskeleton did not perform any
action. The scheme of the testing session is shown in Fig. 8b.

B. HMI BASED ON EMG
To train the classifier, one of the three movement classes was
randomly presented to the test subject: ‘‘attempt to step with
the left foot’’ (LL class), ‘‘attempt to step with the right foot’’
(RL class), and ‘‘neutral position’’ (rest). As in the previous
case, there were corresponding images shown to the subjects
(Fig. 6). Each class lasted 3 s, and the interval between the
classes was 10 s. The duration of the training session was
220 s.

When classifier training was completed, each subject had
three test sessions. During testing, feedback with the subject
was carried out through the exoskeleton’s reaction. In the
case of correct classification, the exoskeleton took a step with
the corresponding foot. In the case of incorrect classification,
the exoskeleton did not perform any action.

V. RESULTS
A. REAL-TIME BMI CONTROL OF AN EXOSKELETON
BASED ON LOWER-LIMB MI
Fig. 9 shows the results of the real-time control of the
exoskeleton by BMI based only on foot MI. Classification
accuracy was calculated for all subjects in each of three tests
and then averaged for all the tests. This classification was
performed to discriminate between the imagery of foot move-
ment or rest. Note that the classification accuracy under ideal
conditions could reach 100%, with a chance level of 50%.
In our experiments, the classification accuracy was relatively
high, equal to 78.3% on average (60%–100%; SD 12.24%)
for all subjects. The greatest average classification accuracy
for all attempts was observed in Subject 3 (86.7%), and
Subject 4 showed the highest accuracy in the first test (100%).

The peak values of ERD in the band 8–16 Hz corresponded
to the µ (6–12 Hz) and low β rhythm (13–17 Hz) during
sessions of MI obtained for each electrode for each subject.
The average values ofµ-ERD for all subjects (for one subject,
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FIGURE 10. Average levels of ERD following foot MI from all subjects.
Mean ± SEM values are shown. For one subject, we excluded one outlier
test of MI.

we excluded one outlier test of MI) in different electrodes are
indicated in Fig. 10. The ERD levels in different electrodes
for all subjects separately are shown in the Supplementary
material in Fig. 1. Fig. 10 shows that, on average, all subjects
generated larger ERD values in the Cz channel (e.g., vertex
area) as expected, because lower-limb movements are repre-
sented in this cortical region. The averaged ERD values for
the other channels are close to ERD on Cz. The presence of
such background EEG activity in the areas of the hands can
be explained by the fact that subjects wearing the exoskeleton
used their hands to maintain balance. Thus, the contribution
of EEG patterns corresponding to the hand movements to the
foot MI of the exoskeleton wearer was considerable. We tried
to minimize such interference. We trained and tested the
system in the same position while the subject maintained the
standing position in the exoskeleton. It is important to note
that the ERD levels on electrodes C3 and C4, corresponding
to the hand’s areas in the cortex, for foot MI (Fig. 10) was
twice less, respectively to the hand MI in our previous study
[34]. Note also that here we do not focus on the classification
of foot MI [13], [15], [16] but rather on the ability and
performance of online control of the exoskeleton using foot
MI under real conditions.

Examples of the EEG topographies of ERD following foot
MI are shown in the Supplementary material in Fig. 3.

B. REAL-TIME EEG-BASED BMI CONTROL OF AN
EXOSKELETON BASED ON LOWER-LIMB MOTOR
EXECUTION
In experiments with motor execution, BMI detected ERD in
the EEG signals when subjects lifted their right or left leg. The
classification results for this case are shown in Fig. 11. We
obtained classification accuracy for two (both legs together
without discriminating between the left or right side, or rest)
(Fig. 11a) and three (right/left leg or rest) (Fig. 11b) classes.
The accuracy in the case of two classes, on average, for all
subjects was 78.13% (70.67%–86.67%; SD 17.37%), which
is almost the same as for MI. The classification accuracy
for three classes (right/left legs and rest) reached quite a
low value equal to 51.31%, on average (33%–66.3%; SD
17.14%), for all subjects. This value, however, was larger
than a chance level of 33.3%, but still not acceptable to

FIGURE 11. Classification results of ERD-based BMI performance for real
foot movement experiments for two (both legs together without
discriminating the left or right side, or rest) (a) and three (right/left
leg or rest) (b) classes. Classification accuracy detailed for all subjects in
each of three tests and averaged for all tests.

control the exoskeleton. The greatest classification accuracy
was observed in Subject 2, on average, for all attempts for two
classes (86.7%) and for three classes (66.3%). For Subject 6,
the accuracy for three classes was close to a random value of
33.3%.

Fig. 12 shows the average values of ERD during real
movement of the left (a) and right (b) leg for all subjects in
different electrodes averaged for all tests. The ERD levels
in different electrodes for all subjects separately are shown
in the Supplementary material in Fig. 2. Unlike foot MI,
in the case of real movement in the exoskeleton, the largest
ERD values were observed for channels C3 and C4 and
not for the Cz channel. Channels C3 and C4 corresponded
to the hand representation areas in the sensorimotor cortex.
Desynchronization of these areas was more significant than
in the case of MI because, although the exoskeleton lifted the
leg, subjects had to lean on the crutches to maintain balance.
That is why we obtained poor classification accuracy for the
real movement of different legs.

C. REAL-TIME EMG-BASED HMI CONTROL OF AN
EXOSKELETON BASED ON LOWER-LIMB MOTOR
EXECUTION
When the exoskeleton was turned on, the subject’s legs were
fixed. Therefore, an attempt to make a step would create
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FIGURE 12. Average levels of ERD following foot motor execution from
all subjects for the left (a) and right (b) leg averaged for all tests. Mean ±

SEM values are shown.

isometric tension in the muscles. Moreover, even just stand-
ing in the exoskeleton did not allow full relaxation of the leg
muscles. Thus, the classification of EMG patterns under such
conditions can be difficult. Using all the EMG channels (four
for one leg), we gained an accuracy of classification ranging
from 61% to 100% for different subjects (Fig. 13, ‘‘ALL 4’’).
On the basis of our previous study, such a large scatter can
be explained by differences in the anatomical features and
muscle coordination of different people [36]. The average
accuracy was 83.4%, SD = 14.2% (Fig. 14, ‘‘ALL 4’’).
We hypothesized that muscles differ from each other in

information value in the context of EMG classification and,
accordingly, made different contributions to the accuracy.
However, classification based on recording the activity of one
muscle (on each leg) did not reveal a leader or an outsider
(Fig. 13). For example, in Subject 2, the classification based
on MG showed the best accuracy, whereas in subject 8, MRF
was the most informative.

The classification results averaged over all subjects using
full and reduced sets of EMG channels (Fig. 14) also indi-
cated approximately equal information values of different
muscles. The best average accuracy for all subjects was
85.8% (SD = 13.3) with a set of EMG channels, including
MTFL, MRF, and MBF (‘‘TFL + RF + BF’’ in Fig. 14).
However, the differences in the results based on different sets
were not significant.

Thus, the average accuracy of the EMG-based classifica-
tion, as expected, was higher than in the case of EEG control.
However, considering that the exoskeleton was intended for

FIGURE 13. Individual accuracy of the classification of the three motion
classes when controlling the exoskeleton. ‘‘ALL 4’’: use of a full set of
EMG channels. When registering only one EMG channel: TFL: musculus
tensor fasciae latae; RF: musculus rectus femoris; BF: musculus biceps
femoris; G: musculus gastrocnemius.

FIGURE 14. Accuracy of the classification of the three motion classes
averaged for all subjects operating the exoskeleton using different sets of
EMG channels. The notation of the EMG channels is similar to that of
Fig. 13. Average values and standard errors are indicated.

patients with motor disorders, the main problem was the
possibility of joint multimodal classification.

D. OFFLINE ANALYSIS OF MULTIMODAL EEG–EMG HMI
PERFORMANCE
Unlike the case of detecting foot MI, we can predict the
attempt of real footmovement using combinations of the EEG
and EMG signals.We developed two protocols for combining
EEG and EMG: (i) HMI based on extracting CSP features
with subsequent LDA classification (Fig. 15a) and (ii) HMI
based on separate feature extraction and classification, the
results of which were combined by logical operators ‘‘AND’’
and ‘‘OR’’ (Fig. 15b). Here we used EEG- and EMG-based
classification for two classes (1: foot movement execution
without discriminating between the left or right side; 2: rest)
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FIGURE 15. Two protocols for combining EEG and EMG signals in
multimodal HMI for offline analysis.

because of the low EEG-based classification accuracy value
for three classes.

The EMG + EEG classification based on CSP features
with subsequent LDA classification (Fig. 15a) showed an
accuracy of 80% (SD = 13%), which can be considered
as a kind of ‘‘averaging’’ of the EEG-based (78.13% for
two classes) and the EMG-based (89%, SD = 10% for dis-
criminating two classes) accuracies. However, in the case of
impaired motor activity (muscle spasm, atrophy, etc.) that
occurs as a result of pathological processes at the level of the
spinal cord (trauma) or the motor cortex (stroke), the EMG
signals can be significantly less informative.

To study the capabilities of multimodal HMI in the case
of patients with motor impairment, we simulated the distor-
tion of EMG signals by superimposing white Gaussian noise
(σ = 0.0012) on the initial EMG signals of healthy subjects.
The classification accuracy of noisy EMG (nEMG) signals,
on average, would equal 59% (SD = 7.9%). Further, nEMG
signals were supplemented with the original EEG signals.
The accuracy of multimodal nEMG + EEG classification
was, on average (for eight subjects), 70% (SD = 6.2%),
which was lower than the results obtained in the case of real
movement classification based only on EEG (78.13%). Thus,
it was shown that a multimodal interface-based on a single
classifier shows accuracy close to average accuracy for EMG
and EEG.

For further analysis, we calculated additional metrics of
classification performance such as TPR, FNR, TNR, FPR
(12), and BA (13). The obtained metrics are summarized
in Table 1 and visualized in Fig. 16. Despite the fact that the
EEG-based control system showed relatively high accuracy,
it led to much more high false positives (0.42) than that of an
EMG-based system (0.04).

Furthermore, we studied the possibility of combining
the results of independent EEG and EMG classification by
the logical operators ‘‘AND’’ and ‘‘OR.’’ Condition ‘‘OR’’
meant that we predicted movement execution if either EEG-

FIGURE 16. Classification results in FPR and TPR for conditions: only EMG
(black), only EEG (red), EEG ‘‘AND’’ EMG (green), and EEG ‘‘OR’’ EMG
(blue). The mean TPR and FPR for all subjects are shown; bars indicate
standard deviation.

TABLE 1. Results for different classification conditions (from left to right:
only EMG, only EEG, combination of both with ‘‘AND’’ and with ‘‘OR’’).

or EMG-based analysis or both predicted a movement. Con-
dition ‘‘AND’’ meant that we predicted movement execution
if both the EEG- and EMG-based analyses predicted the
movement. We found that the EMG signal and ‘‘OR’’ com-
bination were the best types of signals in the classification
of movement trial. The combination ‘‘AND’’ and the EMG
signal were better than the EEG and ‘‘OR’’ types of signals
in the classification of the rest state. For error type I (false
positive), the combination ‘‘AND’’ and the EMG signal were
the most accurate, and these types of signals were signifi-
cantly better than the EEG and combination ‘‘OR’’ types of
signals (AND/EMGp> 0.5; AND/EEG p< 0.001; AND/OR
p < 0.001). For error type II (false negative), the combi-
nation ‘‘OR’’ was the most accurate, and the combination
‘‘AND’’ was the least accurate; the EEG signal was better
than the EMG signal (OR/EMG p < 0.05; OR/EEG p <
0.001; OR/AND p < 0.001).

VI. DISCUSSION
In our study, we simulated realistic conditions for subjects
controlling an exoskeleton integrated with multimodal HMI.
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Weproposed amHMI control system based on footMI or foot
motor execution (e.g., real leg movement). All experiments
were carried out in the online procedure when subjects
were wearing the exoskeleton and controlled it using mHMI.
We also showed that a small number of EEG electrodes (seven
electrodes) is sufficient to provide effective online control.

The control of assistive devices by EEG or EMG signals
separately can have major applications in rehabilitation. For
example, the reliable detection of movement intention by
motor-related EEG signals is crucially important for totally
disabled subjects or subjects at the early stages of rehabili-
tation therapy with very weak muscular activity. EMG-based
detection of an attempt to move would be more appropriate
for subjects with residual muscle activity or subjects at a
later state of therapy. Our results eventually demonstrated
how a high accuracy rate can be achieved in both types
of EEG- and EMG-based HMI for control of a lower-limb
exoskeleton. The classification accuracy of EEG-based HMI
in the case of foot MI for two classes was approximately
78%. Note that the classification accuracies for MI and actual
movement execution were very close. This phenomenon can
be explained by the fact that the exoskeleton facilitated kines-
thetic imagery, which is believed to be more effective for
BMI than visual imagery [37]. The accuracy of EMG-based
control was 89%/83.4% for two/three classes.

However, there are circumstances when movement pre-
diction based on EEG or EMG has limited performance.
For example, EMG signals are not a reliable source for
movement onset detection for patients with spasm. In turn,
the EEG-based systems showed a high rate of false posi-
tives. Therefore, the combination of multimodal data should
be especially relevant. It has already been shown in other
studies [8], [24], [26], [38]–[40] how such combinations of
different physiological data can improve the performance of
detection of a subject’s intentions.

In the case of simple HMI based on extracting CSP fea-
tures from an EEG + EMG combination with subsequent
LDA classification, we obtained an accuracy equal to 80%.
In the case of EEG and noisy EMG signals, the classification
accuracy was 70%. In both cases, the EEG + EMG com-
bination led to ‘‘averaging’’ of the EEG- and EMG-based
accuracies.

In the offline procedure, we investigated the performance
of different logical combinations of the EEG and EMG
modalities. We showed that the multimodal approach for
detecting a movement attempt of an exoskeleton operator can
either (i) improve the reliability of movement prediction by
decreasing the FPR or (ii) enhance the positive detection rate.
In particular, we gained a minimal FPR of 0.022 for the EEG
AND EMG combination. False positive errors are the most
dangerous errors for an operator of a lower-limb exoskele-
ton because they can provoke unexpected movements of the
exoskeleton, thus risking the possibility of the subject losing
balance. Thus, the EEG AND EMG combination can be
used in cases when safety is prioritized. The maximal TPR
was 0.996 for EEG OR EMG. The high TPR can be useful

for encouraging patients with weak muscular activity (early
rehabilitation stage) if there are no risks associated with the
exoskeleton movement. Interestingly, a similar approach was
recently investigated by Kirchner et al. [24] to predict self-
initiated hand movement onset by the offline analysis of EEG
and EMG activities. In this study, all classification modalities
had high performance in the range of 0.88–0.94 BA. They
also studied different combinations of EEG and EMG anal-
ysis. Similar to our results, they showed that the best result
of prediction movement onset was achieved using the ‘‘OR’’
combination and EMG as a single modality, and the ‘‘AND’’
combination can enhance the reliability of movement detec-
tion (i.e., decrease the FPR).

Finally, we believe that our findings on a combination
of EEG and EMG signals can be further implemented in
clinical rehabilitation protocols of robotic exoskeleton use
with respect to individual demand, neuromuscular disorder,
and state of rehabilitation therapy. Future research of the
mHMI integrated exoskeleton control system can be focused
on the design of adaptive feedback during the rehabilitation
procedure. Specifically, this feedback can regulate motor
power in collaboration with muscle activation during move-
ment execution at the later stages of rehabilitation when
muscular strength has recovered sufficiently. In other words,
the machine would adaptively doze its power, thus encour-
aging patients to take steps instead of carrying them as pas-
sengers. From the brain side, another challenge is to use
transracial magnetic stimulation, stimulating a particular rep-
resentation area to improve control signal conduction from
the center to the periphery.
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