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ABSTRACT Recently, the recent advancement of deep learning with the capacity to perform automatic high-
level feature extraction has achieved promising performance for sensor-based human activity recognition
(HAR). Among different deep learning methods, Convolutional Neural Network (CNN) and Long Short
Term Memory (LSTM) have been widely adopted. However, scalar outputs and pooling in CNN only allow
to get the invariance but not the equivariance. The capsule networks (CapsNet) with the vector output
and routing by agreement is able to capture the equivariance. In this paper, we propose a method for
recognizing human activity from wearable sensors based on a capsule network named SensCapsNet. The
architecture of SensCapsNet is designed to be suitable for spatial-temporal data coming from wearable
sensors. Experimental results show that the proposed network outperforms CNN and LSTM methods. The
performance of the proposed CapsNet architecture is assessed by altering dynamic routing between capsule
layers. The proposed SensCapsNet yields improved accuracy values of 77.7% and 70.5% for 1 routing on
two testing datasets in comparison with the baseline methods based on CNN and LSTM that yields the F1-
score of 67.7% and 69.2% for the first dataset and 65.3% and 67.6% for the second dataset respectively.
Moreover, even several human activity datasets are available, privacy invasion and obtrusive concerns
have not been carefully taken in to consideration in dataset building. Toward to build a non-obstructive
sensing based human activity recognition method, in this paper, a dataset named 19NonSens is designed and
collected from twelve subjects wearing e-Shoes and a smart watch to perform 19 activities under multiple
contexts. This dataset will be made publicity available. Finally, thanks to the promising results obtained by
the proposed method, we develop a life logging application which achieves a real-time computation and the
accuracy rate greater than 80% for 5 common upper body activities.

INDEX TERMS Human activity recognition, capsule net, wearable sensors.

I. INTRODUCTION
Human activity recognition (HAR) using non-obtrusive sens-
ing techniques has recently received great attention from both
researchers and industry. With the rapid progress in semicon-
ductor technology, low cost sensors (e.g. accelerometers and
gyroscopes) with small size, light weight and low power con-
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sumption could be easily embedded hidden inside low obtru-
sive wearable devices (e.g. smart-phones, smart-watches and
smart-shoes). These wearable devices have being used more
and more popular in daily life. Based on the signals col-
lected from embedded sensors, the human activities will be
able to be segmented, analysed and recognized by learn-
ing signal patterns. The main goal of sensing-based HAR
turns to exploit a robust classification method so that it can
overcome challenges usually faced by traditional machine
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learning methods using one-dimensional temporal sequences
(i.e. noise, fixed-length of sliding windows, temporal corre-
lations between the collected signals). Particularly, in case of
recognizing various types of activities in daily life, proposing
efficient discriminated features is primarily required.

Recently, deep neural networks have made a great advance
inmany classification tasks. Ones have shown their feasibility
for automatically extracting and representing features in a
hierarchy from low-level to high-level abstractions. Deep
neural networks avoid heuristic parameters of conventional
hand-designed features as well as scale better for more
complex behavior-recognition tasks. Recent surveys on the
deep learning methods for sensor-based activity recognition
have shown the superior results of deep learning methods in
comparison with hand-desinged features-based methods for
human activity recognition [1], [2]. Among different deep
learning methods, Convolutional Neural Network (CNN)
and Long Short Term Memory (LSTM) have been widely
adopted. However, scalar outputs and pooling in CNN only
allow to get the invariance but not the equivariance. The
capsule networks (CapsNet) with the vector output and rout-
ing by agreement is able to capture the equivariance. In this
paper, we propose a method for recognizing human activity
from wearable sensors based on a capsule network named
SensCapsNet. The architecture of SensCapsNet is designed
to be suitable for spatial-temporal data coming fromwearable
sensors. Two main kinds of signal used in our work are
accelerometer and gyroscope. Experimental results show that
the proposed network outperforms CNN and LSTMmethods.

Moreover, in the context of ubiquitous human activity
recognition (or recognizing people activities in common
lives), some common public datasets (e.g., [3], [4]) have not
been constructed under different contexts as indoor or out-
door scenes. Beside, the role of wearable sensors versus
their mounting’s positions on human-body (e.g., watches
for monitoring the activities of upper extremities, shoes for
lower ones) have been not clearly analyzed. These reasons
motivate us to construct a new dataset with various types of
human activities in both outdoor and indoor scenes. Issues of
mounting position are also taken into account for monitoring
activities of both lower and upper extremities.

The main contributions of the paper are as follows:

• A new sensing-based HAR dataset (named 19NonSens)
is built. To collect the human activity, we use a com-
mercial smart-watch (Samsung Gear G2) which is built-
in sensors and our self-made smart-shoes embedded
with tiny wireless accelerometers (named as e-Shoe) for
data acquisition. This design allows maximizing unob-
trusiveness to subjects as well as allows them to com-
fortably perform daily activities in a realistic manner.
19 activities including null activities have been designed
and collected from 12 subjects in both indoor and out-
door scenes.

• A new method based on capsule network for human
activity recognition (SensCapsNet) is proposed. The

architecture of SensCapsNet is designed to be suitable
for spatial-temporal data coming from werable sensors
(e.g., accelerometers and gyrocopes).

• A real-time human activity recognition and logging
application has been built to illustrate the potential appli-
cations of using non-obstructive sensing data for human
activity recognition.

The remainder of this paper is organized as follows:
Section II briefly reviews related works on sensing-based
HAR. Section III presents in detail the 19NonSens dataset.
The proposed method based on capsule network is described
in Sections IV. Section V reports comparative evaluations
and Section VI describes the application for human activity
recognition and logging. Finally, discussions and conclusions
are presented in Section VII.

II. RELATED WORK
Human activity recognition (HAR) based on wearable sen-
sors has been intensively attempted in the literature. Read-
ers can refer comprehensive surveys related to this topic in
[1]–[3]. At the heart of a wide range of practical applica-
tions [2], [5], HAR basing on wearable sensors offer assis-
tive technologies for healthcare [6]–[8], and helping the
elderly or people with special health conditions (e.g., demen-
tia) to live more independently at their homes. For instance,
[9]–[11] proposed solutions for healthier cooking. Works in
[12], [13] offered intelligent homes. In this section, we briefly
review works aiming at tackling two major issues usually
raised when deploying feasible applications. First, we survey
HAR’s works which attempt to use non-invasive or unob-
trusive sensing. Second, we review advanced techniques for
wearable-based HAR and their evaluation on benchmark
datasets. Particularly, the works utilizing the recent Deep
Neural Networks (DNN), will be described.

A. UNOBTRUSIVE TECHNOLOGIES FOR HAR
Pervasive or unobtrusive sensing based activity recognition
could be understood as the technologies ensure invisibility
to the users by embedding sensors into the subject as nat-
ural as possible. Work by Pham et al. [10], for instance,
deployed multiple accelerometers inside kitchen appliances
for detection of fine-grained cooking activities such as chop-
ping, scooping, stirring, etc. The application presented in [10]
is to help dementia people to live more independently at
their homes. Similarly, high-level activities such as making
cereal and coffee have been addressed by Buettner et al.
[11]. The authors attached Radio Frequency Identification
(RFID) tags on food containers such as the jug and bowl for
recognition of activities by inferring objects getting involved
a specific cooking task. A work proposed by Tapia, M. et al.
[14] employs numerous simple and binary sensors at a smart
home for detection of in-home activities such as bathing,
cleaning, etc. Recent work such as [15] employed RF sensors
mounted under the work surface for recognizing clerk and
desk-work activities under real office settings. In the above
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works, the wearable devices are completely integrated into
the environment and are invisible from the users. Therefore,
they allow the users to perform their activities in a non-
invasive and unobtrusive manner.

Recently, the use of smart devices such as smart-phone,
smart-watch has been more and more popular. The inertial
sensors (e.g., accelerometer, gyroscope) are usually de-facto
built-in inside such devices. This offers solutions to maxi-
mize the unobtrusive manner, particularly, in the context of
monitoring human daily activities. There are a number of
works investigating advantages of smart-phone, smart-watch,
smart-shoe for detecting human activities and/ormobility. For
example, Kwapisz et al. [16] exploit advantages of smart-
phone for recognizing walking, jogging, standing, climb-
ing stairs, and sitting. Several features such as the average
time between peaks, standard deviation, bin distribution are
manually extracted from sensing data streams. These fea-
tures then are utilized to train and test classification methods
including decision tree, logistic regression, multilayer per-
ceptron. Similarly, work by Xing et al. [17] detects several
mobility activities. Some works exploit features extracted
from accelerometer built-in smart-watch. In [18], the authors
detect drinking activity with over 93% accuracy. Other works
attempt non-invasive activity recognition by embedding and
hiding the sensors inside the fabrics. Such devices can be
worn by human such as shoe [19], [20] or textile [21]. How-
ever, classifying activities performed with both hands and
foots such as drinking, brushing, running, walking seems to
be a considerable challenge for smart-device-based activity
recognition. In this study, we deploy both two smart-watches
and a smart-shoe human worn on human body to address
this issue. This sensor mounting allows users to comfort-
ably perform their daily activities under realistic settings.
Particularly, a set of 19 activities covering both upper and
lower extremities are collected in both indoor and outdoor
environments.

B. METHODS FOR HAR USING WEARABLE SENSING
ManyHARmethods focus on recognizing everyday activities
such as running, biking, walking, cooking, walking, jogging,
standing, climbing stairs, sitting, or even fine-grained cook-
ing activities such as chopping, scooping, stirring etc. In early
works, intrinsic temporal sequences in human activities have
been processed by implementing hidden Markov models
(HMMs) above the RBM layers. A series of related tech-
niques have been listed in a survey of Lara et al [2]. It is worth
to mention that there are some limitations or obstacles from
current techniques: it is not easy to capture several daily activ-
ities such as preparing food or cleaning house using a small
mobile device such as a smart phone; detecting fine-gained
activities performed with hands such as drinking or brush-
ing. Furthermore, achieving the trade-off between sensor
sampling frequency and recognition accuracy for real-time
implementation on a smart-phone is a challenge. Therefore,
it still remains a considerable challenge for smart-wearable-
based activity recognition.

Most approaches to HAR using wearable sensors focus
on recognizing a pre-defined set of activities [2]. However,
recognizing null activities (arbitrary out of interest activ-
ities) or recognizing a larger set of activities in different
contexts using multiple sensors but hidden from the users
needs to resolve imbalance classification. In [22], the FE-
AT (Feature-based and Attribute-based learning) approach
has been proposed to address this issue. FE-AT focuses on
the shortage of labeled data by leveraging the relationship
between existing and new activities. Recently, the use of con-
volutional neural networks (CNNs) for HAR was introduced
in [23]. The authors deployed a simple CNNmodel for learn-
ing and recognizing data from single accelerometer. Another
model in [24] used deep CNNs in a multi-sensor recognition
framework which built a newmulti-channel time series archi-
tecture of CNNs. The architecture proposed in [25] uses deep
recurrent neural networks (DRNNs) for building recognition
models that are capable of capturing long-range dependen-
cies in variable-length input sequences. In their work, effec-
tiveness of long short-term memory (LSTM) in DRNNs is
confirmed on miscellaneous benchmark datasets.

CapsNets were fisrt introduced in 2017 for image classi-
fication task and has obtained superior performance on the
MNIST dataset in comparison with the state of the art CNN-
based methods [35]. Since then, there has been an upsurge in
employing Capsule Networks for different computer science
tasks. Recently, previous studies have tried to extend CapsNet
for working with temporal information such as bearing fault
diagnosis on raw vibration signals [26] or continuous sign
language recognition from wearable IMUs [27]. However,
to the best of our knowledge, this is the first work where
capsules are employed for sensor-based activity recognition.

III. 19NONSens - NON-OBSTRUCTIVE SENSING HUMAN
ACTIVITY DATASET
A. HARDWARE SETUP
To collect human activity dataset, we use two devices that
are a Samsung Gear G21 (SG2) and a self-made smart-
shoes embeddedwith tiny wireless accelerometers (named as
e-Shoe). Figure 1 shows these devices images as well as
wearing positions. The Smart-watch SG2 employs different
sensors such as an accelerometer, a gyroscope, a heart rate
sensor, a themal and a light sensor. In this study, sensing
signals from the accelerometer and the gyroscope will be
used as inputs of the system. For simpler synchronization,
both accelerometer and gyroscope sensors of SG2 are set
to the sampling frequency of 50Hz which is identical to the
sampling rate of the 3-axis wireless accelerometers (WAX3).
SG2 will be worn on body’s hand as shown in Fig. 1(b).

Instrumented inside e-Shoe, WAX3 (Fig. 1(c)) is a MEMS
accelerometer developed by researchers at Open Lab [9]. Fig-
ure 1(d) shows the position of a WAX3 sensor is embedded
and hidden into the sole of e-Shoe. WAX3 weights 7 grams
and dimensions of 23 x 32.5 x 7.6 mm, and operates with

1https://www.samsung.com/global/galaxy/gear-s2/
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FIGURE 1. Setup smart-watch (upper row) and smart-shoe (lower row) as
unobtrusive wearable sensors.

the IEEE 802.15.4 low power radio protocol. It can per-
form a sampling rate up to 2ks.sec-1 and be adaptable to
Open Sound Control (OSC) message, binary, and American
Standard Code for Information Interchange (ASCII) formats.
There are twoWAX’s versions:WAX receiver connects to the
computer via a USB port andWAX transmitter can wirelessly
communicate to the receiver with the sensing range up to
25 meters. WAX is also equipped a re-chargeable Li-Polymer
battery with the battery life is up to 8 hours for continuously
transmitting signals and up to 56 days for hibernate mode.
The acceleration signals of the WAX sensor embedded inside
the shoes are measured in X, Y, and Z axes (relative to the
accelerometer) and three directions of the movement (X, Y,
Z) can be computed through tilt angles. Acceleration values
are transmitted with a sampling frequency of 50Hz (50 sam-
ples per second). To ensure the sensor can be chargeable,
the antenna ofWAXpoints inside the shoeswhile the (female)
hole towards outside WAX3 is easy to be embedded and hid
inside the insole of e-Shoe.

B. DATASET CONSTRUCTION
We collected and annotated data in indoor and outdoor con-
texts to build up a dataset for experimental evaluation. The
constructed dataset comprises of 18 activities plus Null activ-
ities. The list of activities and roles of each type of sensor in
each action is given in Tab.1.

Twelve subjects aged between 19 and 45 are asked to
worn e-Shoes and Samsung Gear S2 smart-watch on the
preferred hand (10 right-handed and 2 left-handed). The
subjects are asked to sign the consent forms and given the
list of 18 activities. Before performing activities, subjects
are asked to perform the ‘‘kick and hit-the-hand’’ activity
to make highly distinctive signals for synchronizing sensors
and video, and then resting for 10 seconds before performing
activities (see Fig. 3. a). There are 9 in-door activities such
as brushing, slicing and 9 sport out-door activities such as

TABLE 1. List of human activities captured with Smartwatch and e-Shoes
in indoor (i) and outdoor (o) environments. The activities are mostly
performed by upper (u) or and lower (l) human body part.

FIGURE 2. Signal synchronization in 19NonSens dataset.

kicking, running. During performing the pre-defined activ-
ities, the subject could perform any arbitrary activity out
of 18 activity list. We consider all of activities out of interest
as Null activities. Duration time for each activity varies from
3 to 10 minutes. In addition, several surveillance cameras are
installed in the kitchen, living room, and outdoor space to
capture the activity videos which are used later for annotation
(see Fig. 2). Two people have annotated the whole dataset
using ELAN software.2 Only signal corresponds to prede-
fined activities are labeled and the other are marked as Null.
Figure 3. b-d show some examples of synchronized signal of
brushing, peeling and kicking in 19NonSens dataset.

2https://tla.mpi.nl/tools/tla-tools/elan/
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FIGURE 3. (a) Synchronization trigger and (b, c, d) examples of activities of 19NonSens (acc-shoes: accelerometer values of e-Shoes; acc-gear:
accelerometer values of SG2; gyr-gear: gyroscope sensing values of SG2).

TABLE 2. Comparison of the 19NonSens dataset with recent benchmark
public datasets (as listed in [25]).

This dataset will be publicly made accessible through our
github page.3 Comparison of the constructed dataset with the
most recent benchmark datasets of HAR using wearable sen-
sors [25] is presented in Tab.2. As reported, the constructed
dataset has some advances and challenges. First, it covers
both indoor and outdoor contexts. Second, the activities of
both upper extremities (hands) and lower ones (foots) are
attempted with the obstructiveness is miniaturized. Finally,
the dataset is constructed by a reasonable number of par-
ticipants who perform their activities as natural as possible
without any instruction from the experimenters.

IV. SensCapsNet - CapsuleNet FOR HUMAN ACTIVITY
RECOGNITION FROM ACCELEROMETER
A. PRE-PROCESSING TECHNIQUES
As signal from accelerometer-based sensing devices may
contain noise due to the individual and environmental vari-
ations, sensor diversity and sensor placement issues, before
feeding this signal to the network, we first apply some
preprocessing techniques. Low-pass and high-pass filtering
are applied for noise removals. In addition, as sometimes
sensor signals can be dropped, we keep 2-second frames
contains more than 70% of its full complement for next
step, and discard on the grounds frames less than 70% as
they are insufficient information to classify activities. After

3We will provide the URL upon the request

that, a cubic spline interpolation method is applied for re-
sampling data to fill out the dropped samples. Then, sensing
values are normalized into the range of [−1,1]. In our work,
the sampling frequencies are set to 50Hz. This means, for
each second we have 50 samples of X, Y, Z acceleration
values. We then segment signal by using 2-second sliding
windows with 30% overlapping between two consecutive
sliding windows. The 2-seconds window with overlapping
ration are inspired by the study in [19] as this would cover
most of the activities of interest while reducing time delayed
for real-time implementation.

B. 1D-CONVOLUTIONAL OPERATOR
Since our data is time-dependent, we employ 1-dimensional
convolution operation (1D-Conv) to extract local pattern.
Assume the input feature is al−1 ∈ RL×D where L is the
number of time points in a frame, D is the size of feature set.
The output of the 1D-Conv is presented in Equation 1:

al,ci = bc +
D∑
v=1

k∑
u=1

wl,cuv a
l−1
i− k

2+u,v
∀c = 1, ..,C (1)

where bc is the bias term of the c− th output feature in the set
of C output features. k is the size of kernel which slices along
the times axis, wl,c is the weight matrix at layer l regarding
the c-th output feature.

C. SensCapsNet FOR HUMAN ACTIVITY RECOGNITION
Capsule network (CapsNet) was first introduced for image
classification task [35]. A capsule is a group of neurons
with can model different entities or parts of entities in one
image. The capsules in a network will be undergo a routing
by agreement algorithm which allow the network to capture
the parts-to-whole relationship between entities and to learn
viewpoint invariant representations. Recently, CapsNet has
been applied to recognize events/activities from time series
data such as traffic flow data [32] and video [33].

There are two main concepts in CapsNet that are capsule
and dynamic routing algorithms between capsules. A capsule
is a group of local neurons that encode the information into a
vector using a complex internal computational process [34].
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FIGURE 4. Architecture of the proposed SensCapsNet for human activity recognition.

A capsule is a combined series but not limited to convo-
lutional layers, activation layers and fully-connected layers.
Each capsule responses to an implicit pattern which is a
restricted space. In image processing, that space can be a pose
at different angles and sides [35].

In a conventional feed-forward network, the information
from lower layer is passed to upper layer based on an
unchanged learned set of parameters. However, in a capsule
network, information is passed partially to highly agreeing
capsules in the higher layer using dynamic routing algorithm.
This algorithm dynamically modifies the weights of connec-
tion based on the agreement of the output and the input.
In other words, it tries to identify the upper capsules which
response to the claimed data and passes the information to
them. The first step of this algorithm is to calculate a tempo-
rary output using a fair weight set for all connections. Then it
estimates the responsiveness of a capsule by the similarity of
the input and the output. Finally, the weights of connections
are updated based on this analogy. A modification of connec-
tion weight is called a routing iteration. Each routing iteration
changes the shares of information from capsule in the lower
layer to the capsules in the upper layer.

Moreover, capsule network [35] introduced the squash
function which scales a vector into another parallel vector
whose length represents the probability of object presence
while orientation represents the pose of object. Squash func-
tion is presented in Eq. 2 where vector sj is scaled into vj.

vj =
‖sj‖2

1+ ‖sj‖2
sj
‖sj‖

(2)

In this study, we propose a CapsNet with three-stage archi-
tecture for human activity recognition fromwearable sensors.
The network consists of a convolutional stage, a primary
capsule stage and an activity capsule stage. The architecture
of the network is illustrated in Fig. 4. The convolutional stage
contains multiple 1D convolutional layers as presented in
Eq. 1 and projection layers with ReLU activation function.
This stage extracts abstract features for primary capsules from

TABLE 3. Parameters of the proposed SensCapsNet for 19NonSens
dataset.

TABLE 4. Performance (%) on 19NonSens dataset.

TABLE 5. Performance (%) on opportunity dataset.

sensing data features. The primary capsule layer contains a
large number of capsules. Each capsule encodes information
into 8-dimensional vectors using a 1D convolution with a
novel squash activation function [35]. The activity capsule
layer contains as many numbers of capsules as the number
of activities. The capsules in this stage connect densely to
the capsules in primary capsule stage. Table 3 indicates the
parameters of SensCapsNet for recognizing 19 activities in
19NonSens dataset. The input is 9× 100 dimensional vector
with 9 is the X, Y, Z values of two accelerometers (one from
the smart watch and one from the e-Shoe) and one gyroscope
of the smart watch, 100 is the number of signal in 2 second
window.
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FIGURE 5. Architecture of the CNN used in our experiments for human activity recognition.

FIGURE 6. Architecture of the DeepConvLSTM used in our experiments.

To train this model, we use the length of output vector v at
activity capsule stage to compute loss function presented in
equation 3 where m+ = 0.9; m− = 0.1; Tk = 1 if the object
k appears; the term λ represents the down-weighting of the
loss for non-presented classes. In order to make the model,
a simple reconstruction network as a regularizer in which β
is the reconstruction regularization term; f is the reconstruc-
tion process and R is the square error between reconstructed
data and input. This regularizer network contains three wide
convolutional layers connected by two ReLU layers and a
sigmoid function on the top to output auto-encoded data.

L =
∑n

k=1
Tkmax(0,m+ − ‖v‖)2

+(1− Tk )λmax(0, ‖v‖ − m−)2

+βR(f (x), x) (3)

In addition, inspired by the previous study [35], we apply
reconstruction as regularization and set the regularization
term β to 0.0001. As performance of the capsule network
depends on the number of dynamic routing iterations. In
our works, we report the performance of SensCapsNet with
three iterations named SensCapsNet-1, SensCapsNet-2 and
SensCapsNet-3 respectively.

D. CNN AND LSTM FOR ACTIVITY RECOGNITION
To evaluate the effectiveness of the proposed method, we will
compare its performance with the baseline methods on com-

mon datasets. Two baseline methods are chosen in this paper.
The first baseline to be investigated is the convolutional
neural network CNN presented in [23]. This is a deep model
allowing multichannel time series as inputs. This model con-
sists of three stages. The first stages contains three modules,
each of them works on the stream of a sensor. A module
is a stack of four sets of four layers: a convolution layer,
a rectified linear unit (ReLU) layer, a max pooling layer and
a normalization layer. The second stage unifies the data of
the three above streams using a fully connected layer that
creates a parametric-concatenation. The final stage is a fully
connected layer that maps the information into classes. Fig. 5
illustrates the architecture of the CNN model for human
activity recognition.

The second baseline architecture used in this study is
a deep model that combines both CNN and LSTM [24].
Although CNN ismore sensitive than RNN in learning spatial
relations from data, it is not designed for modeling long-term
dependencies. On the contrary, LSTM [36] with three gates
mechanism maintains the memory for an arbitrary number of
computational steps. Therefore, a combination of CNN and
LSTM is likely to be better in both recognizing local patterns
and long relations. The DeepConvLSTM shown successfully
evaluations on a series of benchmark datasets, as given in
[25]. In this study we deploy a DeepConvLSTM which has
four convolutional layers stacked on top of the raw sensor
channel, as shown in Fig. 6. Those layers with convolution
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TABLE 6. Detailed performance (%) of SensCapsNet-1 on 19NonSens
dataset.

FIGURE 7. Confusion matrix of SensCapsNet-1 using both Smartwatch
and e-Shoes sensors.

operations extract features for stacked LSTM layers. Follow-
ing the study in [24], we stack two LSTM layers to enable the
ability of modeling high level of abstraction.

V. EXPERIMENTAL RESULTS
A. DATASETS AND EVALUATION SETTINGS
1) EVALUATION DATASETS
There are two datasets used in our experiments: our 19Non-
Sens and Opportunity [29], [37]. Opportunity dataset
provides signal of varied types of human activities includ-

FIGURE 8. Confusion matrix of the SensCapsNet-1 on smart watch
signals.

FIGURE 9. Confusion matrix of the SensCapsNet-1 on e-Shoes signals.

ing: periodic activities (e.g. walking), static activities (e.g.
standing, lying down) and sporadic activities (e.g. opening
a drawer). The activities in the dataset are hierarchically
categorized into four abstract levels from atomic gestures
such as moving bread to long sequential activities such as
preparing breakfast. It comprises a very rich set of signals
from various sensors mounted at different positions on human
body. However, many of sensors and their positions violate
the non-invasiveness and non-obstructiveness properties of
the activity recognition task.
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To ensure the obtrusiveness characteristics to end-users,
we extract a subset from the Opportunity dataset that con-
tains only the activities captured from three sensors attached
on wrist and knee, including accelerometer channels (RKN_
and RLA) and 3D gyroscope channels (RLA). From which,
the HL_Activity set of 6 labels null signal from three sensors
that best fits our motivation and similar to those we collected
in term of sensor types and sensors positioned on the human
bodywhile likely alleviating obstructiveness. They are the 3D
accelerometer channels (RKN_ and RLA) and 3D gyroscope
channels (RLA). We target at HL_Activity set of 6 labels
including null. Our work differs from other works such as
[25] used whole the Opportunity dataset and often ignored
obtrusiveness characteristics.

2) EVALUATION SETTINGS
We employ the same protocol for both datasets: 10-fold cross
validation. Under this protocol, the dataset is partitioned into
10 parts (folds), in which 9 parts are used for training, and the
remaining one is used for testing, and the process is repeated
for all parts, and the results are averaged after all. Three
evaluation metrics that are Precision, Recall and F1-score.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS
1) EXPERIMENTAL RESULTS ON 19NonSens DATASET
Tab. 4 shows Precision, Recall, and F1-score achieved by
different networks on our proposed 19NonSens dataset. The
recognition rates of the baseline models (CNN and Deep-
ConvLSTM) are 68.6% and 69.4% respectively. The CNN
model has lowest performancewith precision of 67.5%, recall
of 68.6%, and f1-score of 67.7%. DeepConvLSTM model,
known as the original model designed for fusing multiple
sensors, more effective than standard CNN [24]. On the
proposed dataset, DeepConvLSTMmodel has slightly higher
performance of around over 69%, which improve about 2%
compared to the CNN model. This can be explained that our
dataset is relatively complex as it covers various activities
under different contexts which might challenge even deep
models.

The proposed SensCapsNet significantly improves the
recognition performance compared to the two base-
lines. Among three variations of Capsule network,
the SensCapsNet-1 with one routing iteration outperforms
other capsule network variants. It achieves the highest recog-
nition rates with both Precision and Recall of over 78%,
and nearly 78% F1-score. Comparing to SensCapsNet-2 and
SensCapsNet-3, the increase of performance is about 4% and
6% respectively.

2) EXPERIMENTAL RESULTS ON Opportunity DATASET
The performance of network models onOpportunity dataset
is shown in Tab. 5. The two baseline models achieved 65%
to 67.3% in term of recall. DeepConvLSTM model is lightly
2% better than the standard CNN model, which is reasonable
compared to [25] as we just used significantly less sensors

than [25] (3 sensors in this study vs. 12 sensors in [25]). One
again, the best performance (71.6% Precision, 69.9% Recall,
and 70.5% F1-score) has been achieved by SensCapsNet-1,
followed by its variants SensCapsNet-2 and SensCapsNet-
3. It proves the efficiency of capsule networks which takes
information about the relative relationships between features
into account. In the following, we will analyze in more detail
the performance of SensCapsNet-1 for each of activities and
each of sensors on the 19NonSens dataset.

3) DETAILED ANALYSIS OF SensCapsNet-1’s
PERFORMANCE ON 19NonSens DATASET
Table 6 shows performance obtained by SensCapsNet-1 on
19NonSens dataset. As can be seen, three most distinguish-
able activities are Slicing, Hand washing and Kicking with
F1-score over 90%. The highest recall on Slicing activity is
95.91%which is a very promising result. This is explained by
the fact that both accelerometer and gyroscope data represent
rotation features of activities. These features are well char-
acterized and exploited by SensCapsNet-1 for constructing
feature map. Moreover, SensCapsNet-1 could avoid the loss
of information and it can be able to handle data fusion from
multiple sensors. Activities such as Brushing, Mixing, Wip-
ing, Sweeping floor, Turning shoulder, Turning wrist, Turn-
ing knee, Turning haunch, Cycling are also well recognized
with F-1 score ranging from 80.58% to 89.72%. These high
results are obtained thank to distinctive movements. In term
of F-1 score, performance of SensCapsNet-1 is 78.73% in
case of Walking, 75.09% with Down-stair and 70.37% with
Running.

In contrast, some other activities such as Peeling, Turn-
ing ankle are significantly misclassified. F1-score achieved
around 50% as sensors on smartwatch might possibly be
noisy and interfering with the sensors of e-Shoes. Fig. 7
shows the confusion matrix obtained by SensCapsNet-1.
We could see that the activity Peeling was confused with
many other activities for example Brushing. It could be
explained by the fact that while performing both activities
(Brushing and Peeling), the subject does move mostly the
hand but not the lower body part. The acceleration and gyro-
scope data from both activities are then quite similar.

Beside, Null activities are easily misclassified with other
activities as obviously they contain significant noises which
make the precision, recall, and F1-score of null down to
around 48.45%. In fact, the recognition of activities belong-
ing to the Null class is very challenging because they could
include any arbitrary activity (a wide range of activities) that
the subject performed that is irrelevant to the pre-defined
scenario.

4) IMPACT OF USING SINGLE OR MULTIPLE SENSORS ON
RECOGNITION PERFORMANCE
We have analyzed the performance of SensCapsNet-1 on
19NonSens dataset with the use of multiple sensors (Smart-
watch and e-Shoes). We now investigate the contribution
of each sensor in activity recognition. Table 7 shows the
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TABLE 7. Performance of SensCapsNet-1 when using single or multiple
sensors.

FIGURE 10. Main components of the application.

FIGURE 11. System flowchart.

performance of SensCapsNet-1 achieved while using either
Smart-watch or e-Shoe (the first and second row of Tab. 7)
and using both sensors (the last row of Tab. 7). As can be
seen, using the signal from Smart-watch could obtain the
performance (77.4% F1-score), which is as high as the use
of both Smart-watch and e-Shoe combination (77.7% F1-
score). This could be explained by the fact that in all activities,

FIGURE 12. Some images of subjects performing activities to test our
application.

FIGURE 13. Web interface of the application with the activity bar in the
bottom. The recognized activity is marked in green.

even for activities performed mostly by lower body part,
hands always involved in activity implementation and the
hand movement of each activity could be quite distinctive for
recognition.

The use of single sensor modality of e-Shoe, in contrast,
significantly reduces the recognition accuracies (the second
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FIGURE 14. Logging information stored in SQLite database.

TABLE 8. Recognition results obtained for 5 subjects (S1 to S5) when
using developed application.

row of Tab. 7). Looking at the confusion matrix output of
e-Shoe (fig. 8), we can see a majority of indoor activities
with less leg movement such as slicing and peeling have very
low recognition rate (20-35%), while outdoor activities such
as turning ankle, turning haunch, and walking are significant
higher accuracies (87 to 96%) than others. However, there
is an exception for going-down stairs which is low accuracy
of 26% as it is very often misclassified as running, turning
knee, and kicking, which leads to the accuracy average of
e-Shoe (62- 65%) is significantly lower than the accuracies of
multi-modality sensing of Smart-watch, or the combination
of Smart-watch and e-Shoe.

VI. DEVELOPING A REAL-TIME LIFE LOGGING
APPLICATION USING THE PROPOSED SensCapsNet
Based on the model trained for 19NonSens dataset, we have
built a real-time human activity and logging application.
Fig. 10 shows the main modules of the application including
wearable sensors, activity recognition module, database and
interface. The sensor used in the application is Samsung Gear
G2. In order to communicate between different modules of
the application, MQTT, a machine-to-machine (M2M) con-
nectivity protocol, is chosen [38]. A database is designed and
deployed using SQLite to log the information of working ses-
sions while a web page is built by using NodeJs framework.
The flowchart of the application is illustrated in Fig. 11.
After deploying our application, 5 volunteer subjects are

asked to test our application (see Fig. 12). As in the appli-
cation, subjects wear only the smart watch, we ask them to
perform 5 different upper body activities including brushing,
peeling, turning shoulder, slicing, turning wrist in 2 minutes.
Some snapshots of the web interface and database are shown
in Fig 13 and Fig. 14. The recognition accuracy obtained is
shown in Tab. 8. The Precision, Recall and F1-score obtained

for all 5 subjects are greater than 80% for 5 upper body activi-
ties. It is worth to note that these subjects do not participate in
19NonSens dataset building. This promising results confirm
the reliability of the application. However, the number of
testing subjects is still limited and the current application
takes only information from only a smart watch. In the future,
we aim to invite more subjects and conduct more experiments
to get a full evaluation of the developed application.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, firstly, a non-obtrusive activity dataset named
19NonSens using wearable sensor has been built. This
dataset contains 19 activities collected from 12 subjects
by using two devices (Samsung Gear G2 and e-Shoe).
Accelerometers from smart watch and e-Shoe and gyroscope
from smart watch as well as images captured by surveillance
cameras have been synchronized and carefully annotated.
Second, we have proposed a method for human activity
recognition from wearable sensors based on capsule network
SensCapsNet. The proposed method has been evaluated on
two datasets: a subset of Opportunity and 19NonSens. The
experimental results confirms the robustness of the proposed
method in comparison with two baseline deep learning-based
methods. Extensive experiments have been performed in
order to analyze the behavior of the proposed method for
different kinds of activity as well as different information
inputs. Finally, based on the proposedmethod, we have devel-
oped and deployed successfully a real-time human activity
recognition and logging application. Different directions can
be followed to improve the current work in the future. First,
different dynamic routing algorithms will be investigated in
order to capture the specific characteristic of the signal com-
ing from wearable sensors. Second, the application should be
deployed in embedded plate-form in order to make it usable
for end-users.
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