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ABSTRACT To avoid the irregularities during the level set evolution, a fractional distance regularized
variational model is proposed for image segmentation. We first define a fractional distance regularization
term which punishes the deviation of the level set function (LSF) and the signed distance function. Since
the fractional derivative of the constant value function outside the starting point is nonzero, the fractional
gradient modular of the LSF does not approach infinity where the integer order gradient modular is close
to 0. This prevents the sharp reverse diffusion of LSF in flat areas and ensures the smooth evolution of LSF.
Then, we use the Grünwald-Letnikov (G-L) fractional derivative to derive the discrete forms of the conjugate
of fractional derivatives and fractional divergence. To facilitate the calculation of fractional derivatives and
their conjugates, we designed their covering templates. Finally, a numerical solution to the minimization of
the energy functional is obtained from these discrete forms and covering templates. Numerical experiments
of medical images with different modalities show that the model in this paper can well segment weak images
and intensity inhomogeneity images.

INDEX TERMS Image segmentation, fractional distance regularization, level set evolution, fractional
derivative, fractional divergence.

I. INTRODUCTION
Image segmentation is a crucial step in image processing
and computer vision, and also a difficult task. The main
reason is that various complex factors in nature determine
the diversity of images. For example, medical images have
characteristics such as strong noise, blur, and intensity inho-
mogeneity. Infrared images have features such as com-
plex backgrounds and changing backgrounds. These features
make image segmentation particularly difficult. For a long
time, researchers have conducted a lot of research using
various tools and proposed various segmentation methods,
including threshold method, region segmentation, Laplace
operator edge detection, wavelet transform, random algo-
rithm, graph cut, and level set segmentation methods, etc.
Among them, the level set method is a non-linear image
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segmentation method introduced by Osher and Sethian [1]
in 1987. They implicitly describe the evolution curve as
the zero level set of the high-dimensional level set func-
tion (LSF), using the nature of the image and the geo-
metric properties of the LSF to design a variational model
or partial differential equation (PDE). By minimizing the
energy of the variational model or solving the PDE, the zero
level curve is constrained to move toward the target edge,
thereby characterizing the target edge. The level set method
applied to image segmentation has great advantages. The
LSF is always designed as a simple function on a fixed grid,
which is convenient for numerical calculations. Moreover,
the LSF can automatically and flexibly deal with the topo-
logical structure changes of the zero level curve during the
level set evolution, such as rupture, merge, etc. Therefore,
it is widely used for various image segmentation [2]–[4],
especially for medical images with inhomogeneity and noisy
infrared images.

84604 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5208-7396
https://orcid.org/0000-0003-3266-1009


M. Li et al.: Fractional Distance Regularized Level Set Evolution With Its Application to Image Segmentation

However, in these level set methods the LSF typically
develops irregularities, which will cause its numerical errors
and destroy the stability of the level set evolution. To solve
this problem, Caselles et al. [5] periodically initializes the
LSF as a signed distance function to maintain the stability
of the evolution of the LSF. The numerical implementation
of this method is very time-consuming, which limits its use
in infrared targets tracking and other real-time applications.
Later, Li et al. [6] designed the distance regularization term
to directly penalize the deviation of the LSF and the signed
distance function from the perspective of energy functional,
which greatly improved the computing efficiency. However,
this will lead to the sharp change of the LSF in a flat area,
which affects the image segmentation results. Li et al. [7],
Wang et al. [8], and Wang et al. [9] constructed different
double-well potential functions for distance regularization,
to a certain extent, avoiding sharp changes in flat regions.
But the improved model will make the gradient modular in
the smaller slope area approach 0, which is in contradiction
with that the LSF always approximates as a signed distance
function.

Fractional calculus is an important branch of mathematics.
It was born in 1695 and appeared almost at the same time
as classical integer order calculus. However, its development
was much slower than integer order calculus. In the past
three centuries, its research has focused on the purely the-
oretical field of mathematics. With the gradual development
and improvement of the theory, it has been found that frac-
tional calculus can describe many non-classical phenomena
in the natural sciences and engineering applications that can
not be described by integer order derivatives or integrals.
In recent decades, fractional differential equations and frac-
tional PDEs have been widely used to describe problems in
optical and thermal systems, rheology, materials andmechan-
ical systems, signal processing and system identification,
control, robotics and other applications. In fact, everything
in nature (including image pixels) often has a large auto-
correlation. Fractional derivative can naturally describe the
fractal geometric features such as the texture of the image.
Naturally, fractional calculus is also applied to image pro-
cessing. Up to now, fractional calculus has been widely
applied in many areas, especially in the field of image pro-
cessing [10–16]. Pu et al. [10, 11] intended to implement
a class of fractional differential masks with high-precision
for multiscale texture enhancement. Zhang et al. [12] pro-
posed a novel fuzzy subpixel fractional partial difference for
ultrasound speckle reduction. Zhang and Wei [13] defined
a new space of functions of fractional-order bounded vari-
ation and proposed a class of fractional-order multiscale
variational models for image denoising. Chen et al. [14]
integrated fractional differentiation, fractional gradient mag-
nitude, and difference image information into the well-known
local Chan-Vesemodel for image segmentation. Ren [15] pre-
sented an image up-sampling algorithm based on fractional-
order bidirectional diffusion. Laghrib et al. [16] gave a
nonconvex fractional variational model for multi-frame

image super-resolution. The fractional calculus has many
advantages for image processing. The enhancement and
preservation of complex texture details in the smooth area
by fractional differential-based approach appear obvious bet-
ter than by traditional integral-based algorithms [10]. It has
many methods that can define the fractional calculus such
as Riemann-Liouville fractional calculus, and Grünwald-
Letnikov fractional calculus. The fractional calculus is a non-
linear operator. Its nonlinear and nonlocal properties are very
effective for image processing.

In order to solve the problem of irregularities during the
level set evolution, we put forward a fractional distance regu-
larized variational model for image segmentation. The work
of this paper includes the following parts. First, considering
the non-local nature of the fractional derivative, a fractional
distance regularization term is proposed. It penalizes the
deviation of the LSF and the signed distance function by
minimizing the corresponding energy functional and keeps
inherent regularity of the LSF in the evolution. Secondly,
utilizing the Grünwald-Letnikov fractional derivative and the
inner product of L2 space, the conjugate of the fractional
derivative and the discrete form of fractional divergence are
derived. Third, since the fractional distance regularization
term does not contain image information, this term can be
combined with any external energy term based on image
information to achieve artificial or natural image segmenta-
tion. To this end, we design an external energy term based
on the image edge stop function and Laplace operator, and
combine it with a fractional distance regularization term to
form a total energy functional. Among them, the external
energy term forces the zero level curve to automatically
generate and characterize the edges of the image during the
level set evolution, and the fractional regularization term
guarantees the smooth change of the LSF. Finally, we give
the discrete covering template of the fractional derivative and
its conjugate to obtain a numerical solution for minimizing
the energy functional. Experiments show the effectiveness of
the model in this paper. It makes the LSF evolve smoothly
and can better constrain the LSF to segment noisy and weak
target medical images with intensity inhomogeneity.

The remainder of the paper is organized as follows: In
Section II, we give some preliminaries: the fractional deriva-
tive and the distance regularized level set evolution for image
segmentation. In Section III, the new fractional distance reg-
ularized variational model for image segmentation model
is proposed. In Section IV, we obtain a numerical solution
by minimizing the energy functional. Experiment results
are shown in Section V. Finally, we conclude our paper in
Section VI.

II. BACKGROUND
A. DEFINITION OF FRACTIONAL DERIVATIVE
As a generalization of the integer order derivative, the frac-
tional derivative has a long history, but until now there is
no uniform definition. The commonly used [17], [18] are

VOLUME 8, 2020 84605



M. Li et al.: Fractional Distance Regularized Level Set Evolution With Its Application to Image Segmentation

the Grünwald-Letnikov definition, the Riemann-Liouville
definition and the Caputo definition. This article selects
the Grünwald-Letnikov definition. For any real number υ,
assuming that the function s(x) is continuously differentiable
for any x ∈ R and a is real constant, the υth fractional
derivative is defined as [18]

aDυx s(x) = lim
h→ 0
Nh = x − a

h−υ
N−1∑
k=0

(−1)k
(
υ

k

)
· s (x − kh)

= lim
N→∞

h−υ

0(−υ)

N−1∑
k=0

0(k − υ)
0(k + 1)

· s (x − kh), (1)

where 0(x) is a Gamma function. For convenience, aDυx s(x)
is abbreviated as Dυs(x). When s(x) is a constant C , we may
have

DυC =
(x − a)−υ

0(1− υ)
.

For all x 6= a, we have DυC 6= 0. If the variable x is regarded
as time, the fractional derivative reflects the ‘‘memory depen-
dence on time’’ at the x − kh time, and x as the position,
reflects the ‘‘memory dependence on positon’’ at the x − kh
position, so the fractional derivative has nonlocal nature.

In the beginning, the research of fractional calculus was
mainly concentrated on the field of pure theory [17], [18].
In practical applications, researchers have gradually discov-
ered that the geometric meaning of the fractional derivative
is the fractional slope of the function curve, and the physical
meaning is a continuous fractional measure of speed and
distance in the direction of change [19]. Fractional differen-
tial equations are very suitable for characterizing materials
and processes with memory and genetic properties. Thus it
becomes an important tool for mathematical modeling of
complex mechanics and physical processes [20]. Since it can
cause non-linear changes in the image field, it is widely used
in image processing.

B. DISTANCE REGULARIZED VARIATIONAL LEVEL SET
IMAGE SEGMENTATION MODEL
In image segmentation, to make the LSF evolve smoothly,
it is often necessary to initialize and periodically re-initialize
the LSF as a signed distance function. The traditional level set
image segmentation method [5] is to force the LSF to approx-
imate the signed distance function by repeatedly solving the
following PDE

∂φ

∂t
= sign(ψ)(1− |∇φ|),

whereψ is a function that is repeatedly initialized, and sign(·)
is a signum function. The repetitive process of solving and ini-
tializing is very time-consuming and labor-intensive, which
severely limits its application in practice. In addition, when
ψ is not smooth, the LSF φ will gradually deviate from the
signed distance function during the evolution process. This

means that the theoretical and practical results of the method
are inconsistent [21].

From the perspective of energy functionals, Li et al. [6]
designed the distance regularization term to directly penalize
the deviation of the LSF and the signed distance function.
Arnold [22] pointed out that the function that satisfies the
condition |∇φ| = 1 is a signed distance function plus or
minus a constant. In turn, the signed distance function sat-
isfies the property |∇φ| = 1. From this, Li et al. constructed
the following energy functional

Ereg(φ) =
∫
�

1
2
(|∇φ| − 1)2dxdy. (2)

Among them, � is an image domain, and φ(x, y): � → R
is an LSF defined on the image domain. From the basic
principle of the variational method and the gradient descent
method, the corresponding evolution equation of Ereg(φ) is

∂φ

∂t
= div

(
(1−

1
|∇φ|

)∇φ
)
. (3)

We denote d = (1 − 1/|∇φ|), which is the diffusion coef-
ficient of equation (3). The evolution process in the arti-
ficial time t given by (3) forces the LSF to move in the
|∇φ| = 1 direction, and the LSF gradually approaches the
signed distance function. The advantage of this method is
that the LSF does not need to be initialized and be repeat-
edly initialized as a signed distance function, which avoids
the drastic change of the LSF. Moreover, the LSF can be
initialized to a binary function, which significantly improves
the calculation efficiency of the level set segmentation model.
Therefore, many subsequent variational level set models use
the distance regularization term Ereg(φ) as the internal energy
term to constrain the change of the LSF itself.

However, the distance regularization term still has
some problems in practical applications. Obviously, when
|∇φ| → ∞, there is d →1, which means that the LSF can
change at a relatively steady speed in the steep slope area.
However, when |∇φ| →0, there is d → −∞, which causes
the LSF to change sharply in a flat region in the reverse
direction. This makes the LSF produce spikes or deep val-
leys and other phenomena, which brings bad or even wrong
segmentation results.

To overcome this problem and obtain better image segmen-
tation, Li et al. [6] proposed an external energy term based on
the weighted length and weighted area, namely

Eext (φ) = λLg(φ)+ νAg(φ)

= λ

∫
�

g(|∇Iσ |)δε(φ)|∇φ|dxdy

+ ν

∫
�

g(|∇Iσ |)Hε(−φ)dxdy, (4)

where λ > 0, ν ∈ R, I (x, y): � → R is an image function,
δε(φ) andHε(φ) are smooth Diric function and smooth Heav-
iside function respectively. Iσ = Gσ ∗ I is the convolution of
a Gaussian kernel with a standard deviation σ and image I .
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| · | is the gradient modular, and g(s) = 1/(1 + s2) is the
edge stop function. Obviously, at the edge of the image, there
is |∇Iσ | → ∞, then g(|∇Iσ |) →0. At this time, the energy
functional Eext (φ) reaches a minimum where the evolution
of the LSF stops and the edge information of the image is
characterized. Combining (2) with (4), Li et al. proposed the
level set evolution without reinitialization (LSEWR) model
for image segmentation

E(φ) = µEreg(φ)+ Eext (φ), (5)

where µ > 0 is a constant. The evolution equation corre-
sponding to equation (5) is

∂φ

∂t
= µdiv

(
(1−

1
|∇φ|

)∇φ
)

+ λδε(φ)div(g(|∇Iσ |)
∇φ

|∇φ|
)+ νδε(φ)g(|∇Iσ |). (6)

III. PROPOSED METHOD
To solve the problem that the distance regularization term
causes the level set evolution to change sharply in a flat
region, we propose a fractional distance regularized level
set model for image segmentation. Since the Euler-Lagrange
equation corresponding to the proposed fractional variational
model will involve concepts such as fractional gradient, con-
jugate gradient, and divergence, in this section we first derive
the discrete fractional gradient, conjugate, and divergence
from the definition of the G-L fractional derivative. Then the
level set evolution is constrained by the fractional distance
regularization term. Finally, we combine the fractional dis-
tance regularization term with external energy to construct a
fractional distance regularized variational level set model for
image segmentation.

A. CONJUGATE OF FRACTIONAL DERIVATIVE AND
FRACTIONAL DIVERGENCE
Since the distance between the pixels in an image is not less
than 1, we take the step size h = 1 in (1). Using the truncation
error, the υth fractional derivative of the unary function s(x)
can be approximately expressed as

Dυs(x) ,
1

0(−υ)

N−1∑
k=0

0(k − υ)
0(k + 1)

· s (x − k)

=

N−1∑
k=0

0(k − υ)
0(−υ)0(k + 1)

· s (x − k)

=

N−1∑
k=0

(−1)k
(
υ

k

)
· s (x − k), (7)

and with
(
υ

k

)
=

υ(υ−1)···(υ−k+1)
k! , k = 1, 2, · · · ,N .

Therefore, the υth fractional partial derivatives of the LSF φ
along the x and y directions are defined as

Dυx φ(x, y) =
∂υφ(x, y)
∂xυ

,
N−1∑
k=0

(−1)k
(
υ

k

)
· φ (x − k, y), (8)

Dυy φ(x, y) =
∂υφ(x, y)
∂yυ

,
N−1∑
k=0

(−1)k
(
υ

k

)
· φ (x, y− k). (9)

The υth fractional gradient of the function φ is

∇
υφ = (Dυx φ,D

υ
y φ)

T .

The υth fractional gradient modular of the function φ is

|∇
υφ| =

√
(Dυx φ)2 + (Dυy φ)2. (10)

LetDυ∗ be the conjugate of the fractional derivativeDυ . Next,
we derive the approximate expression of Dυ∗ through the
inner product definition.

For x(t), y(t) ∈ L2(R), we have inner product on L2(R)

〈x(x), y(x)〉 =
∫
+∞

−∞

x(t)y(t)dt.

For ∀h(x) ∈ C∞0 (�), according to inner product above we
have

〈h(x),Dυs(x)〉

=

∫
+∞

−∞

h(x) · Dυs(x)dx

,
∫
+∞

−∞

h(x) ·
N−1∑
k=0

(−1)k
(
υ

k

)
s (x − k)dx

x−k=t
=

∫
+∞

−∞

N−1∑
k=0

(−1)k
(
υ

k

)
s (t) · h(t + k)dt

t=x
=

∫
+∞

−∞

N−1∑
k=0

(−1)k
(
υ

k

)
h(x + k) · s (x) dx

= 〈

N−1∑
k=0

(−1)k
(
υ

k

)
h(x + k), s(x)〉. (11)

Denote

Dυ∗h(t) =
N−1∑
k=0

(−1)k
(
υ

k

)
h(t + k), (12)

then equation (11) becomes

〈h(x),Dυs(x)〉 = 〈Dυ∗h(x), s(x)〉. (13)

From the definition of the conjugate,Dυ∗h(x) is the conjugate
of Dυh(x). Let Dυ∗x and Dυ∗y be the conjugate operators of
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Dυx and Dυy , respectively. According to (12), the approximate
calculations of conjugate operators Dυ∗x and Dυ∗y are

Dυ∗x φ(x, y) =
N−1∑
k=0

(−1)k
(
υ

k

)
φ(x + k, y), (14)

Dυ∗y φ(x, y) =
N−1∑
k=0

(−1)k
(
υ

k

)
φ(x, y+ k). (15)

From the gradient vector ∇υφ = (Dυx φ,D
υ
y φ)

T , we can
derive the υth fractional divergence. For ∀h(x) ∈ C∞0 (�),
we have

〈∇
υφ,∇υh〉 =

∫
+∞

−∞

Dυx φ ·D
υ
x hdx+

∫
+∞

−∞

Dυy φ ·D
υ
y hdy

= 〈Dυx φ,D
υ
x h〉 + 〈D

υ
y φ,D

υ
y h〉

= 〈Dυ∗x (Dυx φ), h〉 + 〈D
υ∗
y (Dυy φ), h〉

= 〈Dυ∗x (Dυx φ)+ D
υ∗
y (Dυy φ), h〉L2 . (16)

Denoting (−1)υdivυφ = Dυ∗x (Dυx φ)+D
υ∗
y (Dυy φ), by (16) we

have

〈∇
υφ,∇υh〉 = 〈(−1)υdivυφ, h〉.

We call (−1)υ divυφ the υth fractional divergence of the
gradient vector ∇υφ = (Dυx φ,D

υ
y φ)

T .
From (14) and (15), we obtain

(−1)υdivυφ =
N−1∑
k=0

(−1)k
(
υ

k

)
φ1(x + k, y)

+

N−1∑
k=0

(−1)k
(
υ

k

)
φ2(x, y+ k), (17)

and with φ1 = Dυx φ, φ2 = Dυy φ.

B. FRACTIONAL DISTANCE REGULARIZATION TERM
As explained in Section II.B, LSEWR penalizes the deviation
of the LSF and the signed distance function by the distance
regularization term Ereg(φ). But when |∇φ| = 0, its diffusion
coefficient d → −∞, which will aggravate the irregularity
of the LSF in a flat region.

To overcome this defect, here we propose a fractional
distance regularization term,whichmakes the LSFφ approxi-
mate the signed distance function in the fractional dimension.
In other words, this makes LSF meet |∇υφ| →1 during the
evolution process, so as to ensure the LSF to evolve smoothly
in steep areas and avoid the diffusion coefficient in flat areas
becoming infinite. To this end, we define the following energy
functional

Efrac−reg =
∫
�

1
2
(|∇υφ| − 1)2dxdy, (18)

where υ ∈ R is a real number, and |∇υφ| is the υth frac-
tional gradient modular of the function φ. Obviously, when
|∇
υφ| = 1, the energy functional (18) reaches the minimum

value. This makes the LSF move in a direction that satisfies
|∇
υφ| →1, thereby ensuring that the slope of the LSF will

not be too steep during the evolution process. In fact, when
the fractional order υ = 1, (18) is simplified to (2), that
is, (2) can be regarded as a special case of the fractional
distance regularization term in this paper. Since the LSF φ
is an approximation to the signed distance function in the
fractional dimension, (18) has the same advantages as (2).
Moreover, (18) makes the LSF not need to be initialized
and periodically re-initialized to the signed distance function
during the evolution. This greatly improves the efficiency of
the model.

Next, we derive the level set evolution equation corre-
sponding to (18) to further illustrate the advantages of the
fractional distance regularization term. For formal simplicity,
we denote

EFrac−reg =
∫
�

f (|∇υφ|)dxdy.

According to the basic principle of variational method, for
any function η ∈ C∞(�), we define the value function of
EFrac_reg as

F(λ) =
∫
�

f (|∇υφ + λ∇υη|)dxdy,

where λ > 0 is a positive parameter. Then

dF(0)
dλ

= lim
λ→0

d
dλ

∫
�

f (|∇υφ + λ∇υη|)dxdy

=

∫
�

f ′(|∇υφ|)
(
Dυx φ
|∇υφ|

Dυx η +
Dυy φ

|∇υφ|
Dυy η

)
dxdy.

Set f (x) = 1
2 (x − 1)2, we have f ′(|∇υφ|) = |∇υφ| − 1, and

so
dF(0)
dλ

=

∫
�

(|∇υφ| − 1)Dυx φ
|∇υφ|

· Dυx ηdxdy

+

∫
�

(|∇υφ| − 1)Dυy φ

|∇υφ|
· Dυy ηdxdy

=

∫
�

Dυ∗x

(
(1−

1
|∇υφ|

)Dυx φ
)
· ηdxdy

+

∫
�

Dυ∗y

(
(1−

1
|∇υφ|

)Dυy φ
)
· ηdxdy.

This gives the Euler-Lagrange equation of the energy func-
tional (18)

Dυ∗x

(
(1−

1
|∇υφ|

)Dυx φ
)
+ Dυ∗y

(
(1−

1
|∇υφ|

)Dυy φ
)
= 0.

Combining the definition of fractional divergence, we have

(−1)υdivυ
(
(1−

1
|∇υφ|

)∇υφ
)
= 0.

Using the gradient descent method, the level set evolution
equation corresponding to (18) is

∂φ

∂t
= −(−1)υdivυ

(
(1−

1
|∇υφ|

)∇υφ
)
. (19)

Set dυ = 1 − 1/|∇υφ| which is the fractional diffusion
coefficient of equation (19).
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Here we analyze the trend of the LSF from the value of
dυ . When |∇υφ| > 1, dυ > 0, the LSF diffuses forward.
It reduces the slope of the LSF φ, so that the steep slope
area of the function gradually slows down. When it falls to
|∇
υφ| = 1, there is dυ = 0, and at this point the LSF

stops moving. When |∇υφ| < 1, dυ < 0, the LSF diffuses
backward. The LSF gradually increases the slope in the flat
area until |∇υφ| = 1 stops moving. In other words, the
LSF always moves in the direction that satisfies |∇υφ| → 1
during the evolution process, thereby approaching the signed
distance function in the fractional dimension. The speed of
change of the function φ is further analyzed below. In the
steep slope area of the function φ, there are |∇υφ| → +∞
and dυ → 1, which ensure the smooth forward diffusion
of the LSF, and slowly reduce the height. The question is
whether the function φ will appear a sharp change in a flat
region similar to LSEWR? If only from the perspective of
calculation, when |∇υφ| = 0|, dυ → −∞, this will make
the LSF change sharply in a flat area. In fact, this kind
of problem rarely happens, mainly because the fractional
derivative is very different from the integer order derivative.
The integer order derivative is a local operator, and there is
|∇φ| = 0 in the flat region, which leads to d → −∞.
The fractional derivative has non-local properties. It can be
known from Subsection II.A that the function φ does not
appear |∇υφ| = 0. It means that in the flat region |∇υφ| 6= 0,
naturally, dυ → −∞ will not appear. In this way, the sharp
reverse diffusion of the LSF in the flat area will be avoided,
and a large number of peaks and valleys will not appear in
the flat area, which guarantees the smooth evolution of the
LSF. We will further demonstrate the superiority of fractional
distance regularity over integer order distance regularity in
numerical experiments in Subsection V.A.

C. FRACTIONAL REGULARIZED VARIATIONAL LEVEL SET
MODEL FOR IMAGE SEGMENTATION
Since the fractional distance regularization term does not
contain image information, it is impossible to segment the
image target edge only with this term. In order to achieve
image segmentation, the fractional distance regularization
term need to be combined with an external energy term
containing image information to form a variational level set
model. For this, we propose the following energy functional

Efrac(φ) = µEfrac−reg(φ)+ E∗ext (φ). (20)

Among them, Efrac−reg(φ) is (18), and its role is to regularize
the LSF φ. E∗ext (φ) is the external energy term, which drives
the evolution curve towards the target edge, thereby achieving
image segmentation.

LSEWR uses the weighted length and weighted area to
describe the external energy term Eext (φ) (in (4)). Energy
functional will force the evolution curve to move towards
the minimum geodesic length and weighted area, so as to
achieve image segmentation. This is a good method of the
level set method for image segmentation. But the edge indi-
cator function g(|∇Iσ |) that controls the weighted length and

weighted area is only related to the gradient modular of the
image. It is a positive function that decreases monotonically.
This makes the LSF only move in one direction, which leads
to it sensitivity to the initial position of evolution. Different
initial positions may lead to different segmentation results.
To effectively segment the image target, the initial curve must
be surrounded or placed inside the target. The inward or
outward movement of the evolution curve is implemented
by the positive or negative selection of the coefficient ν.
But when the target crosses the image boundary or there are
multiple targets in the image, it is difficult for the evolution
curve to have a proper initial position.

Now we discuss the construction of the external energy
term E∗ext (φ). Considering that the second-order Laplace
operator has different signs on both sides of the image edge,
the level set evolution curve can be forced tomove in different
directions. So, we construct the function h(·) based on the
Laplace operator

h(Iσ ) = sign(1Gσ ∗ I )

to weight the area. Here 1 is a Laplace operator. Because
the exponential function has non-linear characteristics and
is more suitable for image feature description, we adopt the
exponential edge stop function

g(|∇Iσ |) = exp(−|∇Gσ ∗ I |/4)

to weight the length. Thus, our external energy term is as
follow

E∗ext (φ) = λLg(φ)+ νAh(φ)

= λ

∫
�

g(|∇Iσ |)δε(φ)|∇φ|dxdy

+ ν

∫
�

h(Iσ )Hε(−φ)dxdy. (21)

From (18), (20), and (21), our fractional distance regularized
variational level set model Efrac(φ) has the following form

Efrac(φ) = µ
∫
�

1
2
(|∇υφ| − 1)2dxdy

+ λ

∫
�

g(|∇Iσ |)δ(φ)|∇φ|dxdy

+ ν

∫
�

h(Iσ )H (−φ)dxdy, (22)

where µ, λ, ν > 0 are all constants.
It can be known from the structure of h(Iσ ) that h(Iσ )

has the same sign as the Laplace operator on both sides of
the edge of the image target, which forces the LSF to move
up (down) inside (out) the target according to the nature of
the image. The target contour is formed at the junction of
positive and negative, thereby obtaining image segmentation
results. Thus, our model Efrac(φ) can initialize the LSF more
flexibly. For example, the LSF can be initialized to a constant
value φ0 = γ (γ is a constant). This also allows the LSF
to evolve without an initial contour, eliminating the choice
of position for the initial contour, and thus overcoming the
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sensitivity of the initial position in LSEWR. Minimizing the
energy functional Efrac(φ), we obtain its corresponding level
set evolution equation

∂φ

∂t
= −µ · (−1)υdivυ

(
(1−

1
|∇υφ|

)∇υφ
)

+ λδ(φ)div(g(|∇Iσ |)
∇φ

|∇φ|
)

+ νδ(φ)h(Iσ ). (23)

IV. NUMERICAL IMPLEMENTATION
A. COVERING TEMPLATES OF FRACTIONAL DERIVATIVE
AND DERIVATIVE CONJUGATE
To obtain the numerical approach of (23), we first give the
numerical calculation of the fractional derivative Dυ and its
conjugate Dυ∗. In (8), (9), (14), and (15), taking k = 4,
we define the covering templates of the fractional derivatives
Dυx ,D

υ
y and their conjugates Dυ∗x ,D

υ∗
y along the x-axis and

y-axis directions respectively as Table 1.

B. NUMERICAL IMPLEMENTATION OF THE
EVOLUTION EQUATION
The smooth Dirac function δε(φ) is defined as

δε(φ) =
1
π
·

ε

ε2 + x2
.

Let the time step be1t , the space step be h, (xi, yi) = (ih, jh)
be the spatial grid point, and φni,j be the state of function φ
at (ih, jh) and time t = n1t (n ≥ 0). The time derivative
on the left side of (23) is calculated by forward differences,
the right fractional derivatives Dυx , D

υ
y , D

υ∗
x , and Dυ∗y by

applying the covering templates in Table 1, and the integer
order derivatives Dxφi,j and Dyφi,j by central differences,
that is

Dxφi,j =
φi+1,j − φi−1,j

2h
, Dyφi,j =

φi,j+1 − φi,j−1

2h
.

Thus, the discrete form of (23) is written as

φn+1i,j = φ
n
i,j +1tL(φ

n
i,j), (24)

where

L(φni,j) = −µl
n
i,j + λδ(φ

n
i,j)Dx

(
g(|∇Iσ |)Dx(rni,j)

)
+ λδ(φni,j)Dy

(
g(|∇Iσ |)Dy(rni,j)

)
+ νδ(φni,j)h(Iσ ),

and

lni,j = Dυ∗x

(1−
1√

(Dυx φ
n
i,j)

2 + (Dυy φ
n
i,j)

2
)Dυx φ

n
i,j


+Dυ∗y

(1−
1√

(Dυx φ
n
i,j)

2+(Dυy φ
n
i,j)

2
)Dυy φ

n
i,j

 ,
(25)

TABLE 1. Covering templates of fractional derivative and the conjugate
fractional derivative on x or y coordinates.

g(|∇Iσ |) = exp
(
−

√
Dx(Gσ ∗ I ))2+(Dy(Gσ ∗ I )/4

)
, (26)

h(Iσ ) = sign
(
Dx(Dx(Gσ ∗ I ))+ Dy(Dy(Gσ ∗ I ))

)
, (27)

rni,j =
φni,j√

(Dxφni,j)
2 + (Dyφni,j)

2
. (28)
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FIGURE 1. Evaluation of the effect of fractional distance regularization.

The procedures of the proposed algorithm are summarized as
follows:

a) At n = 0, the initial LSF is defined as φ0 = γ constant;
b) Calculating g(|∇Iσ |) and h(Iσ ) according to (26)

and (27);
c) Calculating lki,j and r

k
i,j as in (25) and (28);

d) Iteratively solving (24) and updating the LSF to obtain
φn+1;
e) Checking whether the evolution curve converges. If not,

go to step c); otherwise, stop the evolution.

V. EXPERIMENTAL RESULTS
This section includes two parts. In Subsection A, we com-
pare the fractional distance regularity with the integer order
distance regularity from numerical experiments. In Subsec-
tion B, we compare the image segmentation effect of our
model Efrac(φ) with other models. The experimental platform
operating system is Windows 10, and the codes is written in
MATLAB R2016a.

A. EVALUATION OF FRACTIONAL DISTANCE
REGULARIZATION
Here we combine our fractional distance regularization term
with the external energy term in LSEWR [6] to evaluate
the robustness of the fractional distance regularization term,
namely

E1(φ) = µEfrac_reg(φ)+ Eext (φ), (29)

where Efrac_reg(φ) is as in (18). The corresponding evolution
equation is

∂φ

∂t
= −µ · (−1)υdivυ

(
(1−

1
|∇υφ|

)∇υφ
)

+ λδε(φ)div(g(|∇Iσ |)
∇φ

|∇φ|
)+ νδε(φ)g(|∇Iσ |) .(30)

The LSEWR model is as in (6)

∂φ

∂t
= µdiv

(
(1−

1
|∇φ|

)∇φ
)

+ λδε(φ)div(g(|∇Iσ |)
∇φ

|∇φ|
)+ νδε(φ)g(|∇Iσ |).

With the same external energy term, the evolution results
of E1 (φ) and the LSEWR model are compared. The level
set evolution of the two is shown in Figure 1 and Figure 2
respectively.

For fairness, the E1 (φ) and LSEWRmodel adopt the same
binary function as the initial LSF, that is

φ0 =

{
−4, (x, y) ∈ �0

4, (x, y) ∈ �−�0

and the same initial contour. Following experimental param-
eters in [6], µ = 0.04, λ = 5, ε = 1.5, σ = 1.2, ν
adjusted with different subjects, and υ = 0.5. The
subject is an image of pelvic floor levator hiatus in
ultrasound.

Figure 1 and Figure 2 show the evolution results of the
E1(φ) and LSEWR. The first line shows the initial contour,
LSEWR segmentation result, and our E1(φ) segmentation
result. The second line shows the 3D displays of the ini-
tial LSF, the LSEWR final LSF, and the E1 (φ) final LSF.
Experiments show that although the LSEWR model extracts
or partially extracts the edge of the pelvic floor levator hiatus,
the segmentation result is not accurate (see Figure 1 (b), indi-
cated by the arrow). The LSF is trapped in a local minimum in
a narrow area (see Figure 2 (b), the narrow part of the pelvic
floor levator hiatus). There are many wave peaks and valleys
in the flat area (see Figure 1 (e) and Figure 2 (e)), which
indicates that the evolution of the LSF under the control of
the integer order distance regularization term will violently
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FIGURE 2. Evaluation of the effect of fractional distance regularization.

FIGURE 3. Segmentation processes of our model Efrac (φ).

oscillate in the flat region. This inevitably leads to inaccurate
segmentation results. Given the same initial contour, with the
same initial contour, our modelE1(φ) accurately extracted the
edge of the pelvic floor levator hiatus (see Figure 1 (c) and
Figure 2 (c)). The LSF is still flat and smooth in the flat area
of the image (see Figure 1(f) and Figure 2 (f)), which illus-
trates the fractional distance regularization term has stronger
regularity than the integer order regularization term. From the
above, it can be seen that our fractional distance regularized
model guarantees the smooth change of the LSF, so that it can
segment the target edges more accurately.

B. EVALUATION OF OUR MODEL
In this subsection, experiments are performed on artificial
and natural images to illustrate the effectiveness of our model
Efrac(φ). The parameters in Efrac(φ) are selected as follows:
σ = 2.5, ε = 2.0, µ = 0.04, λ = 5, υ = 0.5, time step
1t = 5.0, and the value of v varies with the experiment. The
initial LSF φ0 = 4 or φ0 = −4. When the target is dark or
black φ0 = −4, while bright φ0 = 4.
Figure 3 illustrates the image segmentation process of our

model Efrac(φ) when the initial LSF is a constant function and
v = 1.5. The experimental object is an artificial image with
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FIGURE 4. Comparisons of the LSEWR model, Zhang model and our model Efrac (φ) for vessel images with intensity
inhomogeneity.
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FIGURE 5. Comparisons of the LSEWR model, the Zhang mode and our model Efrac (φ) for images with multiple weak objects.

intensity inhomogeneity. The first line is the original image
and curve evolution state, and the second line is the LSF
evolution process. Initial LSF φ0 = −4 (see Figure 3 (b)),
and there is no initial contour (see figure 3 (a)).

Affected by the external force of the image, the LSF grad-
ually moves upwards inside the target area and downwards
outside the target area. After 10 iterations, part of the LSF is
above the zero level set (see Figure 3 (d)), and the contour
of the left edge of the target begins to appear (Figure 3 (c)).
After that, the LSF of the target area continue to rise (see
figure 3(f), (h)), and the contour extended from left to right
(figure 3(e), (g)). After 80 iterations, the LSF of the target
area all exceeded the zero horizontal plane (Figure 3(j)), and
the target edges were completely segmented (Figure 3 (i)).
At this time, the LSF no longer changes, and the function
converges between [−10, 10]. Experiments show that the
LSF changes smoothly and orderly throughout the evolution
process, which illustrates the effectiveness of fractional reg-
ularization terms.

Now, the proposed model is compared with the LSEWR
model and Zhang model [2]. The LSEWR model and the
Zhang model were selected for comparison, mainly because
the two models are typical representatives of the variational
level set model and can effectively segment intensity inho-
mogeneous images. The parameters in the LSEWR and the
Zhang model are as consistent as possible with the original
literature. The parameters that need to be selected through
repeated experiments are the weighted area coefficient ν in
LSEWR, the width ρ of the kernel function Kρ in Zhang
model, and the weighted area coefficient ν of Efrac(φ).

Figure 4 shows the experimental results of the Efrac(φ),
LSEWR and Zhang models on images with intensity inho-
mogeneity. It can be seen from columns 2-5 that both the
LSEWR and the Zhang model are sensitive to the initial
position of the evolution curve. Different initial positions
will have different segmentation results. Only when the ini-
tial position is reasonable, can a relatively ideal segmen-
tation result be obtained (see figure 4(i1), (g2) and (i3)).
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FIGURE 6. Comparisons of the LSEWR model, the Zhang model and our model Efrac (φ) for breast cyst images.

When the initial position is slightly changed, bad or
even incorrect segmentation results will be produced (see
Figure 4 (g1), (h1), (j1), (h2), (j2), (g3), (h3) and (j3)).
And the segmentation results are sensitive to noise. As can
be seen from the first column, the evolution of the model

Efrac (φ) starts from φ0 = 4 with no initial contour, and
the LSF adaptively moves up and down according to the
image information. The experimental results show that the
model in this paper can adaptively and accurately extract
blood vessel edges (see Figure4 (f1) (f2) and (f3)). Some very
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TABLE 2. Iterations and CPU time for the three models.

weak blood vessel edges are also correctly extracted, and the
segmentation results are not affected by noise.

Table 2 shows the final iterations and CPU time in this
experiment of the Efrac(φ), LSEWR and Zhang model. The
data shows that the convergence speed of the LSEWR model
is 36.6, 43.2, and 35.1 seconds, which is 3-11 times the
time consumed by the model in this paper. This is due to
the sharp fluctuations in the level set evolution, which affect
the evolution and convergence speed of the LSF, as seen
in Figure 4. The Zhang model takes 22.7s, 125.2s, and 41.7s
when it converges, which is 3-30 times longer than the model
Efrac(φ) in this paper. The reason for time-consuming is that
the algorithm is too complicated. It takes time for each evolu-
tion, and iterates multiple times to converge. Our model has
simple calculation and stable evolution, so it can obtain the
edge contour of the image at a faster speed, which only takes
4.3s, 4.7s, and 11.5s. Especially in Figure 4(a3), although the
model Efrac(φ) has iterated 500 times, it takes less than 1/3 of
the LSEWR model and the Zhang model, which shows the
rapid effectiveness of the model.

Figure 5 shows the experimental results of the three mod-
els on multi-target intensity inhomogeneous images. The
purpose of the experiment is to segment the cell and bac-
teria in the image (see Figure 5 (a1) and (a2)). Observ-
ing columns 2 and 3, although different initial contours
are selected (outside the target or surrounding all targets),
the LSEWR model still cannot successfully segment a single
individual, as shown in the upper right corner of Figure 5
(h1)(the four targets), and in the middle of Figure 5 (g2),
(h2)( multiple targets). The LSEWR model makes the curves
mutually exclusive during the evolution process, gradually
falling into a local minimum. Looking at columns 4 and 5,
the Zhang model also fell into a local minimum when the
evolution curve moved to a certain time (see Figure 5 (i1),
(j1), and (j2)). And it cannot segment targets that are too
far away from the initial contour (see Figure 5 (i2)). As can
be seen from Figures 5 (f1) and (f2), in our model Efrac(φ),
the LSF adaptively moves up and down according to the
image information without the initial contour, automatically
segmenting cells and bacteria from the background. It not
only can accurately extract the edges of multi-targets, but also
does not fall into the local minimum, which illustrates the
effectiveness of the model in this paper for multi-target image
segmentation.

Figure 6 shows the experimental results of the three models
on breast cyst images. Due to the influence of noise such
as hair follicles and villi, it is difficult to correctly segment
breast cysts. The original image and the Efrac(φ) experimental
results are in column 1, the LSEWR model in columns 2 and
3, and the Zhang model in columns 4 and 5. It can be seen
from columns 2 and 4 that when the initial contour is inside
the target, the LSEWR model and the Zhang model can
obtain the target edge. But for images with irregular targets,
the segmentation accuracy needs to be improved. As shown
in Figure 6 (g2), the sharp corner of the left end of the target
cannot be segmented by the LSEWR model. In Figure 6 (i2),
the Zhang model segmented the target too much, so that the
hair follicles at the edges of the target were extracted. From
columns 3 and 5, when the initial contour is not inside the
target and affected by noise such as villi, neither the LSEWR
model nor the Zhang model can correctly segment breast
cysts. Our model Efrac(φ) starts with φ0 = −4 and has no
initial contour. The experimental results (column 1) show that
the model Efrac(φ) can automatically and accurately segment
breast cysts based on image information. The segmentation
results are not affected by the noise of the hair follicle, which
shows the effectiveness of the model in medical noise image
segmentation.

VI. CONCLUSION
Using the definition of G-L fractional derivative, we derive
the discrete form of the conjugate of fractional derivatives and
fractional divergence. On this basis, we propose a variational
level set model based on the fractional distance regulariza-
tion term for image segmentation. The designed fractional
distance regularization term guarantees that the LSF approxi-
mates the signed distance function in fractional order, thereby
ensuring the accuracy of the LSF calculation and the stability
and smoothness of the evolution. The constructed external
energy term contains image gradient and Laplace operator
information. It forces the LSF to adaptively move up and
down according to the image information, and automatically
generates contours to describe the edges of the image. The
model allows the LSF to be simply initialized as a con-
stant value function, greatly speeding up the convergence
of the LSF. Experiments show that under the control of
the fractional distance regularization term, our model can
effectively segment weak intensity inhomogeneous targets
and noisy medical images. The fractional regularization is
a new research topic. In this paper, the stable evolution of
the level set is studied under the framework of the fractional
distance regularization. Our future work will focus on the
convergence and stability of the fractional distance regular-
ization algorithm and its application in other fields of the
image processing, such as saliency detection, etc.
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