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ABSTRACT In order to study the effect of stress/plastic deformation on electrical conductivity of various
magnetic materials, the electrical conductivity of silicon steel, carbon steel and aluminum alloy of different
resistance coefficients at the stage of elasticity deformation and plastic deformation were studied by
measuring the resistance, fitting-models were established through theorization and measuring data, and cor-
responding parameters are given. The results show that:¬At the stage of elasticity deformation, the electrical
conductivity of the material increases rapidly first, and then slowly increases with the increase of stress. 
At the stage of plastic deformation under stress unloading conditions, the electronic conductivity decreases
approximately linearly with the increase of plastic deformation. ® At the stage of plastic deformation under
stress loading conditions, the electronic conductivity decreases approximately linearly with the increase of
plastic deformation. As the result of stress, electrical conductivity in the superposition state is higher than
that in the corresponding plastic deformation state.

INDEX TERMS Effect model, magnetic materials, stress, plastic deformation, conductivity.

I. INTRODUCTION
Because of their effectiveness and convenience, electromag-
netic Non Destructive Testing (NDT) methods, such as mag-
netic flux leakage testing [1], eddy current testing [2], [3],
magnetic memory testing [4], magnetic Barkhausen noise
testing [5], current field testing [6] and current potential
drop testing [7], have been widely used to detect metal-
loss defect [8], [9], crack [10], [11] and especially some
mechanical damages induced by stress, such as stress con-
centration [12]–[15], plastic deformation [16], [17], etc.
The electromagnetic nondestructive testing of mechanical
damage mainly depends on a physical phenomena that the
mechanical stress and the dislocations induced the plastic
deformation can change the magnetic and electric proper-
ties of the testing materials, which were described as the
Magneto-Mechanical Effect (MME) [18] and the Electro-
Mechanical Effect (EME) [19], respectively. MME and EME
are very interesting cross-coupling physical phenomena with
great research value, but the mechanisms of stress’s actions
on themagnetic and electric properties of testingmaterials are
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often complicated and intangible. It is also possible that the
MME and EME are related not only just to the magnetic and
electric properties of the testing materials, but also to some
other factors not yet known. Anyway, even if MME and EME
are coupling results of multiple factors, studies on each factor
correlating with stress are necessary and vital.

Being two key parameters that are frequently used for
characterizing the electromagnetic properties of the testing
materials, the conductivity and permeability ofmaterials have
important effects on the results of electromagnetic nonde-
structive testing [20], [21]. Vice versa, the detectability of the
stress-induced mechanical change by using electromagnetic
nondestructive testing methods also suggests the possibility
that stress has effect on the conductivity and permeability of
the testingmaterials, thus affect the results of electromagnetic
nondestructive testing, which in turn results in the stress-
induced mechanical damage being identified and character-
ized by the electromagnetic nondestructive testing methods.
Therefore, the effects of stress on the conductivity and per-
meability of the testing materials are critical factors that
will affect the tested results of the stress-induced mechanical
damage. Furthermore, the studies on the correlations between
the mechanical stress and the conductivity and permeability
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FIGURE 1. Experiment system.

FIGURE 2. The shape and sizes (mm) of the specimen.

of materials are also important ways to further reveal the
mechanism of MME and EME.

According to reference [22], the effect of uniaxial stress on
the effective mass of electronic conductivity of Si materials
is different under different crystal directions. Under uniaxial
tensile stress, the effective mass of electronic conductivity
along the 45◦ direction decreases with the increase of stress,
while that along the 0◦ and 90◦ directions increases with
the increase of stress. Maybe because of the dislocation,
slip and twin in the crystal, the electronic conductivity of
SUS304 stainless steel decreases with the increase of plastic
deformation [23]. However, these studies only are the rela-
tionships between conductivity and stress/plastic deformation
of specific materials, lacking universality and corresponding
theoretical models and experiment data. According to the
reference [24], the conductivity decreases with the increase
of plastic deformation. But these studies are the conclusion
under stress unloading of plastic deformation. Under stress
loading, the relationship between plastic deformation and
conductivity is rarely studied. Moreover, there is lack of
a simple method to determine the quantitative relationship
between electrical conductivity and stress/plastic deforma-
tion.

Based on this, this paper uses a simple method to research
the relationship between the electronic conductivity and
stress/plastic deformation of the silicon steel, carbon steel
and aluminum alloy of different initial electronic conduc-
tivity under three different stage, which are the stage of
elasticity deformation, the stage of plastic deformation under
stress unloading conditions, and the stage of plastic deforma-
tion under stress loading conditions. Moreover, we give the
corresponding relationship model based on fitting method.
This method has a certain reference for studying the effect
of stress/plastic deformation on the electronic conductivity
and the magnetic output. And it has certain practical sig-
nificance and value for nondestructive testing of equipment
by extracting the change information of material electronic
conductivity.

TABLE 1. Chemical compositions (wt%) of (a) Silicon steel B35A440;
(b) Carton steel Q195 and (c) Aluminum Alloy 2A12.

II. EXPERIMENTS
The experiment system of electronic conductivity and the
specimen are shown in Fig. 1. The experiment system consists
of a resistance testing instrument and some electrical con-
ducting lines. The resistance testing instrument is used Dou-
ble – arm electrical DC bridge. The specimen is fabricated
with a 3mm-thickness plane, its shapes and sizes are shown
in Fig. 2. Specimens are used silicon steel of B35A440, car-
bon steel of Q195 and aluminum alloy of 2A12. The chemical
compositions of the specimen are listed in Table 1, where
Table 1(a) is the material of silicon steel B35A440, Table 1(b)
is Q195 steel and Table 1(c) is aluminum alloy of 2A12. The
tensile stress was introduced into the specimen along the x
axis of the specimen, as shown in Fig. 2. Stress–strain curves
of specimens were tested by pulling standard samples, and
shown in Fig. 3, where Fig. 3(a) is the curve of silicon steel
of B35A440, Fig. 3(b) is carbon steel Q195, and Fig. 3(c)
is Aluminum alloy 2A12. Fig. 3 shows the yield strength
of tested specimens, which means they are in the elastic
deformation stage (O—O′) when stress of the specimen is
below yield point (O) and they are in the plastic deformation
stage (O—F) when the applied stress is above yield point.
Series of tensile elastic stress is loaded into specimen and up
to yield point, with interval of 10MPa. At each interval and
with stress loading, wemeasured the resistance by the Double
– arm electrical DC bridge while stress loading.

Series of tensile stress are loaded into the specimen and
made the plastic deformation up to 12%, with interval of 2%.
At each interval and with stress loading as O—F , we mea-
sured the resistance. At each interval and with stress unload-
ing as O′—F ′, we measured the resistance too.

According to the relationship between the resistance and
the resistivity R = ρl/A, we can obtain: ρ = RA/l, where
R is the resistance, ρ is the resistivity, l is the length of the
specimen,A is the cross-sectional area of the specimen. Sowe
can obtain: σe = 1/ρ, where σe is the conductivity. Therefore,
we can obtain the conductivity of the material by measuring
the resistance.

III. RESULTS
A. AT THE STAGE OF ELASTICITY DEFORMATION (O’—O)
At the stage of elasticity deformation which is the stage of
O′—O below yield point O shown in fig.3, we measured the
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FIGURE 3. Stress (σ )–strain (ε) curves of tested materials. (a) Silicon steel
B35A440; (b) Carbon steel Q195; (c) Aluminum alloy 2A12.

pointO1—O26 for the specimen of silicon steel,O1—O18 for
carbon steel, and O1—O26 for aluminum alloy. We measured
the resistance under stress loading, and then we obtain rela-
tionships between the conductivity σe and the stress σ are
shown in Figure 4, where Fig. 4(a) is the specimen of silicon
steel, Fig. 4(b) is carbon steel, and Fig. 4(c) is Aluminum
alloy. As you can see from Fig.4, the conductivity goes
up dramatically with the increase of stress, and then keeps
approximately the same. It shows that the effect of stress on
conductivity is greater at the initial stage than at the later
stage.

FIGURE 4. Relationship between the conductivity σe and the stress σ (a)
Silicon steel of B35A440, (b) Carbon steel of Q195, (c) Aluminum alloy
2A12, where [ ] = experimental data, solid lines = fitting lines.

B. AT THE STAGE OF PLASTIC DEFORMATION UNDER
STRESS UNLOADING(O’—F’)
At the stage of elasticity deformation which is the stage of
O′—F ′ below yield point O shown in fig.3, we measured
the point is A′—E ′ for the specimen. Relationships between
the conductivity σe and the stress σ are shown in Figure 5,
where Fig. 5(a) is the specimen of silicon steel, Fig. 5(b) is
Q195 steel, and Fig. 5(c) is aluminum alloy. As you can see
from Fig.5, the conductivity decreases approximately linearly
with the increase of plastic deformation.

VOLUME 8, 2020 82743



F. Zhang et al.: Effect Model of Stress and Plastic Deformation on Conductivities of Various Magnetic Materials

FIGURE 5. Relationships between the conductivity σe and the plastic
deformation ε (a) Silicon steel of B35A440, (b) Carbon steel Q195, (c)

Aluminum alloy 2A12, where [ ] = experimental data, solid lines =

fitting lines.

C. AT THE STAGE OF PLASTIC DEFORMATION UNDER
STRESS LOADING (O—F)
At the stage of superposition state which is at the stage of
plastic deformation under stress loading, the stage of O—F
above yield point O shown in fig.3, we measured the point
is A—E for the specimen. We measured the resistance and
obtain the relationships between the conductivity σe and the
stress σ are shown in Figure 5, where Fig. 5(a) is the specimen
of silicon steel, Fig. 5(b) is carbon steel, and Fig. 5(c) is
aluminum alloy. As you can see from Fig.5, the conductivity
decreases approximately linearly with the increase of plastic
deformation and stress.

IV. DISCUSSIONS
A. AT THE STAGE OF ELASTICITY DEFORMATION (O’—O)
According to the relationship between the conductivity and
the stress shown in Fig. 4, we can get the experimental data
σe induced by stress σ by fitting formula

σe = p1ep2σ + p3ep4σ , (1)

where p1, p2, p3 and p4 are parameters. p1 and p3 are amplifi-
cation factor, p2 and p4 are stress coefficient. In silicon steel,
p1 = 5.379×106, p2 = −3.644e×106, p3 = −1.723×105,
p4 = −0.1202; In carbon steel, p1 = 5.213 × 106, p2 =
−2.086 × 10−5, p3 = −1.437 × 106, p4 = −0.157; In
aluminum alloy, p1 = 2.351 × 107, p2 = −1.075 × 105,
p3 = −7.24× 105, p4 = −0.04372.
It may because the conduction band structure of the mate-

rial has changed and the electronmobility has enhanced under
the action of stress [22], the electrical conductivity of the
material increase rapidly first similar to step response with
increase of stress, and then keeps approximately the same.
The ratio k of maximum conductivity to initial conductivity
of different materials is different. In silicon steel, k = 1.0323;
In carbon steel, k = 1.3750; In aluminum alloy, k = 1.0264.

B. AT THE STAGE OF PLASTIC DEFORMATION UNDER
STRESS UNLOADING (O’—F’)
There existed a good linear correlation between the conduc-
tivity and the plastic deformation shown in Fig. 5, so the
experimental data σe induced by the stress can be described
as

σe = p5ε + p6, (2)

where p5 and p6 are parameters, p5 is amplification factor, and
p6 is additional items. In silicon steel, p5 = −8.74 × 104,
p6 = 5.4717 × 106; In carbon steel, p5 = −1.393 × 105,
p6 = 3.8972× 106; In Aluminum alloy, p5 = −3.48× 105,
p6 = 2.3344× 107.
The electrical conductivity of the material decrease

approximately linearly with the increase of plastic deforma-
tion, whichmay because the electron transfer rate of themate-
rial has changed, and the crystal has undergone dislocation,
slip, and twin under the action of plastic deformation [23].

C. AT THE STAGE OF PLASTIC DEFORMATION UNDER
STRESS LOADING (O—F)
There existed a good linear correlation between the conduc-
tivity and the plastic deformation shown in Fig. 5, so the
experimental data σe induced by the stress can be described
as

σe = aσ (p5ε + p6)+ bσ , (3)

where aσ is coupling coefficient of stress and plastic defor-
mation, bσ is additional item caused by stress. In silicon
steel, aσ = 0.9357, bσ = 2.4059 × 105; In carbon steel,
aσ = 0.8407, bσ = 2.2996e × 105; In Aluminum alloy,
aσ = 0.9921, bσ = −2.2602× 105.
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The electrical conductivity of the material decrease
approximately linearly with the increase of the plastic defor-
mation and stress, whichmay because the plastic deformation
plays a major role at the stage of superposition state(O—
F) under stress loading. However, as the result of stress,
the electrical conductivity at the stage of plastic deformation
under stress loading is higher than at the stage of plastic
deformation under stress unloading.

V. CONCLUSIONS
It may because the conduction band structure of the material
has changed and the electronmobility has enhanced under the
action of stress, the electronic conductivity increases rapidly
with the increase of stress, and then slowly increases with the
increase of the stress. It also shows that the effect of stress
on electronic conductivity is greater at the initial stage than
at the later stage. It may because the electron transfer rate
of the material has changed, and the crystal has undergone
dislocation, slip, and twin under the action of plastic defor-
mation, the electronic conductivity decreases approximately
linearly with the increase of the plastic deformation. The
plastic deformation plays a major role at the stage of superpo-
sition state under stress loading, the electronic conductivity
also decreases approximately linearly with the increase of
the plastic deformation and stress. However, by comparison,
the electrical conductivity at the stage of plastic deformation
under stress loading is higher than at the stage of plastic
deformation under stress unloading, which is the result of
stress.

According to the fittingmodel, the quantitative relationship
between electronic conductivity and stress, and between elec-
tronic conductivity and plastic deformation can be explored.
The research results provide the theoretical foundation and
experimental data for studying the effect of mechanical effect
on electronic conductivity. Moreover, it is valuable for non-
destructive testing of materials by electronic conductivity.
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