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ABSTRACT Ultrasound scanning has become a highly recommended examination in prenatal diagnosis
in many countries. The accurate identification of fetal brain ultrasound scans is crucial to accurate head
measurement and brain lesion detection, such as the measurement of the biparietal diameter and the detection
of hydrocephalus. In recent years, deep learning has made great progress in the field of image processing.
However, there are two difficulties in the identification of fetal brain ultrasound standard planes (FBSPs).
First, since the fetal brain tissue is not mature, the fetal brain tissue features are not easy to be detected.
Second, because of the expensive collection costs, the amount of labeled image data is limited, which
can cause over-fitting and decrease the identification precision. In this study, we proposed a differential
convolutional neural network (differential-CNN) to automatically identify six fetal brain standard planes
(FBSPs) from the non-standard planes. In this differential-CNN framework, the additional differential
feature maps were derived from the feature maps in the original CNN using differential operators. The
derivation process did not increase the number of convolution layers and parameters. Moreover, the dif-
ferential convolution maps have the large advantage of analyzing the directional pattern of pixels and their
neighborhoods using additional variation calculations. Therefore, the differential convolution maps would
result in good identification performance and cost no extra computational burden. To test the performance
of these algorithms, we constructed a dataset consisting of 30,000 2D ultrasound images from 155 fetal
subjects ranging from 16 to 34weeks. The experimental results showed that thismethod achieved an accuracy
of 92.93%. Our work shows that the differential-CNN can be used to facilitate the implementation of the
automated identification of FBSPs.

INDEX TERMS Convolutional neural network, ultrasound scan image, medical image processing, convo-
lution techniques, differential operator.

I. INTRODUCTION
Ultrasound imaging technology has been applied to the pre-
natal observation and measurement of fetuses and diagnosis
of fetal diseases for approximately 30 years [1], [2]. It is the
most common and simple imaging method to understand the
main anatomical structures of embryos and fetuses [3]–[6].
In the initial application stage, the prenatal ultrasound exam-
ination is limited to the purposed determination of pregnancy,
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the survival of the fetus, the adequacy of the amniotic fluid,
the condition of the placenta and so on. Currently, ultrasound
imaging technology has become an indispensable imaging
diagnostic tool for obstetrics-based medical departments [7].
Ultrasound images can not only observe and understand the
fetal morphology and structure but also observe the fetal
activity and behavior in the mother’s uterus and the dynamic
changes of the fetal blood flow in real time [8].

In prenatal examination, the brain development of the fetus
is themost important. First, themeasurement of the fetal brain
on the standard planes can directly reflect the development
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of the fetus [9] and fetal age [10]. For example, the biparietal
diameter (BPD) is the length of the widest part between the
left and right sides of the fetal head [11]. After five months
of pregnancy, the BPD is basically relevant to the fetal age
and fetal weight. If the BPD is larger than the transverse
diameter of the pelvic outlet of the parturient, the parturient
may have dystocia and other issues. Therefore, the BPD is
an important index for doctors to make decisions for natu-
ral delivery or cesarean section. Second, in the fetal brain
development process, doctors can observe brain abnormal-
ities using standard planes, such as ventricular expansion,
intracranial hematomas, hydrocephalus and subependymal
cysts, which are usually the manifestations of intracranial
hemorrhage, ischemic and hypoxic brain diseases. If doctors
can observe the changes of these indicators during pregnancy,
it will be far-reaching significant for determining the death of
an immature fetus and the congenital malformation of a fetus,
selecting the appropriate diagnosis and treatment plan in time,
and even terminating a pregnancy.

In the diagnosis of fetal brain development, the accurate
recognition of fetal brain ultrasound standard planes is the
basis of developmental diagnosis and data measurement [12].
Taking the measurement of the BPD as an example, the stan-
dard plane for the BPD measurement is the horizontal trans-
verse section of the thalamus, which passes through the
anterior horn of the lateral ventricle, the posterior horn of
the lateral ventricle, the septum pellucidum and the thalamus.
When ultrasoundwaves pass through the complex anatomy of
a fetus, doctors observe the echoes received by the ultrasound
receivers. It is a very complex task to observe and guide the
ultrasonic probe to the correct standard planes, which tech-
niques need to be trained by years. Because of the complexity
of this work, the acquisition of ultrasonic standard planes
has low reproducibility and large operator differences. Even
with a given standard plane, it is a very challenging task for
clinicians to identify the relevant organizational structures,
especially for inexperienced operators and ultrasound diag-
nosticians. Therefore, research on the automatic recognition
of the fetal brain ultrasonic standard plane has very important
and far-reaching significance.

There are several limitations in the diagnosis based on
ultrasound imaging [5]. In the ultrasound scan, the diagnostic
precision can be affected by the inappropriate choice of the
standard scan section, which is dependent on the clinical
experience of the doctor [13]. Moreover, the same captured
scan image can be diagnosed as a different disease due to
different professional skills related to the inspection criteria
and quality control standards [14].

An ultrasound image is formed by echoes from human
tissues [4]. There may be artifacts as a result of the image
processing. Image artifacts originate from many subtle fac-
tors, such as the shaking of machines and equipment. When
different instruments are used, the performance of the equip-
ment itself and the adjustments of doctors will also affect
the identification and acquisition of standard sections. These
factors will not only cause minor errors in the diagnosis

and measurement but also reduce the efficiency of doctor’s
assessments [15].

In recent years, the automatic identification of fetal brain
standard planes has been extensively discussed in the litera-
ture. Yeh et al. [16] used a gray level co-occurrence matrix
and wavelet decomposition to extract features, and then
used a support vector machine (SVM) to classify features.
Lei et al. [17] explored the automatic recognition of fetal
facial standard planes (FFSPs) using the Fisher Vector and
SVM on a small sample dataset. The limitations of the above
traditionalmethods aremainly reflected in the following three
aspects: (1) manual feature extraction settings are usually
based on humans’ subjective experience; (2) due to artificial
selection, the number of extracted features and the types of
features are very limited; and (3) the above feature extraction
method cannot be optimized in real time when data sets
change.

However, with the development of deep learning algo-
rithms, a new development stage of computer-aided diag-
nosis is emerging. Cao et al. evaluated the performance
of several existing state-of-the-art deep learning methods
for breast tumor detection [18]. Yu et al. continued their
research by applying a deep convolutional neural network on
a relatively large dataset and distinguished four statuses of
the FFSPs [19]. Baumgartner et al. [20] proposed a novel
detection and localization method based on a convolutional
neural network (CNN) that can automatically detect 13 fetal
standard views for freehand 2D ultrasound data and provide
a localization of the fetal structures via a bounding box.
Feng Dagan et al. [21] used two fusion CNNs and saliency
maps. Lei et al. [22]–[25] explored the automatic recogni-
tion of fetal facial standard planes and breast segmentation
using a deep learning method. These two CNNs learned
from a network trained using natural images and achieved an
automatic detection and measurement using VGG-Net [26].
Ricardo et al. improved the topological coherence strategy
in an auto-encoder to augment the number of blood vessel
images with noise [27].

Inspired by [28], we proposed a differential-CNN-based
fetal brain standard planes (FBSPs) identification system to
identify six classes of FBSPs and one class of non-standard
planes. The feature maps in differential CNNswere generated
with one single convolution feature map by applying pre-
defined hyper-parameters and a differential operator. In this
way, the differential-CNN used more differential feature
maps to extract more details in the image without increas-
ing the numbers of convolution layers and parameters. In
addition, one more fixed filter is added to calculate the
difference between the pixel and the pixel on the correspond-
ing position of the adjacent layer. The relevant differential
feature map and the relevant back propagation processing
on the original algorithm to improve the FBSPs identifi-
cation performance. Therefore, the proposed differential-
CNN reduced the complexity of the convolutional network
structures and meets the requirements of portal computing
equipment.
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The rest of the paper is organized as follows. Section II
introduces the methodology of the proposed differential-
CNN algorithm. The data collection and augmentation are
given in Section III. The experiment results and analysis
are given in Section IV. The conclusion and future works
are given in the last section.

II. METHODOLOGY
A. CONVOLUTIONAL NEURAL NETWORK
Compared with traditional neural networks, the CNN pro-
vides a fast and convenient algorithm and performs well
in target detection and classification [29]–[32]. In bionics,
the CNN can successfully simulate mammalian visual cortex
nerve operations [33]. Inspired by visual perception, the fea-
tures are extracted using localized convolution. Then, the
hidden layer of the CNN carries the spatial correlation infor-
mation. Therefore, when applied in vision-related imaging
problems, the CNN has significantly improved classifica-
tion accuracy for many standard image databases, such as
MNIST [34] and CIFAR 10 [35].

The basic structure of the CNN includes several convolu-
tional layers, pooling layers and fully connected layers [36]–
[38]. The task of the convolution layer is to detect the local
connection features of the previous layer. The formula for
computing a single output matrix is defined as follows:

Aj = f

(
N∑
i=1

Ii ∗ Ki,j + Bj

)
(1)

where I is an input vector, and K is the corresponding convo-
lution kernel with the size of n × n (n< input size). Then, all
the convoluted matrices are added up and a bias value Bj is
added to each element of the resultingmatrix. f is a non-linear
activation function working on each element of the previous
matrix to produce the output matrix A. In this paper, the rec-
tified linear function f (x) = max(0, x) (ReLU) is chosen as
the activation function to improve both the learning speed
and classification performance of the CNN [39]. The pooling
layer that integrates the semantically similar features is used
to reduce the resolution of the feature maps [40]. The back
propagation can update the training weights and train the
weights of all feature maps [41].

In the design of CNN models, different architectures can
affect the training and testing performances [42]. A deep
network can achieve better performance but it needs a longer
calculation time; conversely, a shallow network can achieve
high calculation efficiency but cause the underfitting prob-
lem. As a result, an appropriate network system can improve
the performance of the identification system. Our differential-
CNN model contains five convolutional layers and five aver-
age pooling layers between the convolutional layers. The
architecture of the original CNN is shown in Table 1.

In Table 1, C represents the convolutional layers, P rep-
resents the pooling layers (the average pooling layers in
this structure), and F represents the fully connected layers.
The original feature map in the CNN is randomly generated.

TABLE 1. Architecture of the original CNN model.

Because themodel’s task is to identify six classes of FBSPs
images, the final fully connected layer has seven channels.
The previous research [43] shows that a prominent reduction
of the fully connected layer size in a CNN will not reduce
the network performance. As a result, the proposed fully con-
nected layer was greatly shortened to improve the calculation
efficiency while retaining the network performance.

The final goal of the experiment is to compare the prob-
ability of FBSPs classification on the last output node. The
most probable class is considered to be the final prediction
class. The output is the final predictive classification.

B. DIFFERENTIAL CONVOLUTIONAL FEATURE MAP
Convolution is the key of a deep learning structure, which
is realized by sliding several filters over the input images.
It extracts the features from the input image by simulating
human vision. Therefore, the more feature maps included in
the feature extraction layers in the structure, the more features
the classifier obtains.

In traditional convolution neural networks, feature maps
are generated via random initialization or transferred knowl-
edge. Compared with traditional CNNs, the feature maps in
differential CNNs are generated using traditional convolution
feature maps by applying pre-defined hyperparameters and a
differential operator [25]. Differential convolution maps are
used to analyze the directional patterns of pixels and their
neighborhoods through an additional variation calculation.
It is worth mentioning that, in mathematical differentiation,
the sequence change is considered by calculating the differ-
ence between pixel activations. The predefined feature maps
are shown in Fig. 1. Each feature map is used to compute the
difference in one direction. Therefore, the additional feature
maps containing differences along different directions are
obtained. Different from [28], we add a fixed filter to the
original algorithm to extract more features in the FBSPs
identification task.

Because we add a fixed filter here, the feature maps are
added correspondingly. Let the initial feature map generated
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FIGURE 1. Predefined filters.

from the traditional convolution neural networks be g1 and
the resulting five feature maps using the differential operator
be g2, g3, g4, g5, and g6. The neurons in these maps are
calculated using (2)-(6):

g2,i,j = g1,i,j − g1,i+1,j (2)

g3,i,j = g1,i,j − g1,i,j+1 (3)

g4,i,j = g1,i,j − g1,i+1,j+1 (4)

g5,i,j = g1,i+1,j − g1,i,j+1 (5)

g6,i,j = g1,i+1,j+1 − g1,i,j+1 (6)

where i and j are the coordinates of the neurons in the convo-
lutional feature maps. We assume that the size of g1 isM×N ,
and the sizes of g2, g3, g4, g5, and g6 are (M − 1) ×N , M×
(N−1), (M−1)× (N−1), (M−1)× (N−1) and (M−1)×
(N−1), respectively. The calculation process of these feature
maps is shown in Fig. 2.

After the first feature map is generated by the traditional
convolution feature map, the differential convolution feature
maps are calculated from the first feature map using differen-
tial operators. The differential convolution feature maps are
used to detect the basic features of an image, such as edges
and corners.

From the above derivation process, we can see that the dif-
ferential CNN uses more differential feature maps to extract
more details in the image without increasing the convolution
layers. Therefore, the proposed differential CNN reduces the
complexity of convolution network structures, thus reducing
the computing requirements.

C. BACK PROPAGATION
The BP algorithm would be improved while the feature maps
changed. If the network cannot identify the expected out-
put value in the output layer, the sum of the error between
the expected value and output value is taken as the objec-
tive function that is transmitted in the reverse direction.
Then, the partial derivative of the objective function is cal-
culated layer by layer. This partial derivative is the learn-
ing gradient. The CNN modifies the weights of the feature
maps based on the gradient and learning rate. When the
error decreases below the expected value, the training does
stop.

Let the error transmitted to the first map be h1; the errors
transmitted to the generated extra maps be h2, h3, h4, and h5;
and the error matrix be E . Functions (7)-(11) show the error
calculations for the relevant filter.

Ei,j = h1,i,j − h2,i,j−1 + h2,i,j − h3,i−1,j + h3,i,j
− h4,i−1,j−1 + h4,i,j − h5,i−1,j + h5,i,j−1 − h6,i,j−1
+ h6,i−1,j−1 (7)

where 1< i < M and 1< j < N . The Ei,j in formula (7)
represents the error for the neurons neither at the edges nor
in the corners. It receives error feedback from all neighboring
neurons.

Ei,j

=


h1,i,j + h2,i,j + h3,i,j + h4,i,j, i = 1, j = 1
h1,i,j − h2,i,j−1 + h3,i,j + h5,i,j−1, i = 1, j = N
h1,i,j + h2,i,j − h3,i−1,j − h5,i−1,j, i = M , j = 1
h1,i,j − h2,i,j−1 − h3,i−1,j − h6,i−1,j−1, i = M , j = N

(8)

The Ei,j in formula (8) represents the error of the neurons
at the corners and edges. It receives error feedback from
3 neighboring neurons.

Ei,j

=



h1,i,j − h2,i,j−1 + h3,i,j + h4,i,j + h5,i,j−1,
i = 1, 1 < j < N

h1,i,j− h2,i,j−1+ h2,i,j− h3,i−1,j − h4,i−1,j−1 − h6,i−1,j,
i = M , 1 < j < N

h1,i,j + h2,i,j + h3,i,j − h1,i−1,j + h4,i,j − h5,i−,j,

1 < i < M , j = 1
h1,i,j − h2,i,j−1 + h3,i,j − h4,i−1,j + h6,i,j−1,

1 < i < M , j = N
(9)

The Ei,j in (9) represents the error of the neurons propagated
to the edge neurons. It receives error feedback from 5 neigh-
boring neurons.

III. DATA COLLECTION AND AUGMENTATION
A. DATA COLLECTION
After the approval from Institutional Review Board (IRB),
we recorded a set of images corresponding to a complete
pregnancy. With the permissions of the pregnant women,
their ultrasound scan videos during the whole pregnancywere
recorded and kept. All ultrasonic scan images were converted
into gray images so that there was only one input channel for
the CNN. Since the successive frames in the video change
little, we down-sampled the image sequence. Even after
this down-sampling, some images were still quite similar.
Due to this persistent similarity among the images, doctors
helped us to further manually delete similar images, blurry
images and excessively dark images to keep the number of
images from the same event to less than 10. In this way,
we collected 19,142 fetal brain standard planes in six classes
and one class of non-standard planes from 155 subjects.
They were collected by a Hitachi ARIETTA 70 B-mode ultra-
sonic apparatus and the corresponding probe with frequency
of 4-6 MHz.

In addition, all private information has been removed from
the image. Furthermore, all the ground and detailed informa-
tion (such as the Sylvian fissure (SF), lateral ventricle (LV)
and thalamus (T)) were labeled in the images.
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FIGURE 2. The calculation of the differential feature maps.

The six fetal brain standard planes, which are the horizontal
transverse plane of thalamus, the horizontal transverse plane
of lateral ventricle, the transverse plane of the cerebellum,
the midsagittal plane, the paracentral sagittal plane, and the
coronal plane of the anterior horn of the lateral ventricle, are
shown in Fig. 3.

B. DATA AUGMENTATION
Although the CNN has a strong advantage in the represen-
tation of the learned features, the deep structure and the
supervised learning may lead to overfitting when the amount
of training data is limited, such as in many medical situations.
When the dataset is small, an excessive number of parameters
in a CNN would result in overfitting. The common features
among different images may be ignored. As a result, the
CNN’s generalization capability will be weakened.

To avoid this problem, several data augmentation methods
are proposed to prevent overfitting in this paper, which are
shown in Fig. 4. They include the following: (A) Rotation:
rotate the ultrasound image by a certain degree; (B) Reflec-
tion: change the direction of the ultrasound image’s content;
(C) Gaussian white noise: add white noise depending on
a Gaussian distribution; (D) Flip: flip the ultrasound scans
vertically or horizontally; (E) Zoom: zoom in or out on an
ultrasound scan; (F) Cubic spline interpolation: reconstruct
a new image using the cubic spline interpolation method;
and (G) Bilinear interpolation: reconstruct a new image using
bilinear interpolation.

After conducting all the pre-processing and data augmen-
tation for the original dataset, a total of 30,000 1020× 1020

fetal brain standard planes and non-standard planes formed
FBSPs. In this FBSPs dataset, there are 4,000 images for
each class of standard planes and 6,000 images for the non-
standard planes. Here, we choose 5-fold validation as the
training strategy. It means that each fold contains 800 images
for each class of standard planes and 1200 images for the non-
standard planes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this experiment, the differential-CNN uses the same
parameters as the original CNN structure showed in Table 1.
Additionally, they have the same numbers and positions for
the convolutional layers and pooling layers. There are 5 con-
volutional layers in this differential-CNN. The number of
feature maps in these convolutional layers is 48, 20, 20,
8, and 4. We set the size of the feature maps in first two
convolutional layers as 2× 2 and the size of the feature maps
in the other convolutional layers as 3×3. All the convolutional
layers are followed by an averaged pooling layer. All the
pooling filters are followed by the pooling layers in the CNN
showed in Table 1.

In this section, we will carry out the numerical simulation
using an HP Z640Workstation with an Intel Xeon E5-2620v4
2.1 2133 8C CPU and an NVIDIA Quadro M4000 8GB
GeForce GPU. The framework used to establish the CNN
architecture is TensorFlow. Our system also used the mixed
programming technology of MATLAB.

We conducted testing using our collected FBSPs image
dataset to evaluate and analyze the various factors in our
proposed CNN architecture. To evaluate the efficiency of our
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FIGURE 3. Samples of the six fetal brain standard planes.

proposed algorithm, four classical machine learning mod-
els were explored and several CNN systems with differ-
ent network depths were trained for comparison purposes.
To compare the differences between the various algorithms,
we computed the follow statistical indexes: Accuracy (A),
Precision (P), Recall (R) and F1-measure (F1) [44].

A =
TP+ TN

TP+ TN + FP+ FN
(10)

P =
TP

TP+ FP
(11)

R =
TP

TP+ FN
(12)

F1 =
2RP
R+ P

(13)

where TP, TN, FP and FN denote the number of true positives,
true negatives, false positives and false negatives, respec-
tively. To evaluate the efficiency of the proposed algorithm,
four classical machine learning models were explored and
several CNN systems with different network depths were
trained for comparison purposes. K-means clustering is a
vector quantization algorithm. In machine learning, it divides
n observations into k classes, each of which belongs to
the classes closest to the mean [45], [46]. Compared to k-
means clustering, the support-vector machine (SVM) is a
supervised learning model. It maps the points in space to
divide the samples of individual categories with as large
of a gap as possible [47]. The RCM is a new detection
method that is added to the detection program to improve
the performance [48]. The identification performance of the
original CNNlisted in Table 1 is also compared in Table 2.
Recently, SonoNet performed well in the classification of
medical images [8]. In this paper, we discussed the per-
formance of two SonoNet structures with different depths.
In recent years, transfer learning has shown its advantage at
preventing overfitting problems. In this paper, we compared
two other popular structures, AlexNet and VGG 16, with the

FIGURE 4. Samples showing the results of the seven transformation
methods for the original image. (A-G) represent rotation, reflection,
Gaussian white noise, flip, zoom, cubic spline interpolation and bilinear
interpolation.

proposed differential-CNN. The detailed comparison results
are shown in the Table 2. Moreover, to consider the hardware
resource consumption of these networks for the identification
task, the running times and the numbers of parameters of the
deep networks are measured and listed.

It can be seen in Table 2 that the accuracy, precision,
recall, and F1-score of the differential-CNN on the testing
data achieved the best results of 93.11%, 92.62%, 92.39%
and 93.53%, respectively, which significantly outperformed
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TABLE 2. FBSPs identification results for various models.

FIGURE 5. The precision and rates of different algorithms.

the other network architectures. The running time of our
proposed differential-CNN is similar to those of the pre-
trained neural networks, and our differential-CNN is signifi-
cantly faster than the original CNN. In addition, the number
of parameters of our differential-CNN is only 4,830,554,
which is significantly smaller than those of the listed deep
architectures. Compared with (f) in Table 2, the feature maps
calculated from the original CNN using differential operators
greatly reduce the number of parameters that need to be
trained in the networks and the complexity of the models.

This shows that the differential-CNN has a distinct
advantage over traditional CNNs in hardware resource con-
sumption. In this way, our proposed differential-CNN can
complete the FBSPs identification task with better per-
formance consuming less memory than CNNs listed from
models (c) to (h).

Because the original feature maps in the differential-CNN
are convoluted by a pre-defined filter, the depth of a single
convolution layer expands without increasing the number
of convolution layers. Moreover, these differential feature
maps record the differences in different directions, which
improves the differential-CNN performance of detecting the
basic structures of images such as edges and angles. There-
fore, the identification accuracy is improved by applying the

differential-CNN. In addition, the differential feature maps
are derived from the original feature map. The number of
weights in the neural network is reduced. Thus, the calcula-
tion time of the differential-CNN is significantly shortened.

The precision-recall (PR) and receiver operating charac-
teristic (ROC) curves shown in Fig. 5 are standard indexes
used to evaluate the identification performance of learning
models for a given fixed dataset. For the PR curve, when
the shape of the ROC curve is more convex, it indicates that
the algorithm represented by the ROC curve has a better
recognition effect. The area under the curve (AUC) is defined
as the ratio of the area under the ROC curve to the area of
the whole square, which is positively related to identification
performance. Since the ROC curves of different classification
algorithms may intersect, the performances of the algorithms
cannot be directly judged using the ROC curves. There-
fore, the AUC value is often used as the index to judge the
performances of algorithms. The area under the ROC curve
(AUC) obtained by our proposed differential-CNN is 0.937.

For models (c) to (f), it can be seen that SonoNet-64 (d)
and SonoNet-32 (c) performed similarly on the identification
task. They performed quite well as CNN frameworks that
do not transfer the initial parameters. Model (f) represents
the algorithm that we introduced in Table 1. In model (e),
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we replaced the last fully connected layer with an SVM
classifier. As a result, the CNN can be used as a feature
extractor.

V. CONCLUSION
Although deep CNNs have achieved remarkable success in
medical image analysis in recent years, their relative low
identification accuracy and expensive computational costs
limit the application of CNNs in clinical practice [49].
In addition, overfitting is likely to occur when directly train-
ing CNNs using limited ultrasound scans. Meanwhile, the
CNNs pre-trained on natural images are not very suitable for
FBSPs analysis. In order to increase the identification accu-
racy of automated ultrasound scan machines and decrease the
computational requirements, a novel differential-CNNs for
FBSPs identification was proposed.

First, the feature maps in the differential-CNN are gener-
ated from an original CNN with differential operators. In this
way, in the differential-CNN, more differential feature maps
are adopted to extract more details from images without
increasing the numbers of convolutional layers and param-
eters. Therefore, the proposed differential-CNN used in the
identification achieves better performance than the other deep
learning methods in the FBSPs identification problem. More-
over, the proposed differential-CNN consumes less memory,
which means that it can be applied in portable devices with
computational limitations and is beneficial to reducing pro-
duction costs [50].

Second, the development of deep learning in the field
of medicine is based on large numbers of medical images.
An FBSPs dataset was collected by our team, which can
be used to not only evaluate the performance of our pro-
posed method but also provide a data reference for other
researchers. Moreover, our approach uses samples that have
been diagnosed by clinicians for evaluation. The experimen-
tal results demonstrated that the identification of FBSPs using
our model agreed with the diagnoses of clinicians. Our pro-
posed differential-CNN demonstrated the great prospects of
applying deep learning in clinical applications.

In future works, we will try to improve the hyper-
parameters of the differential filters such as the number of
filters, the filter size and the initial values in filters to make
the network converge faster. We will also try to improve the
network architectures by adding a multi-channel classifier,
which has been proven to effectively improve the perfor-
mance of identification systems.
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