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ABSTRACT State-of-the-art deep learning models for food recognition do not allow data incremental
learning and often suffer from catastrophic interference problems during the class incremental learning.
This is an important issue in food recognition since real-world food datasets are open-ended and dynamic,
involving a continuous increase in food samples and food classes. Model retraining is often carried out to
cope with the dynamic nature of the data, but this demands high-end computational resources and significant
time. This paper proposes a new open-ended continual learning framework by employing transfer learning
on deep models for feature extraction, Relief F for feature selection, and a novel adaptive reduced class
incremental kernel extreme learning machine (ARCIKELM) for classification. Transfer learning is beneficial
due to the high generalization ability of deep learning features. Relief F reduces computational complexity by
ranking and selecting the extracted features. The novel ARCIKELM classifier dynamically adjusts network
architecture to reduce catastrophic forgetting. It addresses domain adaptation problems when new samples
of the existing class arrive. To conduct comprehensive experiments, we evaluated the model against four
standard food benchmarks and a recently collected Pakistani food dataset. Experimental results show that
the proposed framework learns new classes incrementally with less catastrophic inference and adapts domain
changes while having competitive classification performance.

INDEX TERMS Food recognition, deep learning, open-ended continual learning, class incremental extreme
learning machine, adaptive class incremental extreme learning machine, adaptive reduced class incremental

kernel extreme learning machine.

I. INTRODUCTION

In the open-ended continual learning, the new images of
existing classes arrive continuously, and novel classes always
appear. Two types of incremental learning are an impor-
tant component in open-ended continual learning: 1) Data
incremental learning 2) Class incremental learning. The data
incremental learning improves the recognition performance
of existing classes and adapt domain changes using newly
available images. In contrast, class incremental learning con-
tinuously gains knowledge from novel classes. Similarly, like
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the two aspects of learning in humans, these two types of
incremental learning are necessary for acquiring new con-
cepts and improving classification performance of existing
classes.

This demonstrates the importance of open-ended continual
learning in many real-world recognition problems, including
food recognition as the dataset is dynamic, and new concepts
of interest occur over time. Concerning the food recognition
problem, the users upload food images from a smartphone
belonging to existing classes and new classes each day. For
existing classes, the class definitions vary between users, thus
it is important to assume that users have different concepts
of the same class. Analysis of the food datasets used for
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evaluating the proposed framework also exhibits that there are
high inter-class similarity, and intra-class variations among
images (See Section 5). For new tags, there is no pre-defined
limit for the food dataset due to “large vocabulary”. The
recent rise in popularity of food on social media, TV shows,
food blogs, etc. has led to the production of large amounts
of new food tags also known as food porn [1]. All of this
makes the food datasets open-ended and dynamic. Despite
this, most of the conventional methods of food recognition
assume fixed datasets and high diversity in the classes at the
beginning. However, food recognition in real-world scenarios
can be catered by the use of open-end continual learning, but
there are challenges associated with open-ended learning, that
need to be discussed.

The paper is organized as follows: In section 1.1,
we described the problems of open-ended continual learning
in context with food recognition. In section 1.2, we have dis-
cussed the main contribution of this study. Section 2 discusses
state-of-the-art networks for food recognition. Section 3
presents the architecture of the framework in context with
open-ended continual learning. It discusses the methodol-
ogy to extract and select features and the novel method for
classification. Section 4 presents the experimental results.
The results demonstrate the superiority of the model as com-
pared to existing approaches while satisfying the criteria of
open-ended continual learning. Section 5 presents the discus-
sion, which is followed by the conclusion in Section 6.

A. PROBLEM DEFINITION

Deep learning networks for food image -classification
have achieved state-of-the-art performance on various food
datasets. Despite this, these models have assumed fixed
datasets which have increased the gap between laboratory and
real-world environment. Most of the image datasets in real
life are open-ended and dynamic [2], [3]. However, a well-
trained deep learning model tends to forget the previous infor-
mation while learning new information — a concept known
as catastrophic forgetting [4]. This means a model learned
on fixed food datasets cannot be trained easily on additional
samples of current food classes or new food classes with-
out significantly affecting its previous performance. These
two problems hinder the usage of deep learning models for
open-ended continual learning.

To understand the catastrophic forgetting during incremen-
tal learning, two theories have been proposed. The first theory
suggests that human plasticity decreases on neurons that have
learned previous information. This decreased plasticity on
neurons helps to retain previous information [5]. The second
theory explains that human extracts high-level information
and stores that information in different brain areas while
retaining episodic memories [6]. By keeping in view these
two theories, researchers have proposed techniques for deep
learning methods to learn incrementally. They have used reg-
ularization parameters, images of previously learned classes,
and support vectors. However, these methods have certain
assumptions and trade-offs. At first, they cannot take the
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benefit of new samples of existing learned classes. Secondly,
newly trained classes requires equal number of samples as
initially prepared classes.

B. CONTRIBUTION OF STUDY

This paper aims to deal with the challenges faced in an
actual environment. It has used transfer learning due to high
generalization ability of pre-trained deep learning networks
and determined the best network for extracting features from
food images. To cater, for lack of datasets from various
orientations, it uses online data augmentation during transfer
learning. Experimental analysis has shown that online data
augmentation has significantly enhanced the model ability
to classify food images from different possible orientations.
Secondly, this research work has used a Relief F method for
ranking features, based on which it reduces the dimensions
of extracted features. The redundant features increase the
computational complexity of the model.

Finally, and importantly, to deal with the challenge of class
incremental learning and domain adaptation, this paper has
proposed a novel method using extreme learning machines.
Among all the various neural based learning systems. This
study has chosen extreme learning machines for classification
due to their fast training and testing time while retaining com-
petitive classification accuracy as compared to other learning
methods [7], [8]. However, the experimental result shows
that existing extreme learning machine methods are unable
to continuously learn a large number of food classes. For
this reason, this research work has proposed a novel adaptive
reduced class incremental kernel extreme learning machine
(ARCIKELM). It reduces the complexity of kernel matrix,
has good generalization ability and can learn continuously
new food classes with less catastrophic forgetting.

The contribution of this study are summarized as follows.

1) This work has determined a more accurate feature
extraction method from ResNet-50, DenseNet-201, and
Inception-Resnet-V2 for food recognition. It has evaluated
the effect of online data augmentation during transfer learning
for food recognition and determined that online data aug-
mentation significantly improves model performance for var-
ious orientations. We have significantly reduced the feature
dimension and training time by using the Relief F method.

2) This study has proposed a novel classifier for class
incremental and data incremental learning by using extreme
learning machine due to its fast training and testing time.
It adjusts its architecture dynamically to reduce catastrophic
forgetting when new food classes are added. For existing
classes, it adapts to domain changes by learning sequentially
and adding new neurons based on our proposed strategy.

3) A comprehensive experiment has been conducted to
evaluate performance, catastrophic forgetting, and found that
the proposed approach outperforms existing methods.

Il. RELATED WORK
Most of the existing approaches for food recognition assume
that the training dataset has all the classes and variations
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within them. However, in a real-world setting, the limited
number of classes and images of existing food classes are
initially available. Therefore, the food recognition system
must satisfy the criteria of open-ended continual learning.
It should be able to learn new classes incrementally in
real-time and does not need to store exemplary images dataset
as this will increase the complexity of the model and data
security concerns. The online learning should be considered
to adapt variation in the existing class images. This section
briefly discussed the present literature on food recognition
in context with mentioned challenges. It includes a wide
range of methods, from simple Euclidean distances to spatial
pyramid convolution neural networks for food recognition.
Finally, this section summarizes the research gaps of current
approaches and the contribution of the proposed framework
to existing literature.

A. DISTANCE BASED METHOD

Jackman et al. [9] used “color and wavelet texture fea-
tures”” and Mahalanobis distances for classification on the
small “Pork and Ham™ dataset. They achieved an accuracy
of 100 percent. Ciocca et al. [10] extracted visual descriptors
from patches and used a pre-trained k nearest neighbor for
classification. They achieved an accuracy of 85% on the
datasets gathered by them. Duan ef al. [11] applied SIFT,
Gabor BOF for extracting features from an image dataset
and then the Euclidean distance is used for classification.
Phetphoung et al. [12] used histograms of color in RGB,
HSV color spaces and shape properties for extracting fea-
tures. Finally, k nearest neighbor is used to classify sushi
dataset with an accuracy of 93.7%. Kong et al. [13] developed
dietcam and applied to sift feature extractor on 5 food classes
and achieved an accuracy of 92% using the nearest neighbor
classifier. All of these approaches use different types of fea-
ture extractor to improve performance for fixed datasets and
are not employed for open-ended continual learning.

B. PROBABILISTIC MODEL AND DECISION TREE

There are several methods which have explored decision trees
for food classifications. Bossard et al. [14], have used random
forest for classification and have achieved an accuracy of
50.71% on the food 101 dataset. Wang et al. [15] developed
a mobile application by using the recursive Bayesian model.
Herranz et al. [16] focused on a probabilistic model for the
classification of restaurant images and dishes dataset. All of
the existing probabilistic model and decision tree approaches
uses fixed dataset and does not take into account open-ended
continual learning.

C. SUPPORT VECTOR MACHINE

Support vector machine for food classification has been stud-
ied extensively. There are many variants of support vectors
with different feature extraction methods. Few of these meth-
ods have also been integrated with mobile applications. These
methods do not, however, satisfy the criteria of open-ended
continual learning proposed in this work. Puri et al. [17],
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Zhu et al. [18], Anthimopoulos et al. [19], Sasano et al. [20]
and Joutou and Yanai [21] studied support vector and mul-
tiple vector kernel support vector using color and texture
features. Luo ef al. [22] explored nutrition and texture fea-
tures on food dataset with a support vector machine for
classification. Kawano and Yanai [23] developed a mobile
application that uses a fisher vector to encode HoG patches
and color patches. Almaghrabi et al. used support vector
machine for classification on 80 classes and achieved an
accuracy of 80%. Tammachat et al. [24] focused on Bag-
of-Feature (BOF) of Segmentation based Fractal Texture
Analysis (SFfA) and color histogram for feature extraction.
They have used a support vector machine for classification
on 40 different types of Thai food with an accuracy of 70%.
Velvizhy et al. studied surf bag of words for feature extraction
and support vector machine for classification of 11 food
classes. Zheng et al. [25] concatenated codebook of color
and D-Sift features and achieved an accuracy of 70.84%
on the UECFOOD100 data set using a linear support vec-
tor machine. Bosch et al. [26] built an ensemble classifier
by using global and local feature extraction methods. They
have used a support vector machine with the voting-based
method for late decision fusion classification. They achieved
an accuracy of 86.31% on 39 food classes. Miyano et al. [27]
exploited the bag of the feature using local and color features
from images and support vector machine for classification.
Nguyen et al. [28] experimented using SIFT and shape con-
text descriptors on PFID dataset. They used a support vector
machine for classification and have achieved an accuracy
of 68%. Farinella et al. [29] used consensus vocabulary with
a bag of visual words and support vector machines for clas-
sification on the PFID dataset. They achieved an accuracy of
79.20%. Yang et al. [30] classified pairwise local features of
PFID dataset using support vector machine and have achieved
an accuracy of 80% on the PFID dataset. Kusumoto et al. [31]
used hybrid aggregation of sparse color and edge histogram
features and support vector machine for classification. They
have achieved an accuracy of 30% on the PFID dataset and
85% on 300 images of 10 classes of dataset gathered by
them. Pouladzadeh et al. [32] extracted features by using the
edge detection method and counting the pixel in the region of
interest. Finally, they used a support vector machine for clas-
sification and achieved an accuracy of 92.21% on 20 food
classes of dataset gathered by them. Matsuda and Yanai [33]
have used Gabor texture features from the selected region,
SIFT-BOF, and Color-SIFT with the spatial pyramid. For
final classification, they explored multiple kernel support
vector machines and achieved an accuracy of 65.2% on
the Japanese food data set. Their work is important in the
area of food recognition as authors studied the classifica-
tion of multiple foods in an image. Ruz et al. [34] used
color, hue and multiple types of ’sift’ features for classify-
ing restaurant food images using a support vector machine.
Their work has also explored GPS position for identifica-
tion of the restaurant where the photo was taken and auto-
matically retrieving the available menu from the internet.
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Kusumoto et al. [31] applied discriminant feature extraction
based on sparse encoding on the RFID dataset and performed
classification using support vector machine. Overall, existing
SVM based methods and its variant for food recognition
have mainly focused on feature engineering. There is no
method which addresses the open-ended continual learning
challenges.

D. CONVOLUTIONAL NEURAL NETWORK

Wang et al. [15] explored the partially asymmetric multi-
task convolutional neural network. They experimented on
24,690 food images of 100 classes of restaurants and dishes.
Heravi et al. [35] applied Spatial Pyramid Convolu-
tional Neural Network which they have evaluated on
their gathered dataset and achieved an accuracy of 94%.
Kawano and Yanai [23] focused on developing mobile
applications and implemented a deep convolution method
for classification. They achieved an accuracy of 72.26%
on UECFOODI100 dataset. Tanno et al. [36] worked on
a convolutional neural network for classification of their
food image dataset. Liu er al. [37] explored deep learning
for food classification and achieved a competitive accuracy.
Myers et al. [38], Zhang et al. [39], Subhi and Ali [40],
Yanai and Kawano [41], Christodoulidis et al [42]
Wau et al. [43] focused on different variations of deep learning
for classification of food data sets. Some of these studies
generated their own food datasets while other studies used
already available food benchmarks for evaluation of their
proposed approaches. However, the convolutional network
softmax function used for classification has fixed architec-
ture, and cannot address the challenges of open-end learning.

E. EXTREME LEARNING MACHINE

Recent studies have explored extreme learning machine for
food classification due to fast training time and good per-
formance [44]. Supervised Extreme Learning Committee,
uses multiple kernel extreme learning as committee members.
It takes features of colors, shape, texture, and predict multiple
results. The Structured SVM, which acts as a supervisor,
gives the final output. Their method uses full kernel matrix
and batch learning and does not address issues of open-ended
continual learning.

An extensive literature review has established the fact that
most of the existing methods for food recognition used fixed
class datasets, cannot incrementally learn new classes, and
unable to adapt to domain variations. The only method which
partially addresses this issue is proposed by [45]. However,
their framework has limitations as they have to extract fea-
tures from all the previous data and retrain the model. The
calculation cost and computational resources associated with
retraining are high which makes their approach less favorable.
The framework proposed in this study contributes to the
existing literature by addressing these challenges. It takes
into account the high generalization ability of deep features
and replaced fixed class softmax classifier with the classifier
based on extreme learning machine. It uses extreme learning
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machine due to its fast training time. However, existing meth-
ods of extreme learning machine cannot learn continuously.
For this reason, we have proposed a novel classifier that
can learn continuously and adapt domain changes. We have
briefly discussed our approach in the following sections.

Ill. THE APPROACH

A. SYSTEM OVERVIEW

The proposed framework takes into account two attributes of
open-ended learning 1) Class incremental learning 2) Data
incremental learning. It consists of three modules A. Feature
extraction module B. Feature selection and C. Classification.
Fig. 1 show the flow chart of the proposed architecture.
During a training period, each incoming image is given to
the selected deep feature extractor module that extracts the
features. They are then ranked using the Relief F method,
and the best features are chosen based on our proposed
strategy. The selected features from the Relief F method are
considered as the final representation of the image. Although,
the extracted features from the deep model have good gen-
eralization ability. The fixed class architecture softmax for
final classification does not take advantage of this ability.
This study uses novel ARCIKELM which learns from these
representations while satisfying both criteria of open-ended
continual learning. It adds new output and hidden neurons
when image representations belong to the novel class. In case
they are from existing classes, it updates the model sequen-
tially by our proposed strategy and only adds new hidden
neurons when required.

Add New Class
Center Crop H M@

Feature Resnet-V2)

(4 J8110)
seinjesd 199j8S

|99E43 MBN J04 SUCINBN Pappy AmaN

FIGURE 1. Flow chart of proposed framework. The red circle shows
neurons which are incrementally added to the network.

During the classification stage, the features are extracted
from the test image by using the same deep feature extractor.
The best representations are chosen based on the ranking of
the features from the Relief F method. Finally, ARCIKELM
makes the final decision.

B. IMAGE FEATURE REPRESENTATION

Deep learning models for food recognition can learn the best
image representations and eliminate the need for handcraft
feature extraction process which is based on prior knowledge.
Our proposed framework applies transfer learning with online
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data augmentation on pre-trained image-net deep model
which is then used to extract features. In transfer learning a
model created for one task is used again as the base point
for a second task. When modeling the second task, it enables
for fast advancement and enhanced results. It is prominent
in deep learning for feature extraction because the training
of the model from scratch requires specialized computa-
tional resources such as GPU and long training time. This
is the major hindrance for real-time incremental learning.
However, various studies have shown a high generalization
ability of deep features from pre-trained models on generic
datasets [46] such as ImageNet. It is also beneficial for
learning a novel classes. To determine the best architecture
of a model for food feature extraction, we have explored
three state-of-the-art deep learning networks, ResNet-50 [47],
DenseNet-201 [48], and Inception ResNet-V2 [49]. The Ima-
geNet weights initialize the models. They then are fine-tuned
using food datasets and the resultant model is used for feature
extraction. The experiment section has discussed the results.
In the following sub-section, we present types of online
data-augmentation used during transfer learning.

1) DATA AUGMENTATION

Data augmentation generates transformed versions of pic-
tures that are in the same class as the initial picture in the
training. Transformations include a variety of image process-
ing activities like zoom, horizontal shift, rotation, etc. The
objective is to add fresh, credible instances to the training.
This implies, creating different variants of training that the
model is highly likely to detect. For example, the horizontal
flip of food is a plausible scenario because the picture could
be taken in either direction. However, the vertical flip of food
would produce a useless result as a picture of food turned
upside down does not make any sense. The study has applied
“shifting’, flip, zoom range, Channel Shift Range and fill
mode. They are explained in the following paragraph.

In shifting, image pixels are moved in the horizontal or
vertical direction. The group of pixels which are deleted
in one region is copied into another region of the image.
This study uses both horizontal and vertical shifts. Flipping
includes inverting the rows or columns of pixels. The ver-
tical flip reverses the columns of pixels and the horizontal
flip reverses the rows of the pixel. The experiments have
investigated the horizontal flip as a vertically flipped image
of food does not make any sense. In zoom augmentation,
the picture is zoomed in or out, either by adding fresh pixel
values around the picture or by interpolating pixel values
respectively. It is important for food images as various users
take images at different zoom levels. Channel shifting is the
method of capturing the pixel’s red, green or blue values in
a picture and adding those values to pixels in distinct posi-
tions in the picture. The experiments have shifted channel by
30 degrees using online data augmentation. Finally, in the fill
augmentation, fresh pixels are introduced in the picture that
is not included in the initial picture boundaries. For example,
after rotation black area in the corners would be added in the
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picture that was not included in the original picture. The Fill
mode specifies how we manage these regions. This is handled
by either using a constant values method or default method.
The constant value is applied to all the new pixels and sub-
pixels. In the method, all the new pixels are either given the
black value or white. To fill the area with black, O is set as the
default value and to fill the area with a white, default value
is set as 1. Fig.2 illustrates the different modes of online data
augmentation applied in this study on a randomly selected
food image.

Wide Shift

Height Shift Horizontal Flip

400

400

Zoom Range Channel Shift Range

‘.

100

200

300

200 400

0 200 400

400 9

FIGURE 2. Different modes of online data augmentation used in this
study on randomly selected image.

The results in the experimental section discuss in detail
the impact of data augmentation. Based on the results in
the experimental section, the pro-posed framework has used
Inception-Resnet-V2 for feature extraction after applying
transfer learning with online data augmentation. It is the first
step in the food recognition process. The next section explains
Feature selection.

C. IMAGE FEATURE SELECTION

The extracted features from the deep learning model have a
very high dimension and there are only subsets of features
that are relevant in determining the results. These low ranked
features increase the computational complexity of classifiers.
This study uses Relief F to rank features and selects the
best features. It is the only algorithm for detecting feature
dependencies that do not search through feature combina-
tions but uses the concept of the nearest neighbor to detect
feature dependencies [50]. This study has evaluated three
configurations for selection of features and determined which
configuration has higher accuracy and less training time for
food. Finally, for classification purposes, it has used the best
configuration. The experimental section presents the results
of the feature selection.

D. CLASSIFICATION METHODS

The final step in our proposed model is incremental learning
and recognition. Most of the existing studies use batch learn-
ing approaches for the classification of food, which requires
fixed classes, making them unsuitable for real-time settings.
This paper evolves the knowledge in the area of extreme
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learning machines for continuous recognition of food dishes.
For this purpose, this study has proposed a novel method that
learns incrementally with less training time, higher accuracy,
and better generalization ability. This section has discussed
the basics of class incremental extreme learning machine,
followed by our proposed method. The notations for sym-
bols and acronym definition in this paper are summarized in
Table 1 and Table 2.

TABLE 1. Notation definition.

Symbol Description
Xp; Xn Observed samples of based and new classes
ky; ky Initial kernel and updated kernel matrix
A® g™ Initial output weights and updated output weights
M Transformation matrix
N Neuron eligibility matrix
Win Membership value

TABLE 2. Acronyms definition.

Symbol Description

ELM Extreme learning machine

KELM Kernel extreme learning machine

CIELM Class incremental extreme learning machine
ACIELM Adaptive class incremental extreme learning machine
ARCIKELM  Adaptive reduced class incremental kernel extreme

learning machine

1) CLASS INCREMENTAL ONLINE SEQUENTIAL EXTREME
LEARNING MACHINE

CIOSELM addresses the problem of continuous learning in
extreme learning machine [51]. At first, an ELM [52] base
classifier is trained on initially available classes known as
ELM_1. When the new class arrives, ELM_1 is adapted to a
new classifier ELM_2 by using an incremental algorithm and
labeled data of new and old classes. The structure of ELM
changes and the network will add output neurons.

The mathematical derivation is as follows. At first,
in correspondence with the ELM algorithm, after the training
phase of a dataset of d is completed, the output of weight is
calculated by Equation (1).

o = ky 'H{ Ty )
where,
[ G(ay, by, xq) G(ay, by, x1)
Ho = E :
L G(a1, by, x,) G(an, by, xu)
-7
1
and To = | : | and Ko = HJ Ho )
y
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From new class dataset, H; is computed by use of the
Equation (3)
G(al,bl,xsl) G(al,bl,xsl)
Hy = : . : 3)
G (a1,b1,x?) G (an, by, x7)
Now, the number of samples in T; is represented by m + 1-

dimension Equation (4), where m is the number of columns
in T()

Ti=|: - @
o -~ 0 1 Np#x(m+1)

After combining d and s datasets, f; is calculated by use of

Equation (5)
_ —1|Hg "TTo-M

where M is a transformation matrix and is denoted by Equa-
tion (6).

M=|: . i g ®)
0o --- 1 0

It can be seen that B is calculated through incremental learn-
ing without providing previous dataset.

The method has enabled extreme learning machines to
incrementally learn new classes. However, it has numerous
drawbacks [51]. The significant drawback is a fixed number
of hidden neurons. This increases the plasticity of neurons
and results in catastrophic forgetting. When new classes
arrive, there are more neurons required to handle new incom-
ing data. However, a fixed number of neurons in it results
in under fitting. Similarly, when a large number of hidden
neurons are given initially, it results in overfitting of data.
Adaptive CIELM [53] has addressed this problem. However,
extensive experimentation carried out by this paper show that
their method is not stable. We suspect that this is because of
the poor generalization ability, due to random input weights.

Labelled Samples of Known II
and Unknown Classes

3

Some

Labeled | Train
Samples

IncLearn |

ELM1 ELM 2

FIGURE 3. Class incremental extreme learning machine.

2) ADAPTIVE REDUCED CLASS INCREMENTAL KERNEL
EXTREME LEARNING MACHINE

By keeping in view the existing problems, this study has
proposed a novel method that is based on reduced online
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sequential kernel extreme learning machine [54]. It can learn
incrementally new classes and can adjust hidden neurons
by itself, which makes classifier suitable for continual food
recognition. This experimental section consists of a compre-
hensive evaluation. Experimental results have established the
superiority of the method over existing approaches of the
extreme learning machine. This section explains the mathe-
matical working of the proposed approach.

a: INITIALIZATION PHASE

At first, the data from base classes is used to train the batch
RKELM algorithm. With the 10 percent B mapping samples
randomly selected from the data of base classes, it calculates
the kernel matrix by use of equation (7).

ky = K (xp, xp) @)

and then the initial output weight on training classes is com-
puted by Equation (8).

B®) = G,KIT, ®)

where,

-1
Gy = (I/C +K[Ky)
and Ty = [t1,......... tul ©)]

The algorithm also initiates the dynamic matrix ‘Neuron
Eligibility Matrix’ which is denoted by N. It contains the last
time instance at which the neuron is activated.

b: ADDING NEW CLASS

Suppose, another new class data arrives, N, = {(x;, ti)}ﬁ;ﬁ’l
It randomly selects the 10 percent of data from new class and
updates the existing output weights by multiplying it with
transformation matrix. As a result, total number of output
neurons in the network is increased by 1. The output neurons
in the previous beta is updated by using Equation (10).

B =87 M (10)

where, M is the transformation matrix,

After that, hidden neurons for newly added class will be
added to the network by use of ’Growing hidden Neuron’
methodology which is explained in section below. The num-
ber of hidden nodes which is added to the network cannot be
more than the incoming data. Finally, the ’Neuron Eligibility
Matrix’ is updated and its size should become equivalent to
the total number of neurons in the kernel matrix.

¢: SEQUENTIAL LEARNING
In case, when the data of existing classes in the network
arrives
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Ne = {G )}y .1~ At first, the multidimensional

Gaussian function is used to measure the similarity by using
equation (12), due to its simplicity and wide usage in a range
of applications.

= exp [P v
ih P 202 N e A

h=1,...... Lo (12)

where p;, is the membership value, 0 < u;, < 1. Inito is
the spread of radius and ¢y, is the hth vector of kernel matrix.
The membership function is used to measure the similarity
between sample x; and the hth vector of kernel matrix. When
the incoming vector is close to the neurons in the kernel
matrix, its membership degree is high. On the other hand,
when it is away from existing neurons, then its membership
value will be low. Based on the membership value it will
analyze whether the network needs to add new neuron or
update the existing network. The brief description of these
two processes is described below. After this, if there are any
redundant neurons, they are removed from the network and
the *Neuron Activation Matrix’ will be updated.

i) ANALYZE IF NEW HIDDEN NODE REQUIRED

To check weather new hidden neuron is required during
sequential learning. It determines the vector hO in kernel
matrix which has maximum fuzzy member ship value with
input vector by use of the Equation (13) and Equation (14).

i e () = max | e ()| (13)
1<h<H
where x(k) represents the data at kth sequence.
ho = arg max ‘Mh (x (k))‘ (14)
1<h<H

When the maximum fuzzy membership "0 is equal to zero
or less than predefined threshold, then the existing kernel
matrix is not enough. As a result, kernel matrix is updated,
and the new neuron is added. The new hidden node will be
added to the network by using growing neuron methodology.
In case the fuzzy membership is greater than zero or prede-
fined threshold, it will not add new neuron to kernel matrix
and updates the network and *Neuron Activation Matrix’.

if) UPDATING OF NETWORK
When no new hidden neurons are added, the network needs
to be updated. The output weight B(n) then becomes

T
n) _ »—1 Ke Te
A PR T
where,
I (k1 [k
Z)1:E+|:K;:| |:K;i|v Ke:K(XmXL) (16)

For sequential learning of data chunk B" is expressed as a
function of B¢, z,,, ky and T,,. Now Z, can be written as,

I K,
Zn=—+[KeTKnT] ‘=z +K'K, (17
C Ky
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and

T
K T T T
(] (7] =wemwn

=277, 'K'K, +KI'T,
=789 +K'T,
= (Zn — KK, +KI'T,
= 7,89 —KTK,p© + KT, (18)
After, substituting ﬂ(") is denoted by,
B = 7,12, — K, KuB© + K, Ty))
=B+ 72K (T, — K. (19)
Slmllarly,kwhen the (K + 1) chunk of data arrive Ni+; =

j=0 NI
{('xh tl)} (Z
j=0 /

observations in the (k+1)-th chunk, assuming this we have.

) In it £k > 0 and Ny, represents total

Zir1 = Zk + KL Kir (20)
= g+ 22 KL (T = Kenp®) - @D

where,
k+01 /i
Kis1 = KXiq1, X2), Xkl = {X; d
k1 = K(Xi+1, XL), X1 = { }(Z, N @

s
Z]]'(:()Nj"‘l

Tk = : (22)
2"“N+1

Zk + relative of Zy 1 will be used for computing rH1 Itis

then derived by use of woodburry equation as follows.

1 _
Z = @+ K Kie) ™!
gl T T -1 1
=2 —Z; K (FKn1Zy Ky y) K12y
(23)

LetGy+1 =K 1:-31 then ﬂkH can be computed as follows:
G+t = Gr — GkKy (I + Ki1 GiK ) 7 K1 G (24)
B = B0 + Gkl (T —KennB®)  @9)

iii) ANALYZE IF EXISTING HIDDEN NODES SHOULD BE
REMOVED

In this step, algorithm determines the elements in ’Neuron
Activation Matrix” which has minimum value. This will
determine the neuron which are not activated in the near past
for last k new incoming vectors. It will check based on class
imbalance ratio weather these neurons belong to minority
class or majority class. If these neurons belong to majority
class, the algorithm considers these neurons as redundant
neurons and deletes it from the network as described in the
following section. The algorithm prevents the neurons of
minority class to be deleted as it can result in complete loss
of information related to that class.
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iv) DELETION OF REDUNDANT NEURONS

When the algorithm has decided to delete the redundant
neuron h, from the network. The corresponding row in the
"Neuron Activation Matrix” N, Output Weights ﬁh’ will
be deleted. Table 3 has described the methodology to delete
neurons from G matrix

TABLE 3. Pruning of G matrix.

Input

G matrix, p: index of neuron to be pruned
Output

Pruned G Matrix

Steps

1. Remove the p'th element from G Matrix and place it in front
2. N = size of G Matrix,

3. G=G(2:N, 2:N)

4. F=G(I:N, 1)

5.e=G(1,1)

6.G=G —fxf'/e

v) UPDATING OF NEURON ACTIVATION MATRIX

If the algorithm has not added any neuron to the net-
work, the ‘Neuron Activation Matrix’ is updated by using
Equation (26).

Nko — g (26)

k, represents the last incoming data vector and kg is the neu-
ron which has maximum membership value and is calculated
by Equation (14).

d: GROWING HIDDEN NEURONS

The incremental growth of hidden neurons is proposed
by [53]. This study has used the kernel matrix instead of
using random weights. The experiment demonstrated that
the kernel matrix for growing hidden neurons can increase
network stability and generalization ability. According to it,
when additional hidden neurons are added then it has to

minimize.
K. Z, T,
K Ze-lx] @)
where,
K,=KX,,Xp)and Z,, = K(X,,, X,) (28)

Z, is the zero block matrix and Z, is the output matrix of
newly added hidden nodes. Thus, we have:

P I
And
an[Ke OT[KE 0]
Ki Zi] |Kni 7]
T
-\ x 77 o
82335
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where G, = KI'K, = P;!, B = (K'K,)"'KI T, and G, =
G.+K!'K,
By reformulating Equation (27) to:

kK, o1 [1.] [KIT,+KIT,
Ky Zu T.| | zI'm,
_ [ GuB = Ky KB + K] T,
= Z7
_[a
=6 } 3L
After, applying block inversion matrix the equation becomes
-1
_[Pn Po]_ .1 [ G KlZ,
Pn= |:P21 Pzz} =00 = |:ZnTKn zr'z, (32)

The equation can be revised to:

U P11G1 + PG
o _ _ | PuuG1 + P2Ga
p= [D} N [P21G1 +P22G2] (33)

The schulur component of G, is S = Z!'Z, — Z'K,P,K! Z,
and the matrix P, = G, ! is invertible when S is invertible.

Based on the above derivation, the incremental growth
of hidden neurons is calculated by Equation (34) and
Equation (35).

Py =P, +P,K!2,57' 2K, P,

Py = —P,K'7,57!
Py = —S7'ZT K, P,
Py =5~ (34)

D = 572K, (8 + Puk? (T, - K89

3) RELATION TO ACIELM

The ARCIKELM algorithm inherits core features from
Adaptive CIELM. Like Adaptive CIELM, it can learn sequen-
tially, add new neurons, handle new classes. However, impor-
tant variations exist between them. Table 4 represents the
proposed algorithm.

4) HANDLING OF CATASTROPHIC FORGETTING

The theory of human plasticity states that decreasing plastic-
ity on neurons helps to retain prior knowledge [5]. By keeping
this in view, the proposed classifier adapted continuously
based on incoming data. It creates hidden neurons Equa-
tion (34), output neurons and adjusts existing neurons to
handle novel classes and images Equation (24) Equation (25).
The formation of new neurons decreases plasticity for old
neurons and reduces the catastrophic forgetting of previously
learned information. During sequential learning, when novel
images of existing class arrives it computes a fuzzy relation-
ship with the existing neurons and adds new neuron when the
fuzzy relationship is less than a specific threshold. This helps
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TABLE 4. Proposed adaptive RCIKELM algorithm.

Initialization phase

Initialize the model using small chunk N, = {{x;, 1:i]}'i\’="1 of training
data from the given base classes data N = {(x;,t;) x; € R™,t; €
RLi=123,...... }

1. Randomly selects 10 percent of data of base classes X, .

2. Compute the initial kernel matrix by using Equation (7).

3. Estimate the initial output weight by using Equation (8).
4.setk=0

5. Initiates a dynamic matrix 'Neuron Eligibility Matrix' denoted by N.
Adding new class

6. Present the Initial data of new class

7. Randomly select 10 percent of data of new class X,

8. Update existing § by use of Equation (10) to add new output
neuron.

9. Add hidden neurons for new class data X,, using Equation (34)
and Equation(35)

10. Update G and kernel Matrix K,

11. Expand 'Neuron Eligibility Matrix' N

Sequential learning phase

12. Present the (K+1) th chunk of new observations.
k+1

N

Nipr = {(x )Y 2

i=(zj:01vj)+1
where Ny, denotes the number of observation in k+1 chunk of data
13. Compute the fuzzy membership between input vector and kernel
matrix by using Equation (12).
14. Compute maximum membership value by use of the Equation (14).
If the maximum membership is less than threshold, add new hidden
neuron by use of Equation (34) and Equation (35).
15. Otherwise compute the kernel matrix for the (k+1)-th chunk of
data Ny, and set T, by use of Equation (22).
16. Update G and calculate the output weights ;.1 by use of
Equation (24) and Equation (25).
17. Analyze redundant neurons in the network and remove the
corresponding row in N and " . Update the G matrix by using the
methodology described in Table 3.
18. set k = k+1
19. If new class data go to step 6 else go to step 12

in retaining the previous concepts and learning new varia-
tions in existing classes. Experimental results in this study
also showed that fixed hidden neurons in CIELM results in
increased catastrophic forgetting during open-ended learning.

IV. EXPERIMENTS AND RESULTS
In this section, this study discusses food datasets, implemen-
tation, along with the details analysis of each phase of the
proposed framework on these datasets. The proposed frame-
work has three modules. A) Feature extraction B) Feature
Selection C) Classification. Based upon, that the experiments
are categorized into three major parts. In the first exper-
iment, the study determines the best feature extractor for
food datasets from state-of-the-art deep learning networks
and determine the impact of online data augmentation dur-
ing transfer learning. The second experiment is to study the
reduction in classification time by using Relief F for feature
selection.

The third experiment investigates the performance of
novel ARCIKELM classifier against existing extreme learn-
ing machines based approaches. In the first part of this
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experiment, the paper evaluated classification measures, and
in the second part, the study evaluated catastrophic forget-
ting measures. After that, the paper discusses the results of
the stability analysis of the novel classifier as compared to
ACIELM. Finally, we have compared the proposed frame-
work with other approaches for food recognition.

A. DATASETS

To evaluate the proposed approach this research has used four
existing food databases that are widely used by researchers.
Besides that, this study has collected the Pakistani Food
dataset. This section briefly describe important components
of the datasets used for experimentation.

1) UECFOOD100

The dataset “UECFOOD100” contains 100 different sorts
of food photographs. Each food photo has a bounding box,
which indicates the location of the food item in the photo.
Food categories in this dataset are mainly famous foods in
Japan. Therefore, some categories might not be common to
people from other countries than Japanese [55]. Fig. 4 dis-
plays inter-class similarity and intra-class variations of the
UECFOOD100 dataset.

FIGURE 4. Row 1 displays inter-class similarity in UECFOOD100.
Row 2 shows intra-class variations.

2) FOOD101

It contains 101,000 real-world images divided into 101 food
classes. Fig. 5 show that there are visually and semanti-
cally similar food classes such as Apple pie, bread pud-
ding, baklava, carrot cake Discriminative Components with
Mussels, Onion rings, Paella, Edamame, Risotto, Bibimbap,
Omelets, Lobster bisque, Eggs benedict, Macarons and much,
etc. Besides domain adaptation, it poses a challenge for
incremental learning due to a large number of food categories.

FIGURE 5. Row 1 displays inter-class similarity in Food101. (a) apple pie,
(b) bread pudding, (c) baklava, (d) carrot cake. Row 2 shows intra-class
dissimilarity of clan-chowder.
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3) UECFOOD256
“UECFOOD256” has 256 classes of food photos. The food
portion in the picture has bounded boxes. Most of the classes
in the dataset are famous foods in Japan and other countries.
Some food classes are only known to Japanese [56].
UECFOOD256 has a large number of categories that poses
the challenge for the incremental learning algorithm. Fig. 6
show the domain adaption challenge in UECFOOD256 due
to inter-class similarity and intra-class variations.

FIGURE 6. Row 1 displays inter-class similarity in UECFOOD256 and row 2
shows intra-class dissimilarity.

4) PFID

This dataset has 1388 food images from 15 different cate-
gories. It is gathered from various chains and includes pizza,
salads, and burgers. The dataset has three instances and every
instance in the restaurant setting has four still images with
wrappers and without wrappers. Besides that, it includes six
still images in a lab environment, stereo images, and the
360-degree video of food on turntable. The Collection is open
source and available free for researchers. [57]. Fig. 7 show
inter-class similarity and intra-class dissimilarity of PFID
dataset.

R
l, e

|

D e e QO ar
FIGURE 7. Row 1 displays inter-class similarity in PFID and row 2 shows
intra-class dissimilarity.

5) PAKISTANI FOOD
The data is composed of 100 food classes of Pakistani food
and is collected for this research study. It was crawled from
the Internet and was verified by the expert dietitian. It consists
of 4928 images. Due to the complex variety of food dishes in
Pakistan. This data set poses a challenge for food recognition
methods in real-world settings.

Fig. 8 displays high inter-class similarity and intra-class
variations of food classes, which poses a challenge to existing
classifiers.
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FIGURE 8. Row 1 displays inter-class similarity in Pakistani Food and
row 2 shows intra-class dissimilarity.

TABLE 5. Attribute of datasets.

Dataset Total Classes Total Instances Train/Test
Instances
Food 101 101 101330 91050/10280
UECFOOD100 100 16184 12864/3320
UECFOOD256 256 31148 28128/3020
PFID 15 1388 1248/140
Pakistani Food 100 4928 4448/480

B. IMPLEMENTATION

To determine the best feature extractor, we carried out the
experiments on Google Colab (12 GB GPU, 12 GB Ram)
for all the datasets on three state-of-the-art deep learning
networks. For measuring classification performance and
catastrophic forgetting, the paper has also carried out the
experiments by using Google Colab (12 GB). The final
version of the proposed framework uses the python Django
framework and the integrated framework is deployed on the
Amazon ec2 cloud. It is accessed by smartphone devices
through Web service.

C. IMAGE FEATURE REPRESENTATION

This experiment has determined the best feature extractor
for food recognition from three state-of-the-art networks:
ResNet-50, DenseNet-201 and Inception-ResNet-V2. Table 6
shows the comparison of classification accuracy after
applying transfer learning with online data augmentation.
Inception-ResNet-V2 has better performance as compared to
the remaining networks for all the dataset. This is because it
combines the benefits of ResNet and Inception model. For
this reason, this study has selected Inception-Resnet-V?2 as
a feature extractor in our proposed framework. Moreover,
empirical evidence shows that training with residual connec-
tion accelerates the training [49].

TABLE 6. Comparison of classification accuracy on deep learning models.

Dataset Classes ResNet-50  DenseNet- Inception
201 Renet-V2

100 80.28% 81.12 % 81.54%

UECFOOD100

UECFOOD256 256 66.84% 69.23 % 69.293%

FOOD101 101 80.48% 80.63 % 83.73%

PFID 15 100% 100% 100%

Pakistani Food 98 63.13% 69.38% 70.42%
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1) IMPACT OF ONLINE DATA AUGMENTATION

This section has presented the results about the effect of
online data augmentation during transfer learning for food
datasets. Table 7 shows the experimental settings of online
data augmentation for this research study. Table 8 exhibits the
classification accuracy on the non-augmented dataset. In all
of the cases, the augmented model has better performance
as compared to the non-augmented model. The maximum
improvement of 2.71% is observed for the Pakistani Food
dataset. The difference in classification accuracy is not very
large for augmented and non-augmented datasets. However,
the test has only non-augmented images. In the real world
scenario when the user provides images from different angles,
the augmented model supposed to perform much better as
compared to the non-augmented model. To evaluate this
hypothesis, we have evaluated the test data from different
orientations on model fine-tuned with augmented and non-
augmented images. Fig. 9 exhibits that a model fine-tuned
with augmented datasets has significant resilience. There is
a significant reduction in classification accuracy for a model
fine-tuned with a non-augmented dataset.

TABLE 7. Experimental settings of data augmentation.

Augmentation Type Value
Wide Shift 0.2
Height Shift 0.2

Horizontal Flip
Zoom range
Channel Shift Range
Full mode

Randomly flip inputs horizontally
08tol

30

Reflect

TABLE 8. Classification accuracy on model trained with non augmented
dataset.

UECFOOD100 UECFOOD256 FOOD101 PFID Pakistani
Food

79.98% 69.32% 81.81% 100% 67.71%

100

95

? 90

£ 85
2 50

z 75
g 70

E 65 = Non Augmented
T 60 = Augmented

55

50

F &S S
& & & &<
& & ¢ Ko
Food Datasets

FIGURE 9. Comparison of classification performance on model fine-tuned
with augmented dataset and non-augmented dataset.

VOLUME 8, 2020



G. A. Tahir, C. K. Loo: Open-Ended Continual Learning for Food Recognition Using Class Incremental Extreme Learning Machines

IEEE Access

TABLE 9. Comparison of average training time and classification accuracy on different subsets of features models.

Datasets Training Time Accuracy Training Time Accuracy Training Time Accuracy
(All Features) (All Features) (Subset B) (Subset B) (Subset A) (Subset A)
Food101 1.12e+03 87.72 882.31 87.76 754.40 87.84
UECFOOD100 616.40 89.53 132.79 89.25 7.95 89.63
UECFOOD256 626.93 77.91 121.47 78.25 21.64 77.01
PFID 0.8147 100 0.79 100 0.10 100
Pakistani Food 48.36 75.93 2.3809 75.56 0.54 75.97
D. FEATURE SELECTION 120E+03
To choose a reasonable number of features the analysis was LODE+03 \\
performed using the Relief F method. This study has selected , SO0E02 ——Foodl01
two subsets of features which have the highest score. The EEGOOEHH UECFOOD100
subset A consists of top 500 features, and subset B consists 4.00E+02 .
of top 1000 features. By using the proposed approach, this 2.00E+02 e Pakistan: Food
. N .. . _ 0.00E+00 — s
work has evaluated learning time and c'1a551f1cat10n perfor: All Featzes  SubeetB Subaet A
mance for each subset of the feature. Fig. 10 demonstrates Configurations

that not all features significantly contribute to classification.
Table 9 show the comparison of training time and classifi-
cation accuracy. The experimental result shows that subset
A has the best accuracy and training time is significantly
reduced as compared to the other two combinations. Based
on the feature selection results, this research work has used
subset A for classification. Fig. 11 show the significant reduc-
tion in training time by appropriate feature selection.

f

| —
‘

FIGURE 10. Weights of features using Relief-F method exhibits that many
features do not contribute significantly towards classification.

E. CLASSIFICATION

This section discusses the experimental results of the pro-
posed ARCIKELM classifier compared to the existing ext-
reme learning machine based classifier. In the section 4.5.1,
the paper evaluated the measure of classification perfor-
mance, and the section 4.5.2 presented the results of catas-
trophic forgetting measures during incremental learning.
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FIGURE 11. Comparison of training time for different configurations.

1) CLASSIFICATION PERFORMANCE
The research work uses the following metrics to measure the
costs associated with predictions made by the model.

a: ACCURACY
Accuracy is the ability of classifier to accurately predict the
food class. It is denoted by following equation

(TP + FN)

accuracy = x 100 (36)
(TP+FP+FN +1N)

b: F1 SCORE
It is a weighted average of precision and recall. It takes into
account both false positives and false negatives predicted by
the model. The following is the mathematical equation to
compute F1 Score.

(2 * (Precision * Recall))

F1Score = — 37
Precision + Recall

¢: RECALL SCORE

It is the ability of a model to correctly classify among all
actual food classes.

Ix = accuracy] — accuracyy i (38)

d: PRECISION SCORE
It is the ability of a model to correctly classify positive values.

Precision Score = L 39)
(TP + FP)

Table 12 and Table 13 show the comparison of classi-
fication accuracy, F1 score, Recall Score, Precision Score
for all the datasets. The experimental results show that
ARCIKELM has better performance as compared to CIELM
and ACIELM. The average classification accuracy difference
of the proposed model as compared to other incremental
models for UECFOOD?256, Pakistani Food, Food 101, and
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UECFOOD100 is 7.03%, 5.6%, 2.67%, and 1% respectively.
The PFID dataset has only 15 classes and has the same classi-
fication accuracy for ARCIKELM and CIELM. The proposed
method even performs better than the batch learning ELM
method for UECFOOD256 and is at par for PFID datasets.
On all the other measures F1 accuracy, Precision, and Recall,
ARCIELM performs better as compared to existing extreme
learning machine based class incremental classifiers.

The Adaptive CIELM has the worst performance as com-
pared to all the other methods and is highly unstable.
Although the ACIELM does not have fixed architecture, it is
suspected that this unstable nature is due to random weights.
Moreover, F1 and Precision measures across the datasets
except PFID for several sessions are undefined, as there
are no false negatives and true positives. The true negatives
are irrelevant for the calculation of the F1 measure. In the
experiments, if the F1 and precision values in the session are
undefined, we have replaced it with 1 and denoted all these
computations by *x with the value.

2) CATASTROPHIC FORGETTING

The Kemker et al. [58] and Chaudry et al. [59] proposed
catastrophic forgetting measures for incremental learning.
The proposed network is trained by using the training data
of the first session. After training, it will be evaluated by the
same training data. The resultant accuracy was considered
as the ideal performance of network which is denoted by
accuracyideal -

The following training session trained the network with
new food class and evaluated it by using testing data of all the
previous sessions represented by ccuracyy ;. The experiments
were conducted for all the prior test’s setup up to current
session and labeled as curacyy qir.

a: INTRANSIGENCE
Intransigence was measured relative to a standard classifica-
tion model which had access to all the datasets at all times.
The reference classification model was tested with the testing
data of the kth session. Intransigence for the kth session was
then calculated as:

I, = accuracyz — accuracyy 40)
As intransigence was defined as the difference between the

accuracy of an incremental-learned network and a reference
model, negative intransigence (i.e. I < 0) implies that

TABLE 10. General settings of datasets.

incremental learning up to session k positively impacts the
model’s knowledge about it.

b: FORGETTING

The forgetting factor of a training session is the difference
between the maximum knowledge in the previous training
sessions and the current session. [59]. Equation (41) quan-
tifies forgetting of the jth session after incrementally training
the network up to session k:

fjk = max accuracyl,j — accuracyk,j,
—1}

= (4D)
1e{l,... K

j<k
The average forgetting at the k” training session is then
written as:

1 k—1
F; = f}k

K —14j=1 (42)

c: BASE SESSION
It is the ability of the network to recall the knowledge from
the first training session and is represented by equation.

1 k  accuracyj
Qbase = Zj -

K -1 =2 accuracyigeal

(43)

d: NEW SESSION
It is the ability of the network to recall newly learned knowl-
edge and is calculated by following equation.

1 k

fhnen = 1 20

accuracyy j 44)
e: ALL SESSION
It is the ability of the network to retain the previous knowl-

edge and learn new knowledge

Qqip =

1 k  accuracyj q
. 45
> @

K — =2 accuracyigeal

The Table 10 presents the configuration of the dataset for
carrying out this experiment. The initial number of classes
in the base session is 2. At first, all the algorithms (CIELM,
ACIELM, and ARCIKELM) are trained on the base session.
Algorithms learn the new classes in remaining sessions in an
incremental manner. In ARCIKELM, the kernel parameter
of all the experiments is set to 1, and the fuzzy membership
threshold during sequential learning is set to 0.

For ACIELM, it inserts new hidden nodes when the hidden
error becomes more than the threshold. The threshold of
hidden error is set 0.8 for all the experiments. For CIELM the

Dataset Base Classes Total Sessions
Food101 2 99
UECFOOD100 2 98
UECFOOD256 2 254

PFID 2 13

Pakistani Food 2 98

Total Classes Total Instances Training/Testing
101 101330 91050/10280

100 16184 12864/3320

256 31148 28128/3020

15 1388 1248/140

100 4928 4448/480
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TABLE 11. Average catastrophic measures of all datasets. Bold indicates the best measures.

Dataset
Food101 0.9284
UECFOOD100 0.9575

UECFOOD256 0.4315
PFID 1.0
Pakistani Food 0.8831

CIELM

Qpase QLall Qnew

0.8790 0.8857
0.9165 0.8484
0.6793 0.7656

1.0

1.0

0.7326 0.7349

I

0.0360
0.0290
0.0646
0

0.0681

F

0.0500
0.0670
0.1058

0.0948

Qpase

0.4677
0.3714
0.1006
0.9877
0.4026

Qg1

0.5688
0.5450
0.4722
0.9948
0.4605

Qpnew

0.9897
0.9759
0.9482
1.0

0.9482

ACIELM

0.4642
0.5240
0.5481
0.0279
0.4570

Fy Qpase
0.5861
0.6520
0.5399
0.0359
0.4570

0.9426
0.9731
0.5116
1.0

0.9769

0.9029
0.9195
0.8019
1.0

0.8213

ARCKIELM

Qg1

Qnew

0.9059
0.8417
0.8602

1.0

0.8167

Iy

0.0110
0.0180
-0.0048

0.0244

F

0.0397
0.0380
0.1040
0

0.0924

TABLE 12. Comparison of Average classification accuracy denoted by A, F1 score (Micro) denoted by F1, Precision score(Micro) denoted by P, Recall

score(Micro) denoted by R best measures.

Dataset A

Food101
UECFOOD100
UECFOOD256
PFID

Pakistani Food

88.26
90.69
75.93
100

76.04

ELM(Batch)
F1 P
88.26  88.26
90.69  90.69
7594 7594
100 100
76.05  76.05

R

88.26
90.69
75.94
100

76.05

A

84.60
87.74
69.48
100

69.24

CIELM
F1 P
84.60  84.60
87.74  87.74
6948  69.48
100 100
69.24  69.24

R

84.60
87.74
69.48
100

69.24

ACIELM

A

41.84
38.28
39.90
97

26.42

F1 P R

41.84
38.28
39.90
97

26.42

41.84
38.28
39.90
97

26.42

41.84
38.28
39.90
97

26.42

A

87.27
88.74
76.51
100

74.84

ARCIKELM

F1 P R
87.16 87.16 87.16
88.64 88.64 88.04
76.42 7642  76.42
100 100 100
74.84 74.84 74.84

TABLE 13. Comparison of Average classification accuracy denoted by A, F1 score (Macro) denoted by F1, Precision score (Macro) denoted by P, Recall
score (Macro) denoted by R. If the F1 and precision values in any session are undefined, we have replaced it with 1 and denoted all these computations

by * with the value.

ELM(Batch) CIELM
Dataset A F1 P R A F1 P
Food101 88.26 88.18 88.37 88.17 84.60 84.45  84.89
UECFOODI100 90.69 84.81 86.98 84.04 87.74 81.90  83.73
UECFOOD256 75.93 76.62  79.30 75.65 69.48 69.83  73.29
PFID 100 100 100 100 100 100 100
Pakistani Food 76.04  76.06 78.33 76.07 69.24 70.31 71.96

ACIELM ARCIKELM
R A F1 P R A F1 P R
84.48  41.84 6123 92.73* 41.64 8727 87.04 8727 87.06
80.27  38.28 88.08* 91.51* 34.13 88.74 82.11 8491  81.22
68.96  39.90 69.76* 88.11* 39.83 76.51 75.14 7831 76.16
100 97 98.38 99.17 96.67 100 100 100 100
68.85 2642 60.29* 78.75* 26.58 74.84 74.10 77.40  74.65

hidden neurons remain constant throughout the experiment.
Table 11 presents catastrophic measures for food datasets
which is averaged across all sessions. The experimental
results show the superiority of ARCIKELM for each of the
datasets. In all of the cases, it reduces catastrophic forgetting
as compared to ACIELM and CIELM. It is worth noting that
the UECFOOD256 dataset has the most significant differ-
ence of 12.26% in the “All Session” accuracy as compared
to the second-best model. It is due to the reason that this
dataset has a large number of classes and this increases catas-
trophic forgetting for the networks with fixed hidden neurons.
Figure 12 and Figure 13 shows the graphs of catastrophic
measures for each session of UECFOOD256 dataset and
Pakistani Food dataset. For all the sessions ARCIKELM
has less catastrophic forgetting as compared to CIELM and
ACIELM.

3) STABILITY ANALYSIS

The experiment was designed to analyze the stability for
increasing hidden nodes in the Adaptive class incremental
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extreme learning machine and the proposed Adaptive
reduced class incremental kernel extreme learning machine.
This experiment has given full access to all the classes
for minimizing the impact of catastrophic forgetting during
incremental learning. It has measured the stability of the
growth of hidden neurons in sequential settings. In ACIELM
new hidden neurons are added based on hidden error.
Fig. 14 and Fig. 15 exhibits experimental results for analyzing
stability of ACIELM and ARCIKELM.

The experimental results show the highly unstable nature
of the Adaptive class incremental extreme learning machine.
However, ARCIKELM is stable when new hidden nodes are
added incrementally. To further investigate the instability of
ACIELM, the paper has reevaluated the results of the original
theory of adaptive ELM proposed by [53]. This study has
assumed the original configuration for re- evaluation. The
initial number of neurons is 300. It learns incrementally one
by one and adds single hidden neurons when the hidden error
exceeds a threshold during training. We observed similar
instability with the same experimental settings settings and
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FIGURE 12. Comparison of catastrophic forgetting measures of each session of UECFOOD 256 dataset.
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FIGURE 13. Comparison of catastrophic forgetting measures of each session of Pakistani Food dataset.
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FIGURE 14. Stability Analysis of Adaptive CIELM. The grey line in the
graph exhibits the incrementally added neurons when full access to all
classes are given.

increasing hidden nodes at different hidden error threshold.
The revaluation results are shown in Fig. 16.

The instability in adaptive class incremental extreme
learning machine can be due to a lack of generalization
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FIGURE 15. Stability Analysis of ARCIEKLM. The grey line in the graph
exhibits the incrementally added hidden neurons when full access to all
classes are given.

ability and random input weights. The kernel matrix with
good generalization ability has resolved this problem in
ARCIKELM.
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FIGURE 16. Stability Analysis by using configurations of previous
study [53]. The grey line in the graph exhibits the incrementally added
hidden neurons.

F. COMPARISON WITH OTHER FRAMEWORKS

Fig. 17 have compared the performance of proposed approach
with the state-of-the-art methods. Result shows that the algo-
rithm improves performance for PFID dataset against recent
approaches and past approaches. The best accuracy for PFID
was reported by SELC which has been improved by 9.1%.
The proposed approach has less training and testing time
as it takes only 10 percent of initially available class data
as compared to SELC which uses all data for computing
kernel matrix [44]. The most important part is that proposed
method adds new classes Fig. 18 in an incremental fashion
shows the comparison of Food101 against the state of the art.
The method significantly improves accuracy while satisfying
criteria of open-ended continual learning. Fig. 19

mBatch Learning
10 I o Incremental Learning
0

Clagsification Accuracy

[ e e~ = = i R e I A
AN AN AT ST A e T SR S S M S I
=] A0EmCcE3TEOn
= o — o
EF =D FEEaggH
= o o D
O o =1

=1

Methods

FIGURE 17. Comparison with other networks for PFID dataset. The red
bar shows the average accuracy for incrementally trained network while
blue bar shows final accuracy. The network with no red bar does not have
ability to learn incrementally.

The method significantly improves accuracy while
satisfying criteria of open-ended continual learning.
Fig. 19 show the comparison of the proposed approach
against other methods for UECFOOD100 dataset. The pro-
posed framework has slightly less final classification accu-
racy as compared to SELC which uses full kernel matrix and
multiple feature channels. However, the average accuracy is
better and proposed model learned all classes in incremental
manner.
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FIGURE 18. Comparison with other networks for UECFOOD100 dataset.
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FIGURE 19. Comparison with other networks for Food101 dataset
comparison with other networks for UECFOOD100 dataset.

V. DISCUSSION

Based on the extensive experiments carried out on four stan-
dard food benchmarks and newly gathered Pakistani food
dataset for this study, we can state the following consid-
erations. The modern deep learning networks have given
good discriminatory features. In the experiments, Inception-
Resnet-V2 has better performance as compared to others.
It has combined the ability of ResNet and Inception network
to outperform others. This work has considered transfer learn-
ing instead of learning from scratch and has not explored
those models which require retraining. The training of the
model from scratch was not in line with this study’s research
objective. It requires large training time and specialized com-
putational resources such as GPU. All of this made these
feature extractors unsuitable for real-time settings. However,
transfer learning requires less training time, gives good dis-
criminatory features and by combining it with incremental
classifiers, the objective of open-ended continual learning
was achieved.

In the second step, the proposed framework has selected
important features. The features extracted from deep learning
model has a very large dimension and were unsuitable for
real-time settings. For this purpose, the Relief F method
is applied to rank the features, and based on the ranking
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best features are selected. This study has experimented with
various configurations and selected the best configuration
of 500 features. The experimental results in this paper have
proved that the Relief F method has reduced the accumulative
learning time of the proposed classifier for all the datasets
by 52.14%.

Finally, the last step is class incremental and data incre-
mental learning and are major challenges in open-ended
continual learning. This research has evolved an extreme
learning machine. The proposed method grows its hidden
and output neurons dynamically and incrementally learns
new classes. During sequential learning, it adapts to domain
changes and reduces catastrophic forgetting by decreasing
plasticity on previous neurons. The paper has investigated
catastrophic forgetting for food recognition by using five
measures: Base Session, All Session, New Session, For-
getting Factor, and Intransigence. The experimental results
showed reduced catastrophic forgetting of the classifier
as compared to CIELM, ACIELM. It is worthy to note
that for UECFOOD-256, there is a maximum reduction
in catastrophic forgetting for all measures as compared to
ACIELM and CIELM. This exhibits that as the number
of classes, the proposed model performs better. The four
classification measures: Accuracy, F1 measure, Precision,
and Recall exhibit that classification performance is better
than ACIELM, CIELM for all datasets and is better with the
batch learning model for UECFOOD256 and PFID datasets.
The comparison with other frameworks SELC, PMTS, GTB
etc. also showed that the proposed approach has competitive
classification performance besides satisfying the criteria of
open-end continual learning. Finally, the experiment section
analyzed the stability of the model when new neurons are
added. The results showed significant improvement in the sta-
bility of the method as compared to its predecessor ACIELM.

VI. CONCLUSION

The Food recognition dataset is open-ended and dynamic.
There is a continuous increase in food samples and classes.
Existing deep learning models for food recognition assumes
that all the food classes and variations within the food
classes exist initially. They suffer from catastrophic forget-
ting during class-incremental learning. This research study
addresses these challenges by proposing a new framework of
open-ended continual learning for food recognition.

It uses state-of-the-art deep learning networks to extract
features, Relief F for feature ranking and selection, and
ARCIKELM for classification. For feature extraction, this
paper takes into account the excellent generalization ability
of deep model features. It has evaluated three state-of-the-
art deep networks and founded that Inception-Resnet-V?2 has
superior performance as compared to others. However, fea-
tures extracted from deep learning models have a very high
dimension and increases classification time. The framework
has used the Relief F method to determine the optimal length
and found that the Relief F method has reduced the accumula-
tive learning time of the proposed classifier for all the datasets
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by 52.14%. For addressing the challenge of data incremental
learning and class incremental learning, the framework used
the novel Adaptive reduced class incremental kernel extreme
learning machine. It dynamically increases hidden neurons
and output neurons. The decreased plasticity of previous
neurons reduces catastrophic forgetting. Experimental results
on five catastrophic forgetting measures and four classifica-
tion performance measures demonstrated that the proposed
classifier has superior performance as compared to existing
ACIELM and CIELM and is at par with batch classifier.
The comparison of the proposed framework with other archi-
tectures for food recognition like supervised extreme learn-
ing committee, PMTS, GTBB etc. show competitive perfor-
mance while satisfying the criteria of open-ended continual
learning.

VII. FUTURE WORK

In future work, we aim to reduce catastrophic forgetting by
using a hybrid scheme for open-ended continual learning.
The online clustering method like self-organizing incremen-
tal neural network can be used to select the mapping nodes
which best represent the class for ARCIKELM, and help to
select the nearest nodes during classification. This can reduce
catastrophic forgetting and is noise invariant when the input
for classification is far away from existing neurons. The other
direction is the auto-scaling of computational resources in
a cloud environment. As the novel classes and new images
arrive, the computational resources required increases. Simi-
larly, during classification, the user requests vary at different
time intervals. This requires that the open- ended continual
learning system must be able to auto-scale its computational
resources in a cloud environment. Finally, future studies will
further enhance the proposed framework towards explainable
Al It will be able to explain its classification prediction.
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