
Received April 9, 2020, accepted April 27, 2020, date of publication May 6, 2020, date of current version May 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991729

Output Feedback Control for Pneumatic Muscle
Joint System With Saturation Input
JIANPING CAI 1, FENG QIAN 2, RUI YU 2, AND LUJUAN SHEN1
1Department of Basic, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
2College of Mechanical Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Corresponding author: Jianping Cai (caijianping2001@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant NSFC: 61573322.

ABSTRACT Pneumatic muscle as a relatively new pneumatic component is often applied to some precise
and flexible control systems. The precise control accuracy puts forward higher requirements for the controller
design of the pneumatic muscle system. To guarantee good performance, unknown input saturation which
seems inevitable must be fully considered in the controller design. In this paper, such a control problem
is investigated for a pneumatic muscle joint system with input saturation and external disturbance. The
auxiliary signals are introduced to compensate for the effect caused by unknown saturation. Furthermore,
a filter is constructed to estimate unmeasured system states. Then an output feedback control scheme has
been proposed by these auxiliary signals and states filter. Finally, simulation studies are used to verify the
effectiveness of the proposed control scheme.

INDEX TERMS Pneumatic muscle joint system, external disturbance, output feedback control, backstep-
ping, input saturation.

I. INTRODUCTION
Pneumatic muscle [1], [2] is a new pneumatic component and
has been used in precise and flexible control systems due to
its good characteristics, for example, light-weight, low cost,
high power-weight ratio, and high power volume ratio. Espe-
cially in the fields of rehabilitation medicine, virtual reality,
and bionic robot and so on, production efficiency has been
improved by using pneumatic muscle which seems similar
to human skeletal muscle. However, the pneumatic muscle
has uncertainties caused by strong nonlinear and gas com-
pressibility [1], which leads to its controlling becoming more
complicated. So it is difficult to achieve higher control accu-
racy. To improve the performance of the pneumatic muscle
system, modern control theory has been used in the controller
design and system analysis in recent twenty years. Several
results which mainly aim to the estimation of unknown sys-
tem parameters by using state feedback technique has been
obtained. But the control schemes based on output feedback
approach are always every limited due to the complexity of
the practical system.

Uncertainties [3]–[20] which may affect the system per-
formance heavily seem inevitable in practical systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

Such uncertainties may be caused by unknown parameters
[3]–[7], [11]–[20], external disturbance [3], [4], [7], [8], mod-
elling errors [5], [6], unknown actuator failures [9]–[20] and
unknown strong nonlinear input including hysteresis, dead-
zone and saturation. Different methods and techniques are
used to deal with different uncertainties. Adaptive estimation
by designing update law is utilized to estimate linearized
parameters while unknown modelling errors are handled by
some inequalities when its upper bound being a known func-
tion. To compensate for the uncertainties caused by exter-
nal disturbance, we usually assume that such disturbance is
bounded by an unknown positive constant. By estimating this
upper bound, the disturbance can be restrained effectively.
Dead-zone and backlash hysteresis are usually approximated
by a linear function. The approximation error is assumed
bounded by an unknown constant. Then it will be treated as
an external disturbance.

Compared with these above uncertainties, saturation is a
potential problem for actuators of control systems. It often
severely limits system performance, giving rise to undesir-
able inaccuracy or leading instability. Input saturation [3]
is inevitable in a pneumatic muscle joint system due to the
physical limitations of components. Because parameter in
the saturation model is usually unknown and such uncer-
tainties caused by unknown saturation can not be estimated
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by constructing online estimator, the controller design of
systems with input saturation become more and more dif-
ficult. To solve such a problem, we consider the control
for pneumatic muscle joint system with input saturation and
external disturbances in this paper. At the same time, con-
sidering system states are difficult to measure in practice,
the proposed control scheme is an output feedback control
scheme. The auxiliary signals are introduced to reduce the
influence of unknown saturation input nonlinearity and filters
are designed to estimate the unknown system states. Themain
contributions of this paper can be summarized as follows:
(I) The control problem is investigated for pneumatic muscle
joint systems with input saturation and external disturbance;
(II) Filters are constructed to estimate the unknown system
states and an output feedback control scheme is proposed to
guarantee the stability of systems; (III) In contrast to existing
results, the auxiliary signals r1, r2 are introduced to deal
with the unknown saturation. The uncertainties caused by
unknown saturation can be compensated successfully.

The paper is organized as follows: Section II describes
a controlled system model with unknown saturation and
unknown external disturbance. Section III presents the
designed output feedback control law and analysis of the
closed-loop system. Simulation results are given in Section
IV to verify the effectiveness of the proposed control scheme.
Finally, the paper is concluded in Section V.

II. PROBLEM STATEMENT
Based on the dynamic model of the Lagrangian form of the
pneumatic muscle joint [2], we have

T (t) = J θ̈ (t)+ bvθ̇ (t)

= F1(t)b1 − F2(t)b2 + ϑ(t) (1)

where J is the moment of inertia of the pneumatic mus-
cle joint. θ is the rotation angle of the pneumatic muscle
joint. bv is the damping coefficient of the pneumatic muscle
joint system. ϑ(t) represents external disturbances. b1, b2
represents the radius of the pneumatic muscle joint. F1,F2
are the pulling force on two pneumatic muscles and can be
described by

F1(t) = P1(t)(C1ε1(t)2 + C2ε1(t)+ C3)+ C4

F2(t) = P2(t)(C1ε2(t)2 + C2ε2(t)+ C3)+ C4 (2)

where C1,C2,C3,C4 represent parameters in the mathemati-
cal model of aerodynamic muscles. ε1, ε2 are the contraction
rate of the pneumatic muscle and given as

ε1(t) = ε0 + rl
−1
0 θ (t)

ε2(t) = ε0 − rl
−1
0 θ (t) (3)

where ε0 and l0 represent the initial contraction rate and initial
length of the pneumatic muscle, respectively. In equation
(2), P1(t) and P2(t) are the pressure value of the pneumatic
muscle. They are described by

P1(t) = P0 +4P(t) = k0u0 + kuu(t)

P2(t) = P0 −4P(t) = k0u0 − kuu(t) (4)

where k0 is the proportionality factor. ku is the voltage coef-
ficient. u0 is the initial voltage. P0 is the initial pressure of
the pneumatic muscle. 4P(t) is the pressure change of the
pneumatic muscle.

We suppose that the joint radius is the gear radius of the
joint. Then we have b1 = b2 = r . With (1) (2) (3) and (4),
themathematical model of the pneumatic muscle joint system
can be rewritten as

θ̈ (t) = −
bv
J
θ̇ (t)+

2k0u0r2(2C1ε0 + C2)l
−1
0

J
θ (t)

+
2k0kur(C1ε

2
0 + C2ε0 + C3)

J
u(t)+ ϑ(t) (5)

We let d(t) = ϑ(t) − bv
J θ̇ (t). Because

bv
J is small and θ̇ (t)

is bounded in the practice, d(t) is bounded by an unknown
constant. Therefore we have

θ̈ (t) =
2k0u0r2(2C1ε0 + C2)l

−1
0

J
θ (t)

+
2k0kur(C1ε

2
0 + C2ε0 + C3)

J
u(t)+ d(t)

Let {
x1(t) = θ (t)
x2(t) = θ̇ (t)

(6)

Then the system model can be rewritten as

ẋ1(t) = x2(t)

ẋ2(t) = d1x1(t)+ d(t)+ b0u(t)

y = x1 (7)

where y is the output signal and

b0 =
2k0kur(C1ε

2
0 + C2ε0 + C3)

J
;

d1 =
2k0u0r2(2C1ε0 + C2)l

−1
0

J
(8)

where x1, x2, y and u are system states, output and input.
d1, b0 are known constants.
Remark 1: As we all know, external disturbance as a

common uncertainty is inevitable in practical systems. In
the pneumatic muscle joint system, we use d(t) representing
external disturbance and such disturbance satisfies

|d(t)| ≤ Dmax (9)

where Dmax > 0 is an unknown constant.
According to the practical actuator of the pneumatic mus-

cle joint system. The following saturation of actuator is con-
sidered.

u(v) = sat(v) =


uM v > uM
v −uM ≤ v ≤ uM
−uM v < −uM

(10)
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where uM > 0 is an unknown constant. u(v) and v are the
output and input of actuator, respectively. With the saturation
model (10), the controlled system is reorganized as

ẋ1(t) = x2(t)

ẋ2(t) = d1x1(t)+ b0u(v)+ d(t)

y(t) = x1(t) (11)

Remark 2: Saturation input is the most common strong
nonlinearity of actuators in practical systems. In the pneu-
matic muscle joint system, the unknown saturation is
inevitable due to the limitation of the inflation catheter. So it
must be fully considered in the controller design and stability
analysis.

To propose the controller design the following assumptions
are made.
Assumption 1: The reference signal yr and its i-th(i = 1, 2)

order derivatives are continuous and bounded.

III. DESIGN OF ADAPTIVE CONTROLLERS
In order to obtain the output feedback control law, we rewrite
the system as

ẋ = Ax +81θ1 + D(t)+
[
0
b0

]
u (12)

where

A =
[
0 1
0 0

]
, 81 =

[
0
x1

]
D(t) =

[
0
d(t)

]
, θ1 = d1 (13)

With (9), we have ||D(t)|| ≤ Dmax . Note that x is unavailable
and only y is measured. So we design the filters to estimate
x and generate available signals for controller design. The
filters is constructed as

ξ̇ = A0ξ + ky

4̇T
A = A04T

A +81(y)

λ̇ = A0λ+ E2u

ν0 = A00λ = λ (14)

where k = [k1, k2]T is a vector such that the matrix A0 =
A− kET1 is Hurwitz. Namely, there exits a P such that PA0 +
AT0 P = −2I ,P = PT > 0. By the filters, the x is estimated
as

x̂(t) = ξ +4T
Aθ1 + b0ν0 (15)

The derivative of x̂(t) is

˙̂x(t) = ξ̇ + 4̇T
Aθ1 + b0ν̇0

= A0ξ + ky+ (A04T
A +81(y))θ1

+b0(A0λ+ E2u)

= A0(ξ +4T
Aθ1 + b0ν0)+ ky

+81(y)θ1 + b0E2u

= A0x̂ + ky+81(y)θ1 + b0E2u (16)

Now we consider the state estimation error
ε = x(t)− x̂(t) (17)

satisfies

ε̇ = ẋ(t)− ˙̂x(t)

= Ax +81(y)θ1 + D(t)+
[
0
b0

]
u

−(A0x̂ + ky+81(y)θ1 + b0E2u)

= Ax − kET1 x − A0x̂ + D(t)

= A0ε + D(t) (18)

Define the Lyapunov function Vε

Vε = εTPε (19)

Then

V̇ε = ε̇TPε + εTPε̇

= εT (PTA0 + PA0)ε + 2εTPD(t)

= −2εT ε + 2εTPD(t)

≤ −2εT ε + εT ε + ‖PD(t)‖2

= −εT ε + ‖PD(t)‖2 (20)

Remark 3: Because P is a constant matrix and D(t) is
bounded by Dmax , ‖PD(t)‖2 is bounded by a constant. Then
from (20), we have the V̇ε being bounded by −εT ε +
‖PD(t)‖2. Although Vε is not monotonically decrease, Vε is
bounded and its upper bound depends on ‖PD(t)‖. Then we
can get the estimation error ε = x(t)− x̂(t) is bounded.
Note that y is the only available in the controller design.

With (11), the derivative of y is

ẏ = ẋ1

Note that ε1 = x1 − x̂1 and from (14)-(16), we have

ẏ = ˙̂x1 + ε̇

= b0ν0,2 + ξ2 + ω̄T2+ ε2
ν̇0,2 = −k2ν0,1 + u(v) (21)

where

2 = [b0, θT1 ]
T

ω = [ν0,2, 4A2 ]
T

ω̄ = [0, 4A2 ]
T (22)

In the above formula, ν0,2, ξ2, ε2 denote the second entries
of ν0, ξ, ε. ν0,1 is the first entries of ν0, ν0,2 is the second
entries of Aν0. v is the control input signal which will be
designed. Considering the saturation shown in (10), we know
u(v) can not be approximated by a linear function of v. Such
an approximation is usually used in the dead-zone nonlin-
ear input. To compensate for the uncertainties caused by
unknown saturation input, the following auxiliary variables
are introduced.

ṙ1 = r2 − Ck1r1
ṙ2 = −Ck2r2 + b0

i
u (23)
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where Ck1,Ck2 are positive constants.
a
u = u(t) − v

represents the input of the auxiliary system (23). By con-
structing this auxiliary system, the signals r1 and r2 are
introduced to smooth the saturation function. Before design-
ing the controller, we first perform the following coordinate
transformations.

z1 = y− yr − r1

z2 = ν0,2 − α1 −
1
b0
ẏr −

1
b0
r2 (24)

Step 1: Starting with the error z1, we obtain
ż1 = ẏ− ẏr − ṙ1

= b0(z2 + α1 +
1
b0
ẏr +

1
b0
r2)+ ξ2 + ω̄T2

+ε2 − ẏr − r2 + Ck1r1
= b0z2 + b0α1 + ξ2 + ω̄T2+ ε2 + Ck1r1

Then we chosen the α1 is

α1 =
1
b0

(−C1z1 − e1z1 − ξ2 − ω̄T2− Ck1r1) (25)

Define the Lyapunov function V1 as

V1 =
1
2
z21 +

1
2e1

Vε (26)

where C1, e1 are positive parameters. Then the derivative of
V1 is

V̇1 = z1ż1 −
1
2e1

εT ε +
1
2e1
‖PD(t)‖2

= z1(b0z2 + b0α1 + ξ2 + ω̄T2+ ε2 + Ck1r1)

−
1
2e1

εT ε +
1
2e1
‖PD(t)‖2

= b0z1z2 − C1z21 − e1z
2
1 + z1ε2

−
1
2e1

εT ε +
1
2e1
‖PD(t)‖2

≤ −C1z21 + b0z1z2 −
1
4e1

εT ε +
1
2e1
‖PD(t)‖2 (27)

Step 2: We derive the error z2

ż2 = ν̇0,2 − α̇1 −
1
b0
ÿr −

1
b0
ṙ2

= ν0,3 − k2ν0,1 + u− α̇1 −
1
b0
ÿr +

Ck2
b0

r2 −4u

= v+ ν0,3 − k2ν0,1 − α̇1 −
1
b0
ÿr +

Ck2
b0

r2 (28)

Choosing the control law v as

v = −b0z1 − C2z2 − e2(
∂α1

∂y
)2z2 − ν0,3

−
Ck2
b0

r2 +
∂α1

∂y
(b0ν0,2 + ξ2 + ω̄T2)

+
∂α1

∂ξ
(A0ξ + ky)+

∂α1

∂r1
(r2 − Ck1r1)

+
∂α1

∂4T
A

(A04T
A +81(y))

+k2ν0,1 +
1
b0
ÿr +

∂α1

∂yr
ẏr (29)

IV. STABILITY ANALYSIS
We now establish the boundedness of all signals in the closed
loop system under the proposed output feedback control
scheme. The following theorem about output feedback con-
trol of pneumatic muscle joint system with saturation input
can be achieved.
Theorem 1: Consider the pneumatic muscle joint system

shown in (1), with saturation input (10), an output feedback
controller (29). Under Assumption 1, all signals of the closed-
loop system are bounded under the control of the proposed
control scheme.

Proof: Firstly, defining the Lyapunov function V2 as

V2 = V1 +
1
2
z22 +

1
2e2

Vε (30)

The derivative of V2 is

V̇2 = −C1z21 + b0z1z2 −
1
4e1

εT ε +
1
2e1
‖PD(t)‖2

+z2ż2 −
1
2e2

εT ε +
1
2e2
‖PD(t)‖2

= −C1z21 + b0z1z2 −
1
4e1

εT ε +
1
2e1
‖PD(t)‖2

+z2(v+ ν0,3 − k2ν0,1 − α̇1 −
1
b0
ÿr +

Ck2
b0

r2)

−
1
2e2

εT ε +
1
2e2
‖PD(t)‖2

= −C1z21 − C2z22 −
1
4e1

εT ε +
1
2e1
‖PD(t)‖2

−z2
∂α1

∂y
ε2 −

1
2e2

εT ε +
1
2e2
‖PD(t)‖2

−e2(
∂α1

∂y
)2z22 (31)

By using Young’s inequality

ab ≤ d1a2 +
1
4d1

b2

where d1 > 0 is a design parameter. Then the derivative of
V2 can be rewritten as

V̇2 ≤ −C1z21 − C2z22 −
1
4e1

εT ε +
1
2e1
‖PD(t)‖2

−
1
4e2

εT ε +
1
2e2
‖PD(t)‖2

≤ −C1z21 − C2z22 −
1
4e1

εT ε +
1
2e1
‖P‖2D2

max

−
1
4e2

εT ε +
1
2e2
‖P‖2D2

max (32)

where Dmax is bound of D(t). Let

Y =
1
2e1
‖P‖2D2

max +
1
2e2
‖P‖2D2

max (33)

Note that

−C1z21 − C2z22 −
1
4e1

εT ε −
1
4e2

εT ε ≤ −f_V̄2

1
2
z22 +

1
2e2

Vε +
1
2
z21 +

1
2e1

Vε ≤ f+V̄2
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FIGURE 1. Tracking.

FIGURE 2. State x2.

where

V̄2 = z21 + z
2
2 + 2εT ε

f_ = min{C1,C2,
1
4e1

,
1
4e1
}

f+ = max{
1
2
,

1
2e1

λmax(P),
1
2e2

λmax(P)} (34)

Then we can get

V̇2 ≤ −f ∗ V2 + Y (35)

where f = f_
f+
. Then we have

V2 ≤ V2(0)+
Y
f

So we can get all signals in closed-loop systems are all
bounded.

V. SIMULATION STUDIES
We now apply the proposed control scheme to the following
2nd-order system described as

ẋ1 = x2
ẋ2 = d1x1 + b0u(v)+ d(x, t)

y = x1 (36)

FIGURE 3. Signal r1.

FIGURE 4. Signal r2.

FIGURE 5. u and v .

where x1, x2 are system states, y is the output signal. u is the
output of the saturation actuator while v is the input signal.
d1, b0 are known parameter. d(x, t) is an unknown nonlinear
function and is taken as

d(x, t) = 0.1sin(x2)cost (37)

In simulation, we take d1 = 0.2, b0 = 2, uM = 10. The
design parameters can be chosen as: c1 = c2 = 15, ck1 =
ck2 = 1, e1 = e2 = 0.1, k = (6, 8)T . The initial values
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are taken as: x1(0) = 1.5, x2(0) = 0, r1(0) = r2(0) = 0,
ξ (0) = 0, 4(0) = 0, λ(0) = 0.
Fig.1 represents tracking error and the state x2 is shown in

Fig.2. Fig.3 and Fig.4 show the auxiliary signals r1 and r2.
Fig.5 shows the signal v which is designed by the proposed
control law (29) and the signal u(t) given by changing of
saturation (10). Clearly, we can get that all signals of the
systems are bounded under the control of the proposed output
feedback control scheme.

VI. CONCLUSION
The control problem is investigated for a pneumatic muscle
joint system with unknown input saturation and external
disturbance. With the auxiliary signals and states filter, an
output feedback control scheme has been proposed by using
backstepping. The uncertainties caused by unknown satura-
tion and external disturbance can be compensated and the
stability of closed-loop systems can be guaranteed by the
proposed control scheme. Finally, simulation studies are used
to verify the effectiveness of the proposed control scheme. In
our future work, we will consider the estimation of unknown
parameter and to obtain the adaptive control scheme.
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