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ABSTRACT Accurate and automatic segmentation of individual tooth is critical for computer-aided analysis
towards clinical decision support and treatment planning. Three-dimensional reconstruction of individual
tooth after the segmentation also plays an important role in simulation in digital orthodontics. However, it is
difficult to automatically segment individual tooth in cone beam computed tomography (CBCT) images due
to the blurring boundaries of neighboring teeth and the similar intensities between teeth and mandible bone.
In this work, we propose the use of a multi-task 3D fully convolutional network (FCN) andmarker-controlled
watershed transform (MWT) to segment individual tooth. The multi-task FCN learns to simultaneously
predict the probability of tooth region and the probability of tooth surface. Through the combination of
the tooth probability gradient map and the surface probability map as the input image, MWT is used to
automatically separate and segment individual tooth. Twenty-five dental CBCT scans are used in the study.
The average Dice similarity coefficient, Jaccard index, and relative volume difference are 0.936 (±0.012),
0.881 (±0.019), and 0.072 (±0.027), respectively, and the average symmetric surface distance is 0.363
(±0.145) mm for our method. The experimental results demonstrate that the multi-task 3D FCN combined
with MWT can segment individual tooth of various types in dental CBCT images.

INDEX TERMS Individual tooth segmentation, dental CBCT, deep learning, marker-controlled watershed
transform.

I. INTRODUCTION
Dental cone beam computed tomography (CBCT), a diag-
nostic imaging technique, is widely used for dental diseases
and dental problems researching [1]. The segmentation of
individual tooth in CBCT images facilitates the observation
of slices or volumes of the target tooth by dentists, thereby
enabling more precise diagnostic decision-making and treat-
ment planning. Moreover, individual tooth segmentation is a
necessary step to form a digital tooth arrangement, simulate
tooth movement, and build the tooth setup. However, manual
segmentation of tooth is tedious, time-consuming and prone
to intra- and inter-observer variability. A method to automati-
cally segment individual tooth can eliminate subjective errors
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in tooth boundary delineation and reduce the workload of
dentists.

Several challenges are encountered in the segmentation
of individual tooth in dental CBCT images, which are due
to the similar intensities between teeth and alveolar bone,
close proximity of neighboring teeth, where some are even
touching each other. Fig. 1 presents two examples of the
complicated dental structures. To address these difficulties,
many tooth segmentation methods for dental CBCT images
have been proposed. These methods can be divided into two
categories: conventional methods which require handcrafted
features, and deep learning methods which often need a lot
of samples. The conventional methods include graph cut-
based methods, template-based fitting methods and level set
methods. Evain et al. [2] used graph cut methods to segment
individual tooth from dental CBCT images and achieved a
high Dice score. However, this method needed user input
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FIGURE 1. Display of the complicated dental structures. From left to right:
the transverse plane, a coronal MIP image, and the manual delineation.

to build a statistical shape prior and could not automatically
segment the teeth. In addition, graph cut methods are influ-
enced by the definition of the foreground, and the changes of
foreground during iterations would affect the final segmenta-
tion results. Template-based fitting methods [3] realized the
segmentation of anterior or premolar teethwhich usually have
monoradicular shapes, but they lacked robustness when there
were teeth presentingmultiradicular anatomies, such asmolar
teeth. The level set method [4]–[7] is themost popularmethod
for tooth segmentation in dental CBCT images because it
can deal with complex tooth topological changes well. Gan
et al. [4] developed a two-step level set method to segment
both tooth and alveolar bone; this method used global level
set to extract bony tissues in the first step, and applied the
radon transform and local level set to segment individual
tooth from alveolar bone in the second step. Although the
segmentation results of the two-step level set method were
satisfactory, the problem of segmenting a crown from image
data which was scanned in a closed bite position or with metal
artifacts remained to be solved. In addition, the selection
of initial contour curve and the setting of parameters will
influence the level set curve evolutions. Therefore, both the
contour initialization and the parameters setting should be
carefully considered in the two-step level set method. With
the development of deep learning [8], data-driven methods
have been used in many image processing domains [9]–[13]
and have yielded promising results. However, nomethods had
been presented to use deep learning to segment individual
tooth in CBCT images until recently, Cui et al. [14] exploited
3D mask R-CNN as a base network to realize automatic
tooth segmentation and identification from CBCT images.
The method that was proposed by Cui et al. focused only on
a tooth dataset that excludes the wisdom teeth. Considering
that the numbers and classes of teeth vary among patients,
the segmentation of individual tooth in the oral environment
without ignoring any teeth would be beneficial in the clinical
applications.

The current individual tooth segmentation methods per-
formed in dental CBCT images cannot simultaneously handle

the following situations: images with metal artifacts, teeth
in a natural bite or closed bite position, and special tooth
types, such as wisdom teeth and implanted teeth. Many of
these methods cannot be implemented automatically. In this
work, we propose amethod to address these issues and realize
individual tooth segmentation in dental CBCT images based
on a fully convolutional network (FCN) [15]. However, it is
difficult to assign a label to individual tooth, because the tooth
categories and indices are extensive. Utilizing multi-class
FCN to achieve individual tooth segmentation seems unre-
alistic. Instead, we use an FCN to predict both tooth region
and tooth surface, and then segment individual tooth through
marker-controlled watershed transform (MWT) [16]–[18].
Since the dental CBCT images are in the form of 3D high-
dimensional structures, we exploit a 3D network structure
that can pay more attention to the spatial continuity of the
image. V-net [19] is a 3D FCN that was developed based on
U-net [20]. Comparedwith U-net, it uses residual architecture
in every convolutional stage so that the information in feature
map can be utilized more efficiently. In our study, we select
the V-net architecture, which can reduce information loss and
learn finer structures to segment tooth region efficiently.

The probability map of tooth regions contains useful cues
for the detection of the surfaces from individual tooth. How-
ever, the boundaries between a predicted tooth and the neigh-
boring teeth may be blurred, thereby resulting in a disconti-
nuity in the gradient of the tooth probability map. Yang et al.
[21] proposed the segmentation of lung field in a chest X-ray
by using the information of the detected lung boundary map;
this method realized state-of-the-art performance. Inspired by
their work, we use the network to predict not only the tooth
region but also the tooth surface. With the combination of
the tooth probability gradient map and the surface probability
map, more information regarding the tooth boundaries is
collected to realize higher performance in individual tooth
segmentation.

Themain objective of tooth surface prediction is to produce
supplementary information to the gradient of tooth proba-
bility map. However, the tooth surface and the tooth region
are strongly related. The use of a single decoder path to
update the coefficients for both tooth region and tooth surface
predictions would result in the learning of redundant char-
acteristics. In addition, it would cause difficulties in gath-
ering different contextual cues between the two targets. To
effectively train the network, the feature maps are upsampled
with two branches [22] in the decoder path to better learn the
characteristics of the tooth region and tooth surface.

The contributions of our work mainly include the follow-
ing:

1) The proposed method can automatically segment var-
ious kinds of teeth such as implanted teeth, wisdom
teeth, supernumerary teeth, and the replacing teeth.

2) The method can automatically segment teeth in non-
open bite positions and handle dental CBCT images
with metal artifacts.
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FIGURE 2. Framework of our proposed method.

FIGURE 3. Workflow of the detection of a valid tooth region. In the first
row, from left to right: a coronal MIP image of a dental CBCT image,
a binary image, and a horizontal projection image. In the second row,
from left to right: an axial MIP image and a tooth mask. The dashed lines
indicate the valid region.

The remainder of this paper is organized as follows.
The framework and details of our method are described
in Section II. The experimental results are provided in
Section III. Finally, we discuss our work and present our
conclusions in Section IV.

II. METHOD
A. OVERVIEW
This work aims to develop an automatic method to segment
individual tooth in dental CBCT images. The core of our
proposed method is the effective utilization of the probability
maps of both tooth region and surface. The framework of
our method is illustrated in Fig. 2. First, a dental CBCT data
was delimited and cropped within a valid region and then

fed into a two-branch FCN for predicting tooth region and
tooth surface. After the thresholding operation performed on
the tooth probability map, a mask image was generated to
produce a foreground marker and a background marker for
MWT. From the probability map of tooth region, tooth prob-
ability gradient map can be obtained. Finally, we combined
the tooth probability gradient map and the surface probability
map with a specified weight, and applied MWT to yield the
individual tooth segmentation.

B. PREPROCESSING
Teeth cover only a small area in dental CBCT images, which
results in data imbalance. To relieve these data imbalance
problems, reduce the computational load, and decrease the
learning complexity, it is necessary to delimit a small and
valid region from a dental CBCT image for segmentation.
Yun et al. [23] proposed the detection of the dental arch in
dental CBCT images by thresholding operations and pro-
jection analyses on the maximum intensity projection (MIP)
image. Similarly, we delimited the valid region for segmenta-
tion through aMIP-basedmethod. Theworkflow is illustrated
in Fig. 3. Given a dental CBCT image, a coronal MIP image
was generated and then binarized via the thresholdingmethod
to yield a coronal mask of teeth. Next, the coronal mask was
projected horizontally. Within a tolerance, the scale of the
regionwith the highest peak value and continuous range in the
projection image was regarded as the range of axial slices that
contained teeth (as seen in the cyan dashed lines of the second
subgraph in Fig. 3). Based on the detected slices, we obtained
an axial MIP image. Unlike Yun et al.’s method, we selected
the threshold value for the axial MIP image according to
the range that the intensity standard deviation of axial MIP
image belonged to. For example, when the intensity standard
deviation was lower than 750, the threshold value was set
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to 2450; when the intensity standard deviation was between
750 and 810, the threshold value was set to 2600. After the
binary operation, morphological opening was conducted. The
pixel area which was below a specified size was regarded as
the noise area and was removed. Then, we determined the
tooth range in the axial plane by delimiting the range of pixels
in white (tooth pixels) in the axial mask image (as seen in the
cyan dashed lines of the fifth subgraph in Fig. 3). At this point,
we obtained the 3D bounding box of tooth region in dental
CBCT images. We denoted the region inside the bounding
box as I .
The overall intensity and contrast shift often vary among

dental CBCT images due to the differences in acquisition
conditions and patient variabilities. This would affect the
network learning and the prediction performance. Therefore,
a preprocessing step for intensity normalization is required to
achieve intensity consistency. The normalization of a cropped
region I is expressed as I ← (I − µ)/σ , where µ and σ are
the intensity mean and standard deviation, respectively, of I .

C. PREDICTING THE TOOTH REGION AND SURFACE
1) FULLY CONVOLUTIONAL NETWORK
A typical V-net architecture contains an encoder path,
a decoder path, residual blocks and skip connections. The
residual block indicates that the input of each stage not only
participates in nonlinear operations in convolutional layers
but also is added to the output of the last convolutional layer
of that stage. We utilized a modified V-net architecture to
concurrently perform two prediction tasks. Different from the
typical V-net, the modified V-net is composed of an encoder
path that consists of four encoder layers, followed by two
decoder paths, each of which consists of four decoder layers.
In each encoder layer, there are volumetric convolutions with
kernel size of 5 × 5×5, where each convolution is followed
by a batch normalization (BN), a rectified linear unit (ReLU)
and a dropout. Considering the memory limitations of GPU,
the number of channels output from the first encoder layer is
set to 8. As the data proceeds through different layers along
the encoder path, its resolution is reduced while the number
of feature channels is doubled. This is conducted by convo-
lution with kernel size of 2 × 2×2 and a stride of 2. Unlike
pooling layer which also reduces resolution, using a convolu-
tion operation to downscale feature maps can preserve more
contextual information by controlling its stride. Each decoder
layer consists of a transposed convolution with kernel size
of 2 × 2×2 and a stride of 2, a concatenation operation and
several 5 × 5×5 convolutions with BN, ReLU and dropout.
The transposed convolution is utilized for upsampling and
the concatenation operation is adopted for fusing the feature
maps from the encoder layer into the corresponding decoder
layer. At the last decoder layer in each decoder path, a con-
volution with kernel size of 1 × 1×1 is employed and the
probability maps are output.

In our work, a preprocessed CBCT image and the corre-
sponding ground truth were fed into the modified V-net to

learn their mapping relationships at the patch-level [24]–[26].
The efficiencies of network learning as well as feature map-
ping can be influenced by the loss function and the number
of patches simultaneously learned by the network. The loss
function is important for its role in measuring the difference
between the network prediction results and the ground truth,
and in updating gradients iteratively during network learning.
The network simultaneously predicts several input patches;
thus, the loss function learned each time is based on these
several image patches.

2) LOSS FUNCTION
In this work, both tooth region segmentation and tooth surface
detection are dense binary prediction tasks. The cross entropy
loss (CE) is the most common loss function for binary pre-
diction, and we used it in each prediction task to update the
weights. The CE is formulated as follows:

CE(p) = −y log p− (1− y) log (1− p) (1)

where y ∈{0, 1} specifies the ground-truth label and p ∈(0,
1) specifies the predicted probability of being the tooth
region or tooth surface of each voxel. A small value of Eq. (1)
corresponds to minor differences between the ground truth
and the prediction. We denoted the CE of tooth surface pre-
diction task asCEsurface and the CE of tooth region prediction
task as CEtooth. Since the prediction of tooth surface was
an auxiliary task in this multi-task learning, we assigned a
weight λ to CEsurface. To simultaneously conduct the two
tasks, the weighted CEsurface and CEtooth were summed to
obtain the final loss function, which is computed as Eq. (2).

L(p1, p2) = λ× CEsurface(p1)+ CE tooth(p2) (2)

where p1 and p2 denote the prediction probabilities of the
tooth surface prediction task and the tooth region prediction
task, respectively.

D. SEGMENTATION OF INDIVIDUAL TOOTH
Watershed transform (WT) is a segmentation algorithm of
mathematical morphology that is based on topological theory.
It regards an image as topological landscape where the inten-
sity of an image pixel corresponds to the altitude, while local
minima with their affected regions correspond to ‘‘catchment
basins’’. Assume that there is water rising in the ‘‘catchment
basins’’. When the water level reaches the boundary point
and stops spreading, the landscape is divided into several
regions by watershed ridge lines, and the segmentation pro-
cess is complete. To obtain the boundary information of an
image, WT is often conducted in a gradient map. Due to its
good response to weak edge information, WT can effectively
handle segmentation targets with weak boundaries. However,
it may also oversegment the image due to noise factors.
To overcome this problem, MWT is developed. Here, fore-
ground markers are seed points that represent ‘‘catchment
basins’’, and the algorithm will perform segmentation sur-
rounding these regions; in contrast, background markers rep-
resent irrelevant regions, and the algorithm will not segment
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them. With markers as guidance, the noise extremal regions
in images are ignored during the implementation of MWT,
thereby avoiding the problem of oversegmentation.MWTcan
be used to deal with multi-class segmentation task.

The segmentation of individual tooth is a type of multi-
class segmentation problem in essence. The interfaces
between some neighboring teeth are ambiguous, thereby
leading to the segmentation error-prone. With the advantages
of handlingweak edges, avoiding oversegmentation, and high
efficiency, MWT is an effective segmentation tool for solv-
ing this multi-object segmentation task. Thus, we employed
MWT for individual tooth segmentation. The results in the
MWT pipeline are presented in Fig. 4. All the steps in our
MWT implementation were conducted in 3D space.

Prior to the generation of markers, we transformed the
tooth probability map into a binary image (Fig. 4(b)) via the
thresholding method with a threshold value of 0.7. In gen-
eral, there were still non-tooth structures of small volume
size in the thresholded image. The non-tooth structures will
influence the generation of markers. To further remove these
non-tooth structures, we used a spherical structural element
with radius of 2 to perform erosion operation on the thresh-
olded image. Then, we removed the connected regions with
volumes of less than 500 voxels and obtained a binary tooth
image, which was denoted as B.

In our study, both the foreground marker and the back-
ground marker were extracted based on B. To generate the
foreground markerMf , we used a 5×5×5 structural element
to perform opening operation on B, and then we performed
erosion operation using a structural element with radius of 2.
The generation of the foreground marker can be typically
expressed as

M f = (B◦C)2C (3)

where C denotes the structural element, ◦ denotes the open-
ing operation, and 2 denotes the erosion operation. It is
expected that the backgroundmarker is not in close proximity
to the tooth surface. This can be realized through thinning
the background by computing its skeleton. To generate the
background marker Mb, we firstly conducted the dilation
operation on B. We set the radius of the spherical structural
element which was used in the dilation operation to 3. Then,
we converted the dilation result (Fig. 4(c)) into a distancemap
(Fig. 4(d)) by Euclidean distance transformation. Finally, we
performed watershed transform on the distance map, and
we set the watershed ridge lines as the background marker.
We used E(·) and W(·) to denote Euclidean distance com-
putation function and watershed transform function, respec-
tively. Thus, the generation of the background marker can be
expressed as:

Mb =W(E(B⊕ C) (4)

where ⊕ denotes the dilation operation. The foreground
marker and the background marker are displayed in black and
white, respectively, in Fig. 4(e). We computed the gradient
of the tooth probability map and combined it with the tooth

surface probability map to form the input image of MWT.
Guided by the foreground and background markers, MWT
was used to segment individual tooth automatically.

E. EVALUATION METRICS
The automatic tooth segmentation performance was evalu-
ated in terms of four metrics: the Jaccard similarity coeffi-
cient (�), the Dice similarity coefficient (DSC), the relative
volume difference (RVD), and the average symmetric surface
distance (ASSD).

Let us denote by D the segmentation result and by G the
ground truth. The Jaccard index is computed as:

� =
|D ∩ G|
|D ∪ G|

(5)

where | · | is the cardinality of the set, D∩G is the intersection
of D and G, and D∪G is the union of D and G. DSC is the
overlap ratio between the ground truth G and the segmenta-
tion result D. It is formulated as Eq. (6). The larger the value
of DSC is, the more accurate the segmentation result is.

DSC =
2× |D ∩ G|
|D| + |G|

(6)

RVD is used to measure the difference between the segmen-
tation result and the ground truth. It is defined as:

RVD = |D− G| / |G| (7)

ASSD is the average distance between the estimated segmen-
tation surface SD and the ground truth surface SG. Let d and
g be the points on surfaces SD and SG, respectively. dist(d ,
SG) is the nearest Euclidean distance from a surface point d
to surface SG. mean{·} is the arithmetical average operator.
ASSD is defined as:

ASSD (SD, SG) = mean {mean {dist (d , SG) , d ∈ SD} ,

× mean {dist (g, SD) , g ∈ SG}} (8)

III. RESULTS
A. DATASET AND EXPERIMENTAL SETTINGS
Clinical dental CBCT images of 25 patients were randomly
collected by Stomatological Hospital of Southern Medi-
cal University, Guangzhou, China. The CBCT images were
acquired by a NewTom VGi (QR s.r.l., Verona, Italy) scanner
with the following imaging parameters: 110 kVp and 3−8
mA (pulse mode). The image data were cropped to different
volume size, with a voxel size of 0.3mm× 0.3mm× 0.3mm.
The number of slices in each volume ranged from 376 to 541.
In addition, the axial length ranged from 470 to 555 pixels,
while the axial width ranged from 376 to 512 pixels. All the
CBCT images were acquired under natural bite or closed bite
conditions. The subjects included 14 males and 11 females
of ages 10 to 49 years. As presented in Table 1, the dataset
consists of supernumerary teeth, implanted teeth, and metal
restored teeth, and the tooth location and shape vary among
the samples. The dataset contained more than 770 teeth. With
a large number of teeth and extensive tooth types, the 25 sub-
jects of our study could ensure the robustness of FCN.
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FIGURE 4. Images that are produced in the MWT pipeline. (a) a tooth probability map; (b) the thresholded image; (c) the dilation
result; (d) the Euclidean distance map; (e) a visualization of the foreground marker and the background marker in black and white,
respectively; (f) the tooth surface probability map; (g) the tooth probability gradient map; and (h) the final segmentation result.

TABLE 1. Description of the data conditions.

We delineated each tooth manually to form the segmentation
ground truth. Moreover, we used a 3×3×3 structural element
to respectively perform morphological dilation and erosion
operations on the manual delineations of individual tooth.
After subtracting the erosion result from the dilation result,
we obtained the ground truth image of the tooth surface.

The dataset was randomly divided into a training set and
a test set in a ratio of 4:1. To improve the prediction per-
formance, we augmented the training dataset on-the-fly via
random rotation, zooming, and flipping to imitate the possible
cases in practice. For instance, there were cases in which the
head was tilted to the right or left. Therefore, we augmented
the training data with random horizontal rotations in the range
of [−20, 20] degrees. In addition, children may have smaller
heads than adults and obese patients may have larger heads
than the thin patients. Thus, we magnified the images at the
scales of [0.9, 1.1]. We also randomly flipped the training
data in horizontal direction to render the segmentation model
robust to data with flipping. Test Time Augmentation (TTA)
[27], [28]was also conducted on the test set to further improve
the predictions. Our strategy for TTA consisted of the fol-
lowing geometric transformations: horizontal flipping, fixed
angle rotation, scaling within a specified range, and a series

FIGURE 5. Segmentation performance using various patch sizes.

of corresponding inverse operations. Each test case and its
augmented examples were fed into the FCN model to obtain
a predictive distribution, which was denoted as Y={yi, yj;
i, j = 1, 2, . . . , n}, where yi is the prediction of the tooth
region; yj is the prediction of the tooth surface; and n is the
serial number of predictions. We respectively computed the
average of yi and yj to obtain the final predictions for the test
case.

Considering the memory limitations of GPU, we per-
formed patch-level learning using sliding windows in the 3D
space of the images. The patches that were used to train
the network were randomly cropped from the valid region
especially in the tooth and the tooth surface to relieve the data
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FIGURE 6. Three-dimensional visualization of individual tooth segmentation results that were obtained via the
proposed method. The segmentation results from the first row to the third row correspond to three subjects. Their DSC
values are 0.941 (±0.020), 0.932 (±0.020), and 0.955 (±0.014), while the ASSD values are 0.266 (±0.089) mm, 0.347
(±0.096) mm, and 0.240 (±0.143) mm, respectively.

imbalance problem. The number of image patches sampled
from each image depended on the size of the CBCT data, for
each patient has different head size which leads to different
size of valid tooth region. All the models were trained on a
Titan X GPU with 12 GB RAM. The loss function in Eq. (2)
was minimized using the Adam optimizer, with an initial
learning rate of 10−4 in the first four epochs but decreasing
to 10−5 since the fifth epoch. The training of our proposed
multi-task 3D FCN model took approximately 33 hours.

B. IMPACT OF PATCH SIZE
In this section, we investigated the effect of patch size on the
segmentation performance. We conducted the experiments in
which we used five input patch sizes, namely, 32 × 32 ×
32, 48 × 48 × 48, 64 × 64 × 64, 80 × 80 × 80, and 96 ×
96 × 96, to train the multi-task network. Fig. 5 shows how
varying the patch size affects the DSC, Jaccard index, RVD,
and ASSD. The DSC and the Jaccard index of the model
with a patch size of 64 × 64 × 64 were higher than those
of other models. In addition, both RVD and ASSD attained
their lowest values when the model with a patch size of 64×
64× 64 was used. The models trained with a patch size of 64
× 64 × 64 could achieve better performance. This may be
because that the patch with size of 64 × 64 × 64 contained
enough information about tooth or tooth surface for training.
In addition, larger patch size caused a lower patch number
to be obtained and trained in our experiment, and the patch
number obtained with patch size of 64 × 64 × 64 was more
suitable.

With the insight that was gained through the experiment
results, we set the patch size to 64 × 64 × 64 throughout the
following experiments. Fig. 6 displays examples of individual

FIGURE 7. Comparison of the multi-task learning strategy and the
single-task learning strategy. The bounding box in red in (a) indicates a
mistake.

tooth segmentation results that were obtained via our pro-
posed method. Compared with the ground truth, the segmen-
tation results were visually satisfactory. The proposedmethod
could effectively segment individual tooth, even those with
unusual shapes.

C. MULTI-TASK LEARNING VERSUS SINGLE-TASK
LEARNING
To evaluate the necessity of using both the tooth proba-
bility gradients and the tooth surface probability to seg-
ment individual tooth, the multi-task learning strategy was
compared with a single-task learning strategy. We trained
a single-task network of the V-net architecture to predict
only the tooth probability map. Then, MWT was conducted
on the tooth probability gradient map to obtain an indi-
vidual tooth segmentation. In the single-task learning strat-
egy, voxels that belonged to a tooth might be mislabeled
as neighboring tooth voxels (as shown in Fig. 7), since
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TABLE 2. Performances of individual tooth segmentation via different network structures.

TABLE 3. Comparisons in the ablation study.

only the tooth probability gradients were used to segment
the individual tooth. The mislabeled tooth voxels caused
the ASSD to be larger and the Jaccard index to be lower,
as seen in Table 2. Conversely, the segmentation was more
accurate when using the multi-task V-net for predictions
and exploiting both the tooth probability gradients and tooth
surface probability for segmentation. The multi-task learning
strategy achieved higher performance with DSC of 0.936
(±0.012) and ASSD of 0.363 (±0.145) mm. In addition,
the Jaccard index and RVD were 0.881 (±0.019) and 0.072
(±0.027), respectively. Through combining the tooth prob-
ability gradient map and the tooth surface probability map,
more information about tooth was gathered, which con-
tributed to better performance for the multi-task learning
strategy.

D. COMPARISONS WITH OTHER MODIFIED FCN
The proposed multi-task FCN was compared with a modified
U-net and a modified FC-Densenet. For fair comparison,
all parameters, such as the loss function, the optimizer, and
the learning rate were set the same as those of our pro-
posed method. All the modified FCNs were trained using
sliding windows with input size of 64 × 64×64. After four
downsamplings, their sizes were decreased to 4 × 4×4. The
details of the modified 3D U-net and the modified 3D FC-
Densenet are illustrated in Appendix A and Appendix B,
respectively.

Table 2 shows comparisons of the quantitative evaluation
results. Except for the ASSD, the modified FC-Densenet
performed similar to the modified U-net. The proposedmulti-
task V-net achieved a higher Dice score and Jaccard index
than the two compared networks. In addition, the RVD
obtained by the multi-task V-net was lower than that of the
modified U-net and the modified FC-Densenet. The modi-
fied U-net lacked the residual blocks for feature reuse; the
modified FC-Densenet with dense blocks caused too many
redundant features to be learned in our experiment. As for
the modified V-net, it contained a suitable number of residual
blocks, which led to more reasonable feature reuse and more
accurate segmentation results.

E. ABLATION STUDY
1) MWT VERSUS CONNECTED REGION EXTRACTION
Many postprocessing methods, such as graph cut and condi-
tional randomfieldmethods [29], [30], have strong sensitivity
to the initialization or coefficient settings, and can even be
of time-consuming. The segmentation method of connected
region extraction (CRE) operates simply and effectively.
Thus, we compared the performance of the proposed method
(MWT) with that of CRE. To implement CRE, we firstly
binarized the tooth probability map and the tooth surface
probability map. Then we removed the surface from the tooth
by subtracting the surface mask from the tooth mask. Finally,
CRE was conducted, and each connected region in the binary
tooth image from which the surface voxels had been removed
was assigned a unique integer value that corresponded to a
tooth instance.

As listed in Table 3, the DSC and ASSD of CRE were
0.727 (±0.016) and 3.603 (±0.429) mm, respectively, while
our method achieved superior results in terms of the two
evaluation metrics (DSC: 0.936 ± 0.012 and ASSD: 0.363
± 0.145 mm). Fig. 8 shows an example of individual tooth
segmentation results that were obtained via MWT or CRE.
MWT could separate individual tooth more successfully,
which was due to its effectively using of information of both
the surface probability map and the tooth probability map.
By contrast, the method of CRE might assign the same label
to neighboring teeth erroneously since the thresholding oper-
ation performed on the surface probability map caused the
surface mask to be discontinuous. The de-surface operation
failed to completely remove the surface voxels from the tooth.
Neighboring teeth might still be touching each other and
forming a connected region. CRE assigned a single label
to this connected region, thereby resulting in the failure to
segment individual tooth, as seen in Fig. 8(b).

2) DENTAL CBCT IMAGE GRADIENT MAP VERSUS TOOTH
PROBABILITY GRADIENT MAP
The effects of different gradient maps as the input images
of MWT on the performance of individual tooth segmen-
tation were evaluated. To maintain the normative property
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FIGURE 8. Comparison for individual tooth segmentation via different
methods. (a) and (b) are the segmentation results that are obtained via
MWT and CRE, respectively. (c) displays the tooth surface probability map.

of the entire procedure, only the combination way of the
gradient mapswas changed for comparison. The tooth surface
probability map was combined with the dental CBCT image
gradient map or the tooth probability gradient map to as the
input image of MWT. As listed in Table 3, the DSC and the
Jaccard index achieved by MWT on CBCT image gradient
were 6.3% and 9.0% lower than those of our proposedmethod
that used tooth probability gradient map as the input image,
respectively; in addition, the ASSD achieved by using dental
CBCT image gradient mapwasmuch higher.When the dental
CBCT image gradient map was used as the input image of
MWT, voxels belonging to a tooth might be mislabeled as
other tooth voxels; non-tooth voxels could be incorrectly
labeled as tooth voxels. In addition, the mislabeled tooth
voxels only existed on the tooth surface, as shown in Fig. 9.
This phenomenon may be due to the fact that, CBCT image
gradients contained not only tooth gradients but also gradients
of non-tooth structures; both gradients were strong, thereby
confusing MWT in correctly assigning labels to tooth voxels.
Instead, the gradients of non-tooth structures in the tooth
probability gradient mapwere weaker, leading to the predom-
inance of tooth gradients when performing individual tooth
segmentation. Thus, the method using the tooth probability
gradient map performed better.

3) COMPARISON OF THE EFFECTS OF DIFFERENT
BACKGROUND MARKERS
We further evaluated the effectiveness of using watershed
ridge lines as background marker in MWT.We performed the
thresholding operation on the tooth probability map to obtain
a tooth mask B. Then, a spherical structural element with a
radius of 3 was used to perform a dilation operation on B.
Finally, logical ‘not’ operation was conducted on the dilation
result to achieve a background marker (we called it simple
MWT marker).

When simple MWT marker was used as background
marker for segmentation, many tooth voxels were misla-

FIGURE 9. Visualization of individual tooth segmentation results that
were obtained using various gradient maps as input images of MWT. The
first row and the second row correspond to different subjects. (a) is the
segmentation results that were produced by MWT on dental CBCT image
gradient map. (b) is the segmentation results that were produced by the
method using tooth probability gradient map as the input image of MWT.

FIGURE 10. Individual tooth segmentation results produced by the
methods using different background markers in MWT. (a) is produced by
using simple MWT marker. (b) is produced by using the watershed ridge
lines.

beled as background voxels, as shown in Fig. 10. The sim-
ple MWT marker was in close proximity to the tooth sur-
face, which affected the segmentation accuracy. Accordingly,
it achieved lower values in DSC and Jaccard index, and higher
values in RVD and ASSD than the method that used the
watershed ridge lines as the background markers, as listed
in Table 3.

F. THE PROPOSED METHOD VERSUS THE LEVEL SET
METHOD
To evaluate the effectiveness of our proposed method,
the level set method was compared on the test set. As the
segmentation procedure that mentioned in Ref. [5], we con-
ducted the level set method for individual tooth segmentation
in dental CBCT images. The details of the level set method
implementation can be seen in Appendix C.

Fig. 11 illustrates the quantitative results by our proposed
method and the level set method. Both RVD and ASSD
achieved by the level set method were much larger than those
of our method. The segmentation results achieved by the
level set method were not good, as shown in Fig. 12. Some
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FIGURE 11. Comparisons between our proposed method and the level
set method.

FIGURE 12. Comparisons between the proposed method and the current
popular method. The first row is the segmentation results of level set
method. The second row is the segmentation results of the proposed
method. (a) and (b) are the segmentation performance from two different
slices. (c) is the 3D visualization, and the black circle and red bounding
box indicate the mistakes.

FIGURE 13. Failure cases of individual tooth segmentation of our
proposed method. (a) and (b) are two examples and the dashed circles
indicate the mistakes in segmentation.

teeth were missed (as the red bounding box in Fig. 12(c)
indicated) because of the difficulty in selecting a suitable
starting slice. In addition, when the teeth were in a natural
bite position, separating the upper teeth from the lower teeth
could fail (as the black circle delineated). As for dental CBCT
images with metal artifacts (Fig. 12(b)), the level set method
also could not effectively perform segmentation; the voxels

FIGURE 14. The architecture of the modified 3D U-net.

FIGURE 15. The architecture of the modified 3D FC-Densenet.

of alveolar bones might be mislabeled as tooth voxels. Due
to the extensive tooth types contained in the training set
and the robustness of the FCN, the proposed method can
address these problems well and achieve more satisfactory
segmentation results.

IV. DISCUSSION AND CONCLUSION
Our method for individual tooth segmentation employed a
multi-task 3D FCN to predict the tooth region and tooth
surface. Then, the predicted maps were used for individual
tooth segmentation by MWT. The relatively better results
achieved by our method were owing to the suitable patch
size that we used, the robustness of the FCN architecture
that we elaborated, and the reasonable design of the MWT
implementation.

There are two main limitations in our studies. The dataset
that we used contains only 25 images. Our dataset is limited
since delineating teeth is a heavy workload, which renders
the generation of the segmentation ground truth difficult.
Additionally, we determined the foreground markers by per-
forming morphological operations. Tooth may be broken
into several fractions (several foreground markers), thereby
causing the watershed transform to assign several labels
to an individual tooth. Moreover, some neighboring teeth
with blurred boundaries share a common foreground marker,
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FIGURE 16. Diagram of the slice by slice segmentation procedure.

which leads to failures in the segmentation of individual
tooth. Two failure cases in individual tooth segmentation
are presented in Fig. 13. In fact, the foreground marker of
the touching teeth in Fig. 13(b) passes through a line that
separates the teeth of the upper and lower jaw. If we continue
to erode this foreground marker until it does not pass through
the separation line and is broken into two foregroundmarkers,
MWT will correctly assign labels to the two individual teeth.
This is the task that we will realize in our following work.
Generally, a large number of samples would contribute to the
development of a relatively satisfactory training model. In the
future, we will exploit the model that we have trained and
use manual delineation to enlarge the amount of ground truth
data. Then, we will retrain the model and further improve the
segmentation performance.

In summary, we present an effective method for individual
tooth segmentation. The experimental results demonstrate
that our method performs well in individual tooth segmenta-
tion and exhibits high precision for the dental CBCT images
with various teeth.

V. APPENDIX
A. DETAILS OF THE MODIFIED 3D U-NET
ThemodifiedU-net contains an encoder path and two decoder
paths, as shown in Fig. 14. There are four encoder layers in
the encoder path. Considering the GPU memory limitation,
the channel number of the feature maps that output from the
first encoder layer is set to 4. Each encoder layer is composed
of two Conv-BN-ReLU modules, followed by a max-pooling
module for downsampling. The convolutional kernel size that
we used is set to 3×3×3. The two decoder paths are designed
for predicting the tooth region and the tooth surface. There

FIGURE 17. Example of a mask for restricting the level set evolution. The
dashed bounding box in (a) indicates the target tooth that will be
segmented by the level set. The corresponding mask is shown in (b).

are four decoder layers in each decoder path. In each decoder
layer, the feature maps are upsampled by a transposed con-
volution with kernel size of 2 × 2×2, followed by a skip
connection, and two Conv-BN-ReLU modules. In the last
decoder layer of the decoder path, a convolution with kernel
size of 1 × 1×1 is used, and the prediction is output. It took
about 22 hours for training this modified U-net model.

B. DETAILS OF THE MODIFIED 3D FC-DENSENET
The modified FC-Densenet is composed of a downsampling
path, two upsampling paths, and some skip connections.
The downsampling path consists of 4 dense blocks (DB)
and 4 transition down layers (TD) while the upsampling
path consists of 4 dense blocks and 4 transition up layers
(TU). Dense block is an iterative concatenation of previous
feature maps for feature reuse. There are some layers com-
posed in the dense block, where the growth rate of layers
is set to 10. Each layer is a BN-ReLU-Conv module, fol-
lowed by a dropout. The transition down layer contains a
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BN-ReLU-Convmodule, a dropout of 0.2, and a 2×2×2max
pooling. As for transition up layer, it is a 3× 3×3 transposed
convolution with stride of 2 for downsampling. Fig. 15 shows
the architecture of the modified 3D FC-Densenet. Training a
model of the modified 3D FC-Densenet took about 28 hours.

C. DETAILS OF THE LEVEL SET METHOD
The slices of the maxillary and the mandible were seg-
mented independently using the same segmentation proce-
dures, as shown in Fig. 16. First, we selected an initial slice
between the crown and dental root. Then the seed points were
drawn manually in the initial slice for recognizing each tooth.
Let � ⊂ R2 denote the image domain; I: � →R denote the
dental CBCT images; φ :�→R be the level set function; and
|C| be the length of an evolution contour. The energy function
of the level set that we used for segmenting the initial slice is
defined in Eq. (C.1):

0(φ, f1, f2) = FL(φ, f1, f2)+ ν|C| + µ1P(φ)

+µ2 ∫� gδε(φ)|∇φ|dx (C.1)

where the first term is the local intensity energy term; the sec-
ond term is the curve length penalization term; the third term
is the regularization term; and the forth term is the edge
detection energy term.µ1,µ2, and ν are empirically set to 0.8,
0.1, and 0.0008× 2552, respectively. g is the edge indicator,
and δε is the normalized Dirac delta function. FL, |C|, and
P(φ) are defined below:

FL(φ, f1, f2) = λ1 ∫�(∫� Kσ (x−y)|I (y)−f1(x)|
2

×Hε(φ(y))dy)dx

+λ2 ∫�(∫� Kσ (x − y)|I (y)− f2(x)|
2

×(1− Hε(φ(y)))dy)dx (C.2)

|C| = ∫ |∇Hε(φ(x))|dx (C.3)

P (φ) =
∫

1
2
(|∇φ (x)| − 1)2 dx (C.4)

Both λ1 and λ2 are set to 0.8; Kσ (x − y) is the Gaussian
function with a scale parameter (σ = 3).Hε is the normalized
Heaviside function. f1(x) and f2(x) are the mean intensities
inside and outside the zero level set.

After segmenting the initial slice, contour propagation
strategy was used to segment other slices. Based on tooth
shape prior, the propagation strategy was proceeded toward
the crown and the root direction, respectively. Tooth shape
prior was represented by the average tooth shape of the last
three previous segmented slices. In the case that there were
less than three segmented slices, the shape was computed
from existing segmented slices. The energy function of the
level set that we used to segment the nonstarting slices is as
follows:

ψ(φ, f1, f2) = 0(φ, f1, f2)+ ωFG(φ)+ βFshape(φ) (C.5)

Here, the ω and β are set to 0.2 and 5, respectively. 0(φ, f1,
f2) is defined in the Eq. (C.1). FG(φ) is the global intensity

prior term, while Fshape(φ) is the shape prior constraint term.
The intensity distribution of the current slice was estimated
from the previous segmented slice to define a global intensity
energy. Let M ={Mj|j = b, f } be the statistical model
parameter of either the foreground or the background, and
φ0 be the signed distance function of the prior tooth shape.
FG(φ) and Fshape(φ) are defined as follows:

FG (φ) =
∫

log

(
P (Mb|I (x))

P
(
Mf |I (x)

))Hε (φ (x)) dx (C.6)

Fshape(φ) = (1−Hε(φ0(x))) ∫(Hε(φ(x))−Hε(φ0(x)))2dx

(C.7)

To separate the touching teeth during the segmentation of
the nonstarting slices, the level set evolution of each tooth
was proceeded. A mask was used to restrict each level set
evolution and to prevent from invading in neighboring teeth.
The mask was assigned as 0 for points inside the contours of
nontarget teeth or 1 for points outside the contours of nontar-
get teeth (as shown in Fig. 17). During the segmentation, all
level sets were evolved simultaneously, and the mask of each
level set was updated before every iteration.
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