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ABSTRACT Missing values often occur in real-world datasets, which undermines the data integrity and
reduces the reliability of data mining. In this paper, a method of Takagi-Sugeno (TS) fuzzy modeling for
incomplete data is proposed and utilized to estimate missing values. Considering the difference of attribute
relationship within different clusters, this method performs regression analysis on the subsets obtained
by fuzzy clustering and constructs the global model with the weighted sum of regression models, which
describes the relationship between attributes more precisely on the basis of traditional regression imputation.
Meanwhile, focusing on the problem of incomplete model input caused by missing values, we propose an
alternate learning strategy to train model parameters and imputations, which treats missing values as variables
to drive the advance of incomplete data modeling and updates imputations with the adjustment of model
parameters. Through the alternate learning strategy, not only the problem of incomplete model input is well
solved, but also the accuracy of the model and the performance of imputation are improved together in a
collaborative way. Experimental results on several UCI datasets with different missing ratios and missing
data mechanisms demonstrate the effectiveness of the proposed method and strategy.

INDEX TERMS Incomplete data, missing value imputation, clustering-based modeling, alternate learning.

I. INTRODUCTION

In real-world datasets, the problem of missing values is
almost inevitable, which is often caused by many factors
such as equipment failure, limitation of data collection and
human fault in storage [1], [2]. These missing values under-
mine data integrity and have become a major obstacle in
data mining. Therefore, how to deal with missing values is
a crucial issue in the analysis of incomplete data. Generally
speaking, the simplest way is to discard incomplete records
directly and analyze with the remaining complete records, but
it only works for datasets with a small number of incomplete
records [3]. In practice, the incomplete records usually cannot
be overlooked, because if they are discarded directly, it may
result in misleading conclusions due to the loss of informa-
tion. By contrast, missing value imputation is an effective
way, which can further improve data quality.
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Missing value imputation aims to replace missing val-
ues with reasonable ones derived from present data, and
many imputation methods have been proposed to make the
results of data mining more effective and valuable [4], [5].
In the past few decades, commonly utilized methods include
mean imputation, median imputation, hot-deck imputation,
k nearest neighbor (kNN) imputation, class center-based
imputation, exception maximization imputation (EMI) and
regression-based imputation. The first two imputation meth-
ods take mean values and median values of present data
in each incomplete attribute as the replacements. Hot-deck
imputation method selects a complete record nearest to
the current incomplete one and regards its corresponding
attribute values as expected imputations [6]. Similar to the
hot-deck imputation, the kNN imputation method performs
replacement with mean values of corresponding attributes
in k nearest neighbors [7], [8]. To improve the imputation
accuracy, Song et al. took similarity neighbors into consider-
ation when searching for the nearest neighbors [9]. The class

83633


https://orcid.org/0000-0002-3396-790X
https://orcid.org/0000-0001-6627-8396

IEEE Access

X. Lai et al.: TS Modeling of Incomplete Data for Missing Value Imputation With the Use of Alternate Learning

center-based imputation method defines a threshold by the
distances between each class center and present values for
missing value imputation [10]. EMI is a parametric model-
based imputation method, which is realized through the iter-
ation of E-step and M-step. E-step estimates conditional
expectations of missing values and takes them as imputations.
M-step calculates parameters that maximize the expectations
of log-likelihood function based on the imputed dataset [11].
Considering that instances in the same cluster are very similar
to each other, Rahman et al. first made a fuzzy clustering
of the dataset for finding similar records, and then applied a
fuzzy EM algorithm to impute the missing values [12]. These
methods mentioned above are widely adopted, but sometimes
with limited imputation performance due to ignoring relation-
ships between attributes [13].

Taking attribute relationships into consideration, the
regression-based imputation method establishes several
regression models with each missing attribute as the output
variable, which has received wide attention [14]-[17]. For
example, Kim er al. proposed local least squares imputation
to estimate missing values in the gene expression data, where
the target gene with missing values is represented as a lin-
ear combination of similar genes chosen based on similar-
ity measures [18]. Cheng et al. incorporated the clustering
idea into the framework of local least squares imputation
for characterizing the gene similarity [19]. Inspired by the
Bayesian inference method, Shah et al. developed a Bayesian
regression model called BayesMetab which systematically
estimates missing values based on a Markov chain Monte
Carlo MCMC) algorithm [20]. Stein et al. first pre-imputed
missing values of continuous attributes by the mean values
and replaced missing values of discrete variables with the
most frequent values, followed by predicting missing val-
ues through a series of regression models with the class
label of each sample as an extra predictor variable [21].
Zhang et al. combined Bayesian regression and EM algorithm
to construct the predictive model. Moreover, the experiment
results showed that training the model with present values and
missing values has a better prediction performance compared
with ignoring the missing values [22]. Aydilek et al. com-
bined fuzzy c-means clustering with support vector regres-
sion and a genetic algorithm to estimate missing values.
In this method, support vector regression model is trained
by complete records before being utilized for imputation,
which attempts to make the output values more approximate
to their corresponding inputs [23]. Sefidian ef al. imputed
missing values by a novel grey-based fuzzy c-means, mutual
information-based feature selection, and regression model,
which achieved good performance of imputation through
the construction of a specialized regression model for each
cluster [24].

From the above, we can conclude that analysis aiming at
each subset rather than the whole dataset is more capable
in describing the relationships between attributes during the
regression modeling of incomplete data, thus obtaining a
better performance of imputation. Hence, the partition-based
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models have been widely employed in data mining, especially
rule-based fuzzy models. As the most concerned rule-based
fuzzy model, Takagi-Sugeno (TS) model performs regression
analysis on the premise of fuzzy partition and establishes
linear regression models aiming at the relationships in each
subset [25]-[27]. Due to this feature, TS model can be utilized
as a universal approximator to handle nonlinear problems,
and has an outstanding performance in working out the rela-
tionships than traditional regression model [28], [29]. On the
other hand, pre-imputation of missing values is commonly
adopted to deal with the problem of incomplete input during
modeling. Whereas, the perturbation caused by different pre-
imputed values can easily lead to the variations of model
parameters, which has a great influence on the model accu-
racy. Hence, in the process of incomplete data modeling,
the way to handle the incomplete model input deserves great
attention.

In this paper, we take TS model for modeling incomplete
data and realize missing value imputation in collaboration
with the dynamic modeling. Aiming to describe the rela-
tionship between attributes more precisely, the method first
divides the dataset into several subsets and performs regres-
sion analysis for each subset, followed by constructing the
global model with the weighted sum of regression models,
which improves the model accuracy on the basis of traditional
regression modeling. Meanwhile, owing to the problem of
incomplete model input caused by missing values, an alter-
native learning strategy used for training the parameters of
incomplete data-based model together with imputations is
presented. In this strategy, missing values are treated as the
variable to drive the advance of incomplete data modeling,
and imputations are promoted to update dynamically together
with the adjustment of model parameters. Therefore, a col-
laborative improvement of model accuracy and imputation
performance can be realized additionally as the problem of
incomplete model input is resolved.

The rest of this paper is organized as follows. Section II
introduces the basic structure of TS model. Section III
describes the proposed method of incomplete data modeling
and missing value imputation. Meanwhile, the alternate learn-
ing strategy that treats missing values as variables is carried
out to train model parameters together with imputations.
Section IV demonstrates the effectiveness of the proposed
method by several UCI datasets with different missing ratios
and missing data mechanisms. Section V concludes the paper.

Il. TAKAGI-SUGENO FUZZY MODEL

The Takagi-Sugeno fuzzy model was proposed by Takagi and
Sugeno in 1985, whose basic idea is to divide the nonlin-
ear problem into several linear sub-problems and describe
them separately with “IF-THEN" rules [30]. It obtains the
premise parts by fuzzy partition, and then linear regression
models are established as corresponding consequence parts
to describe the relationships between input-output variables.
Given a dataset composed of N records in s-dimensional real
space, i.e. X = {x1,---,xy} and X = [xg1, -, xxs] for
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FIGURE 1. Alternate learning-based TS modeling and missing value imputation.

k=1,...,
in (1):

N, the fuzzy rule of TS model can be described

R® .
IF x31is A” and - - - |

and xy—1) is AJ( )1, and xg(jy1) is Aj(ll, and -- -,
and xy is Agi),
THEN

A,g) = 5’) + 91(1)361(1 +-F Qj(l_)IXk(jfl)

~|—9j+1xk(,~+1) + oo+ 09, ()
where R is the ith fuzzy rule fori = 1,---,c and c is
the number of fuzzy rules; x¢1, - - -, Xk(— 1)s Xk(41)s = * s Xks
are the input variables of RO, A(l) s »A,('Z,AJ(Q], e ,A§’)

represent their corresponding fuzzy sets, also known as
premise parameters; fc,ﬁ’) represents the output of R®, and
9(()1)’ 91(1)’ . 9}?’315 @j(jr)l’ e
ters.

The global output of TS model is the weighted summation
of each rule output, as shown in (2):

L0 are consequence parame-

(@)
s 050 GO — i
Xkj = E ﬂk ki = ) 2
i=1 Zz 1/3(1)
@ = 1 - e . .
By = min(u,o (1), ,MAJQI(xk(;—l)),
MA(_i:l(xk(qul)), s Uy ) (X)), 3
J 5

where u ne (xks) represents the membership degree of xig

belonging to Agi).

Ill. TS MODELING, MISSING VALUE IMPUTATION,

AND ALTERNATE LEARNING

Given a dataset, the attribute relationships among each record
are diverse, which can be similar or different. Therefore, it is
more appropriate to divide the dataset into several subsets
and carry out regression analysis for each subset separately.
To make a more precise analysis for incomplete data and thus
obtain more reasonable imputations, a dynamic TS modeling-
based method on the premise of fuzzy partition is proposed in
this section. Meanwhile, focusing on the problem of incom-
plete model input caused by missing values, we present an
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alternate learning strategy that regards those missing values
as variables to promote the training of incomplete model.
Through this strategy, the model parameters can be adjusted
with the feedback of those updated variables, and those vari-
ables can also be more adapted to the model with parameter
adjustment. The framework of the proposed method is shown
inFig. 1, where x;, @ represents the kth sample of the ith cluster.

As shown in Fig. 1, given an incomplete dataset,
the method first divides it into c subsets by a fuzzy clustering
algorithm, and thus realizes premise parameter identification
along with the fuzzy partition. After premise parameters
of the incomplete data model are determined, consequence
parameter identification can be worked out through the train-
ing of alternate learning strategy, and missing value impu-
tation can also be achieved accompanying with the training.
In this process, consequence parameters are adjusted with
the updating of imputations, and imputations are updated in
turn with the adjustment of consequence parameters. Through
repeated adjustments and updates, consequence parameters
and imputations are learned alternately and tend to be practi-
cal, which means that the problem of incomplete model input
caused by missing values is resolved effectively.

A. TS MODELING OF INCOMPLETE DATA

Similar to complete data-based TS modeling, the realiza-
tion for incomplete data modeling can also be divided into
premise parameter identification and consequence parame-
ter identification. To make a more precise analysis, we add
variable selection to regression modeling of each subset after
fuzzy partition. Considering the occurrence of missing val-
ues, premise parameters are obtained through fuzzy C-means
clustering with partial distance strategy (FCM-PDS) and con-
sequence parameters are estimated using the least square
method by treating missing values as variables. Besides,
a stepwise regression algorithm is utilized for variable
selection to describe the regression relationships between
attributes in each subset.

1) PREMISE PARAMETER IDENTIFICATION
FCM-PDS [31] algorithm divides the incomplete dataset into
c subsets by minimizing the objective function:

N c
= Zk=1 Zi:l [40 (x0)]"d “4)
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FIGURE 2. Missing value imputation for the jth incomplete attribute in one process.

where u,»(Xx) represents the membership degree of xi
belonging to fuzzy set A, Y i ugo(xx) = 1; m represents
the fuzzification parameter, m € (1, 00); dj; represents partial
distance from the kth record to the ith cluster center, which is
calculated by

N s
dik =\/ A ijl (g — vi)*Iij, ©)
o l,lkajGXp . _
where Ij; = {O,ikajeXM ,forj =1,---,sand k =

1,---,N and I; = Z;zl Iij, in which Xp = {x4|1 <
k < N,1 < j < s, the value for x4 is present },
Xu = {xj]1 <k <N, 1 <j <s,the value forxy; is missing }
represent the set of present values and the set of missing
values; v;; represents the jth attribute of the ith cluster center.
After the fuzzy partition, premise parameters composed of the

membership degree u,a (xkj) can be obtained by projecting
J

u,)(Xg) onto each axis of the input variable [32]. In this
paper, we use the Gaussian function, given by

(o — @)
u,h(xg) =expy ———1¢ , 6
A,(-)( o) P{ 27 6)

where a;; represents the center and oj; represents the standard
deviation,

N N
L Moy 230wl — ay)

aj = » Ojj
ZkN=l Uik Z;cvzl Uik

2) INPUT VARIABLE SELECTION

Stepwise regression algorithm is designed to introduce the
variables with significant impact on the output into regression
model one by one, which can make the established model
contain only all significant variables [33]-[35]. Therefore,
we use it for selecting input variables of each regression
model in fuzzy rules, so as to improve the model precision
while reducing complexity.

(N

3) CONSEQUENCE PARAMETER IDENTIFICATION

The least square method has been widely utilized in the
parameter calculation of nonlinear regression model, as it
obtains the optimal fitting function by minimizing the sum
of the squared errors. However, the method fails to esti-
mate when the dataset occurs missing values, thereby we
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propose to treat missing values as variables for estimation.
Subsequently, those estimated parameters are trained to be
more appropriate through an alternate learning strategy. The
detailed realization steps are shown in Section IIL.B.

B. TS MODELING-BASED MISSING VALUE IMPUTATION

1) THE OVERALL STRUCTURE FOR IMPUTATION

In this paper, several incomplete data-based TS models with
multiple-input-single-output (MISO) structure are estab-
lished considering that not only one attribute suffers from
missing values in general and a multiple-input-multiple-
output (MIMO) problem can be divided into several MISO
problems. In each model, one incomplete attribute is taken as
output variable and the other attributes are selected as input
variables for modeling. For example, taking the jth incom-
plete attribute as output variable, the process of modeling-
based imputation is shown in Fig. 2, where x,i’:(i =1,---,0)
represents the vector of input variables in R, Ag) represents
the set of corresponding premise parameters, and 6%) repre-
sents the vector of consequence parameters.

As depicted in Fig. 2, establishing an incomplete data
model by regarding the jth incomplete attribute as the output
variable, where input variables are selected from the other
attributes by stepwise regression algorithm. To obtain the
imputations represented by corresponding model outputs,
the method first assigns a value to each variable in the input
vector and then inputs this reconstructed set to the established
model for calculation.

2) ALTERNATE LEARNING OF MODEL PARAMETERS

AND IMPUTATIONS

After identifying the model parameters and obtaining the
input variables for each TS model, we can calculate the output
values of these model through these estimated parameters.
However, since the data integrity is undermined by missing
values, the incomplete data-based TS model usually cannot
describe the regression relationships between attributes in
each subset well, and then the output values derived from the
model are not so appropriate as imputations. To improve the
precision of incomplete data model, and thereby enhance
the appropriateness of imputations derived from the model,
an alternate learning strategy is proposed in this section
for training the parameters together with imputations.
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The strategy is shown in Fig. 3, where Xp represents the set
of reconstructed values corresponding to present ones in Xp,
Xy represents that of imputations corresponding to missing
values in X);, € represents the threshold for terminating iter-
ations, and Af; = 5(1) - fg(l_1)| represents the change of
RMSE values between two successive iterations, in which
fs(l) represents the RMSE value in current iteration and fg(l_l)
represents that in previous one. The f; in each iteration is

calculated using )A(p and Xp by (8):

1

fo= | —
¢ 1Xp|

Z (g — kaj)Z, (8

XK €EXP

where |Xp| represents the number of values in Xp.

As shown in Fig. 3, by treating missing values as vari-
ables, the model parameters and model output values under
these parameters can be estimated easily by the method
in Section III.A. However, instead of finishing the impu-
tation task after replacing missing values with correspond-
ing estimated values, the strategy is able to decide whether
this reconstructed dataset should be output according to the
change of reconstruction error f;. If the error changes within
a limited range compared with the previous one, i.e. Af, =
[fe(l) — fe(lfl)l < g, it means that the fitting ability of this
incomplete data model will be no longer changed, and thereby
the imputation task can be accomplished with the output
of this reconstructed dataset. Otherwise, the dataset should
give feedback to the model for the parameter adjustment,
so as to update the fitting model and its corresponding output
values. In turn, new imputations and reconstruction error can
be obtained in response to the model adjustment. Through
the alternate learning of model parameters and imputations,
the reconstruction error tends to be stable and the imputa-
tion task can be finally accomplished with the output of the
updated dataset.

In summary, given an incomplete dataset, the alternate
learning strategy can be realized through the following steps.

Stepl: initialize missing values in Xj;;

Step2: estimate model parameters based on the recon-
structed dataset;

Step3: update imputations according to the estimated
parameters;
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Step4: evaluate the change of reconstruction error. If it
is greater than the given threshold, return to Step2, and the
current incomplete data model needs to be adjusted according
to the updated dataset. Otherwise, end the training and output
the updated dataset.

IV. EXPERIMENTS

A. EXPERIMENTAL SETUP

1) DATASETS

In this subsection, we select 12 complete benchmark datasets
from the UCI Machine Learning Repository [?] for exper-
iments. Their brief descriptions are shown in Table 1. The
UCI database is a repository released by the University of
California, Irvine. It currently maintains 497 data sets as
a service to the machine learning community, which has
become a popular database for researchers.

TABLE 1. The brief description of each benchmark dataset.

Dataset # Record #Attribute  Dataset #Record  #Attribute
Iris 150 4 Glass 214 9
Seeds 210 7 Istanbul 536 9
Wireless 2000 7 ILPD 583 9
Ecoli 336 8 Wine 178 13
Abalone 4177 8 Segment 2100 16
Forest fires 503 6 Dow 720 13

To observe the imputation performance of the proposed
method under different missing scales, we set 10 missing
ratios uniformly in the range of 5% to 50% for each bench-
mark dataset. Under the constraint of missing ratios, some
attribute values are deleted from each benchmark dataset
based on Missing Completely At Random (MCAR) and
Missing Not At Random (MNAR) mechanisms while keep-
ing the dimension of attributes and the number of records
unchanged. In the MCAR mechanism, values are removed
uniformly at random, and in the MNAR mechanism, only
values higher than the median of the attribute can be removed
randomly. These two mechanisms are performed in turn to
produce missing data, that is, incomplete datasets under the
missing ratios 5%, 15%, 25%, 35% and 45% are generated
based on MCAR, and those under missing ratios 10%, 20%,
30%, 40% and 50% are produced based on MNAR. Hence,
there are 10 combinations (2 mechanisms of missingness
and 5 missing ratios for each mechanism) of missing types.
Moreover, 10 incomplete datasets are generated randomly
under one combination for each benchmark dataset, which
means that a total of 1200 (12x10%5%2) incomplete datasets
are utilized for experiments.

2) EVALUATION CRITERION
In this paper, we take root mean square error (RMSE) which
is calculated by

1 .
RMSE = | —— Y (nj — &) )
‘XM fckjef(M
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and mean absolute percentage error (MAPE) defined by

1o "kf'—fﬂcf

MAPE =—
‘XM Tkj

(10)

)AcijXM

to evaluate the performance of imputation, where X € Xu
represents the imputation for a missing value xy;, and 7y;
represents its corresponding actual value.

3) COMPARISON METHODS

In order to verify the effectiveness of clustering-based TS
model in missing value imputation and the feasibility of
alternate learning strategy in modeling with incomplete data,
the following nine comparison methods are designed to carry
out experiments.

(1) The k nearest neighbor imputation (KNNI). Select k near-
est neighbors for each incomplete record, then impute
missing values with the mean values of corresponding
attributes in nearest neighbors [7].

(2) Exception maximization imputation (EMI). Take the iter-
ation of E-step and M-step to estimate missing values and
calculate parameters [11].

(3) Fuzzy exception maximization imputation (FEMI).
Make a fuzzy clustering of the dataset and then perform
the EMI algorithm in each cluster [12].

(4) Regression model-based imputation (REGI). Establish a
regression model with variable selection based on com-
plete records, and estimate missing values depending on
this complete data-based model.

(5) TS model-based imputation (TSI). Establish a TS model
with variable selection based on complete records, and
estimate missing values depending on this complete data-
based model.

(6) Regression model-based imputation with full utilization
of present values (REGIf). Establish a regression model
with variable selection based on all records instead of
complete records, and estimate missing values depending
on this incomplete data-based model. In this method,
the model parameters are estimated based on a recon-
structed dataset where missing values are pre-imputed
with mean values of corresponding attributes.

(7) TS model-based imputation with full utilization of
present values (TSIf). Establish a TS model with vari-
able selection based on all records instead of com-
plete records, and estimate missing values depending
on this incomplete data-based model. In this method,
the premise parameters are obtained by FCM-PDS clus-
tering algorithm together with Gaussian projection, while
consequence parameters are estimated based on a recon-
structed dataset where missing values in each subset
are pre-imputed with mean values of corresponding
attributes;

(8) Regression modeling-based imputation trained by alter-
nate learning strategy (REGIf-AL). On the basis
of REGIf, model parameters and imputations are
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learned alternately and updated dynamically until the
reconstruction error calculated from present values tends
to be stable;

(9) TS modeling-based imputation trained by alternate
learning strategy (TSIf-AL). On the basis of TSIf,
consequence parameters and imputations are learned
alternately and updated dynamically untill the recon-
struction error calculated from present values tends to be
stable.

In TSI, TSIf and TSIf-AL methods, fuzzy rules are gener-
ated separately for each dataset by means of TS modeling.
Generally, the generation of fuzzy rules is equivalent to
the construction of TS model, which contains three steps:
premise parameter identification, input variable selection,
and consequence parameter identification. For each incom-
plete dataset, these three steps are conducted to generate
fuzzy rules automatically.

B. EXPERIMENTAL RESULTS

In order to make the conclusion more reliable, the average of
imputation performance for all comparison methods obtained
from the ten incomplete datasets with the same missing ratio,
benchmark dataset and missingness mechanism are taken as
a set of results. In other words, a benchmark dataset cor-
responds to only one group of results under the constraint
of each combination of missing ratios and mechanisms,
as shown in Tables 2 to 13. Moreover, entries in boldface are
obviously better than all the other entries in the same column.
After obtaining the experimental results for all the methods,
we adopt t-test with significance level p = 0.05 to determine
whether the two results in the same column of the table are
significantly different from each other. The minimum result
will be underlined only when it is significantly different from
all the other results. Based on the distribution of bolded
results, we can evaluate the imputation performance from the
perspective of statistical significance tests.

C. RESULT ANALYSIS

By observing the experimental results in Tables 2 to 13,
it is clear that TSIf-AL significantly has the most optimal
results, which indicates that the imputation performance of
TSIf-AL is better than the rest methods. Furthermore, we can
also find that the RMSE values and MAPE values obtained
from REGI and TSI are larger than those obtained from the
other regression-based methods. This phenomenon indicates
that making full use of present values for incomplete data
modeling can enable the relationships between attributes
to be described more effectively, and thus the imputation
performance can also be enhanced correspondingly. In the
following analysis, we discuss the superiority of clustering-
based modeling compared to overall modeling, the advantage
of utilizing alternate learning strategy by those methods mak-
ing full use of present values, and the comparison between
TSIf-AL and non-regression-based methods.

VOLUME 8, 2020
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TABLE 2. The RMSE and MAPE values obtained from each imputation method for Iris.

. RMSE MAPE (%)
ITHIZ‘:}T(‘;‘;;“ MCAR 5 MNAR MCAR 5 MNAR
5%  15% 25% 35% 45% ' 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% ' 10% 20% 30% 40% 50%
KNNI  0.354 0.387 0.471 0.558 0.700:0.416 0.563 0.734 1.002 1.169|12.17 15.06 16.27 17.54 38.44. 7.42 1091 12.55 18.74 23.29
EMI 0.383 0.393 0.478 0.532 0.550:0.424 0.596 0.752 0.861 1.144|11.44 16.61 16.04 18.36 2329: 7.70 10.65 12.90 14.78 20.79
FEMI  0.337 0.393 0.471 0.573 0.599:0.432 0.528 0.675 0.740 0.989(11.79 15.77 14.94 17.49 22.26: 7.49 10.35 11.74 13.74 18.77
REGI  0.438 0.526 0.617 0.717 0.764:0.456 0.613 0.799 0.969 1.183|13.77 26.40 30.24 39.12 45.231 8.98 11.56 15.09 20.26 25.90
TSI 0.376 0.410 0.485 0.521 0.619:0.433 0.578 0.701 0.761 0.961 |12.43 18.29 17.36 19.18 23.93: 9.53 10.87 13.14 14.67 17.72
REGIf  0.400 0.492 0.581 0.696 0.776;0.416 0.565 0.788 0.995 1.217[17.38 25.21 28.34 34.23 36.96, 8.40 11.13 14.78 18.53 23.18
TSIf 0330 0.394 0.470 0.525 0.622:0.497 0.590 0.685 0.741 0.946|11.29 13.94 14.72 16.90 23.02: 8.28 10.98 12.35 13.71 16.73
REGIf-AL 0.431 0.443 0.516 0.570 0.65510.485 0.532 0.661 0.841 1.048|16.29 19.00 20.62 23.51 27.78, 8.18 10.12 12.01 15.44 19.75
TSIf-AL  0.317 0.368 0.450 0.490 0.598:0.396 0.523 0.625 0.694 0.892|10.66 14.18 14.08 15.66 21.14: 7.99 9.79 11.03 12.55 15.82
TABLE 3. The RMSE and MAPE values obtained from each imputation method for Seeds.
, RMSE MAPE (%)
Ir;ztt‘g(‘l‘;n MCAR : MNAR MCAR : MNAR
5% 15% 25% 35% 45% i 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% @ 10% 20% 30% 40% 50%
KNNI 0516 0.605 0.716 1.075 11.46:0.697 1.342 1.992 2.179 2.407| 6.90 8.11 8.66 11.10 14.82: 555 9.49 13.87 15.99 19.61
EMI 0.442 0.506 0.762 1.632 2.066,0.573 0.856 2.145 3.909 3.066| 5.54 6.43 820 16.04 21.35} 4.77 6.58 16.08 31.52 24.79
FEMI  0.436 0.518 0.729 0.918 1.387:0.524 0.609 1.500 2.298 2.484| 5.55 6.44 7.83 14.51 14.511 3.85 4.40 6.82 10.47 16.60
REGI  0.810 0.816 0.832 0.877 0.928:0.907 1.051 1.540 1.880 2.346| 8.85 9.25 9.61 10.05 14.60; 6.81 7.62 11.09 14.33 19.06
TSI 0.689 0.729 0.804 0.935 1.455E0‘835 1.103 1.218 1.476 2.036| 6.85 8.41 9.32 10.19 9.87 i 5.84 7.89 8.67 11.04 16.29
REGIf  0.655 0.710 0.783 0.856 0.888.:0.860 1.021 1.416 1.815 2.319| 7.44 8.62 9.16 9.34 10.70: 6.49 7.25 10.58 14.28 18.39
TSIf  0.552 0.654 0.748 0.824 0.96050.771 1.068 1.190 1.440 2.028| 6.83 8.41 8.99 992 9.67!575 7.86 8.62 11.04 16.10
REGIf-AL 0.608 0.707 0.770 0.815 0.879:0.836 0.982 1.180 1.520 2.153| 7.05 837 870 9.01 9.04:6.32 692 7.11 11.39 17.29
TSIf-AL  0.499 0.558 0.612 0.719 0.851:0.565 0.738 1.008 1.319 1.915| 6.04 7.00 7.35 7.98 9.87 ;4.17 511 821 9.75 14.83
TABLE 4. The RMSE and MAPE values obtained from each imputation method for Wireless.
. RMSE MAPE (%)
I‘fﬂ%ﬁ‘ggg“ MCAR ; MNAR MCAR i MNAR
5% 15% 25% 35% 45% . 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% . 10% 20% 30% 40% 50%
KNNI 4264 4449 4.865 5.315 579214236 4.829 6.263 8.671 9.598| 532 5.50 6.17 656 7.22'457 526 680 991 11.57
EMI 4312 4.378 4.851 5298 5.63614.241 4.782 5.656 7.407 8.908| 5.58 5.68 6.17 6.44 6.85.475 536 646 855 9.72
FEMI  4.166 4367 4.831 5.194 5.956:4.518 5.551 6.408 8.118 9.277| 540 556 6.19 641 7321491 604 7.08 898 10.92
REGL  4.529 4757 5.121 5.529 6.151:4.437 5501 6.874 8.603 9.419| 575 6.13 6.79 741 8.02:498 633 832 10.84 12.19
TSI 5440 5.211 5204 5.442 6.044:5.317 5.597 5991 7.549 8.886| 7.06 6.71 6.70 6.89 7.50; 6.18 6.44 7.09 9.32 10.54
REGIf  4.429 4.667 5.115 5.524 5.937:4.431 5474 6.721 8.464 9.448| 6.03 6.16 6.60 7.18 8.02:4.96 6.27 810 10.67 12.09
TSIf  4.129 4.359 4.896 5243 5.63214.143 5.003 5.742 7.716 8.825| 535 5.65 622 6.75 7.19 1459 561 656 8.63 10.26
REGIf-AL 4.356 4.656 5.099 5.513 5.75314.873 5.404 6.171 7.289 8254|572 6.06 6.59 7.10 7.35:532 598 693 834 952
TSIf-AL  4.089 4.233 4.559 4.928 5.339 .4.019 4.472 4.929 6.493 8.148| 527 544 581 6.06 6.57 | 427 494 549 7.15 9.10
TABLE 5. The RMSE and MAPE values obtained from each imputation method for Ecoli.
Imputation RMSE MAPE C4)
methods MCAR MNAR MCAR MNAR
5%  15% 25% 35% 45% 1 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% :10% 20% 30% 40% 50%
KNNI  0.125 0.140 0.151 0.158 0.166:0.157 0.185 0.235 0.301 0.319|22.14 25.31 29.41 31.29 32.80;17.18 20.60 27.54 38.32 41.95
EMI 0.123 0.136 0.151 0.175 0.194:0.149 0.182 0.232 0.292 0.313|24.29 27.22 33.29 33.47 35.42:16.65 20.71 27.96 37.54 40.80
FEMI  0.121 0.130 0.141 0.149 0.158:0.140 0.167 0.358 0.312 0.330|23.21 26.01 30.21 30.73 32.46:16.42 19.61 30.69 33.97 41.41
REGI  0.136 0.141 0.151 0.157 0.162i0.154 0.184 0.225 0.280 0.308|25.97 28.14 32.74 32.98 34.43517.39 21.21 27.74 36.35 40.36
TSI 0.121 0.133 0.143 0.153 0.159:0.138 0.162 0.193 0.230 0.279|23.67 26.47 30.44 31.00 32.54,15.60 18.70 23.27 27.83 36.12
REGIf  0.123 0.134 0.147 0.154 0.156:0.150 0.177 0.214 0.251 0.292|23.87 27.65 3227 32.25 33.97:17.00 20.51 26.26 32.31 38.84
TSIf  0.117 0.128 0.139 0.149 0.152:0.137 0.161 0.190 0.221 0.276|23.33 25.73 30.25 30.95 32.38:15.82 18.41 22.19 27.97 35.71
REGIf-AL 0.122 0.134 0.143 0.151 0.156:0.156 0.178 0.207 0.242 0.287|23.58 26.96 31.47 31.59 33.60:17.34 20.01 24.78 30.58 37.78
TSIFAL  0.118 0.122 0.131 0.141 0.14310.123 0.150 0.175 0.206 0.276[22.72 23.97 28.15 28.55 30.95:14.15 17.25 20.64 25.06 35.07

1) THE EFFECT OF CLUSTERING-BASED MODELING ON

IMPUTATION PERFORMANCE

As illustrated in Tables 2 to 13, there are 12 datasets, 10 com-
binations per dataset and 2 evaluation criteria, leading to

VOLUME 8, 2020

240 comparisons altogether. The RMSE values and the
MAPE values obtained from TSIf are generally smaller than
those obtained from REGIf. Among their 240 groups of com-
parisons, TSIf performs better in 198 out of 240 comparisons
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TABLE 6. The RMSE and MAPE values obtained from each imputation method for Abalone.

RMSE MAPE (%)
MCAR : MNAR MCAR : MNAR

5% 15% 25% 35% 45% . 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% . 10% 20% 30% 40% 50%
KNNI  0.106 0.111 0.116 0.121 0.130!0.114 0.129 0.190 0.280 0.312] 9.15 9.69 10.80 13.11 14.02} 9.00 10.74 17.32 29.33 33.56
EMI  0.094 0.098 0.101 0.107 0.110:0.139 0.142 0.152 0.206 0.217| 847 9.30 10.16 12.76 12.72! 7.43 9.70 13.94 1824 21.76
FEMI ~ 0.093 0.097 0.101 0.106 0.112}0.122 0.129 0.178 0.295 0.281| 7.77 832 895 1075 1112} 8.70 9.97 1335 22.11 25.45
REGI  0.140 0.151 0.159 0.165 0.17310.174 0.193 0.215 0.276 0.318|25.83 35.17 45.36 56.03 54.87!13.07 21.10 18.63 30.37 36.24
TSI 0.097 0.125 0.146 0.161 0.17010.147 0.188 0.232 0.199 0.193|27.28 29.76 31.93 35.79 36.96!12.06 17.67 23.61 24.87 24.73
REGIf  0.092 0.103 0.116 0.129 0.138:0.128 0.152 0.186 0.258 0.308[22.94 25.67 27.90 33.92 35.98! 9.74 19.22 20.85 27.93 35.41
TSIf  0.090 0.102 0.114 0.128 0.13610.123 0.156 0.203 0.210 0.216[12.80 19.96 26.81 34.51 3525! 9.83 13.65 19.81 21.58 20.77

REGIf-AL 0.090 0.099 0.105 0.115 0.118!0.123 0.134 0.155 0.170 0.231|22.90 22.95 20.79 23.47 22.16! 9.26 10.51 12.49 15.30 22.35
TSI-AL  0.089 0.092 0.091 0.097 0.099:0.106 0.113 0.135 0.169 0.183|12.06 14.60 1623 19.07 19.39! 8.61 9.12 11.23 14.97 17.35

Imputation
methods

TABLE 7. The RMSE and MAPE values obtained from each imputation method for Forest fires.

RMSE MAPE (%)

MCAR | MNAR MCAR I MNAR

5% 15% 25% 35% 45% : 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% ! 10% 20% 30% 40% 50%
KNNI  69.23 80.84 101.36 83.39 92.24:73.11 106.7 119.3 187.2 245.8(43.24 4530 39.52 4435 66.1915.73 19.62 24.41 38.18 48.63
EMI  80.13 105.91103.70 89.39 109.81:83.58 115.9 136.9 183.8 214.0|37.50 41.98 43.59 46.37 45.38114.39 27.14 30.42 33.68 37.05
FEMI  66.87 79.75 96.62 83.45 90.12169.31 99.82 125.7 165.2 186.1|29.43 33.35 39.82 42.25 46.05:19.87 19.34 22.21 29.16 34.72
REGL 7250 80.79 99.74 88.41 100.16/77.23 109.9 131.3 149.4 198.8|45.74 51.15 53.49 58.33 62.00115.55 19.18 23.15 29.11 36.27
TSI 68.44 80.14 96.12 88.49 92.84174.83 108.9 112.8 114.5 142.9|29.85 36.24 39.63 43.90 42.77!17.55 18.79 21.11 24.90 30.78
REGIf  68.02 80.99 102.30 87.28 101.5871.30 101.5 105.0 119.0 143.2|51.59 50.94 5525 61.41 58.13115.06 16.72 20.49 25.21 30.94
TSIf  66.65 77.22 95.68 83.80 89.74:73.97 103.0 108.4 112.7 141.1|30.14 32.92 38.77 39.04 40.02!16.18 16.63 20.04 24.42 30.67

REGIf-AL 75.14 80.18 95.11 86.33 91.94:75.40 105.4 110.0 121.3 139.7|44.66 48.95 47.66 59.87 48.28:15.09 16.38 18.93 21.61 25.81
TSIFFAL  66.08 74.26 94.99 82.37 83.00!75.36 99.62 103.3 104.1 126.1|23.37 28.09 31.19 35.04 36.33:15.97 15.78 18.05 20.12 24.46

Imputation
methods

TABLE 8. The RMSE and MAPE values obtained from each imputation method for Glass.

Imputation RMSE MAPE (%)
MCAR ! MNAR MCAR : MNAR
methods o050, 25% 35% 45% | 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% | 10% 20% 30% 40% 50%
KNNI  0.204 0.352 0.548 0.609 0.992:0.485 0.503 0.619 1.127 —— |11.33 11.89 16.96 20.89 34.79! 826 10.32 15.00 27.85 —

EMI 0.264 0.337 0.523 0.727 0.748:'0.204 0.239 0.558 0.888 1.295(10.82 11.78 1531 21.24 42.785 531 11.28 8.53 16.81 19.98
FEMI  0.242 0.412 0.570 1.373 1.605:0.395 0.330 1.189 1.805 2.360| 7.98 16.89 20.21 37.45 41.61. 4.08 10.33 18.78 18.65 27.52
REGI  0.397 0.363 0.507 0.739 0.681 20.402 0.445 0.575 0.694 1.403(13.23 16.90 17.82 21.47 25‘295 12.17 9.20 10.19 14.45 30.01
TSI 0.237 0.407 0.478 0.480 0.561 ‘:0.371 0.421 0.591 0.652 0.676| 8.89 11.49 11.95 15.44 19‘265 7.40 895 9.42 1491 16.46
REGIf  0.390 0.374 0.505 0.537 0.524:0.295 0.372 0.594 0.745 0.745[14.05 15.06 16.76 16.22 25.54; 8.00 9.92 11.39 15.38 19.54
TSIf 0.212 0.342 0.490 0.478 0.489‘:0.315 0.368 0.562 0.668 0.681| 9.01 11.08 12.47 14.08 19.195 7.30 9.37 10.64 14.54 17.29
REGIf-AL 0.389 0.354 0.456 0.510 0.503:0.496 0.382 0.562 0.721 0.730|11.88 13.40 16.66 15.54 2231, 8.44 9.52 9.11 14.06 19.28
TSIf-AL  0.200 0.319 0.443 0.450 0.4601,0.291 0.316 0.470 0.607 0.658| 8.09 9.60 10.93 12.34 17.095 7.14 774 7.10 11.12 14.99

TABLE 9. The RMSE and MAPE values obtained from each imputation method for Istanbul.

RMSE (x10) MAPE (%)
MCAR : MNAR MCAR : MNAR
5% 15% 25% 35% 45%: 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45%: 10% 20% 30% 40% 50%
KNNI  0.069 0.071 0.074 0.117 0.125 0.077 0.093 0.111 0.125 0.132/96.65 112.6 111.3 110.5 119.8.40.61 48.72 60.02 70.74 76.95
EMI  0.058 0.061 0.064 0.115 0.129 0.066 0.079 0.092 0.116 0.13595.08 117.2 108.4 113.4 135.9131.62 39.07 47.15 58.94 76.26
FEMI  0.064 0.065 0.064 0.111 0.190 0.068 0.083 0.104 0.107 0.183[101.8 117.7 107.9 119.8 164.6!34.19 41.60 54.31 58.49 86.35
REGI  0.059 0.061 0.067 0.109 0.153 0.069 0.079 0.096 0.120 0.130/95.13 111.5 129.4 126.7 195.1!31.59 36.07 47.76 64.81 76.01
TSI 0.066 0.071 0.068 0.101 0.137 0.075 0.084 0.091 0.101 0.119/108.8 122.3 118.9 125.7 139.3143.00 42.10 50.14 55.51 66.49
REGIf  0.059 0.058 0.069 0.098 0.098 0.067 0.078 0.089 0.105 0.122117.5 127.2 117.1 114.4 116.0:29.90 36.93 42.69 52.05 67.99
TSIf  0.063 0.060 0.062 0.096 0.098 0.069 0.077 0.086 0.101 0.120(92.39 110.2 106.3 109.5 114.0133.21 35.04 41.93 52.02 67.16
REGIf-AL  0.069 0.065 0.062 0.095 0.097 0.077 0.080 0.092 0.106 0.122(95.12 110.2 107.0 110.0 112.8132.27 35.40 42.68 51.64 67.86
TSIEAL  0.063 0.061 0.061 0.089 0.093 0.067 0.074 0.082 0.096 0.11790.89 106.3 100.3 103.3 107.6:!33.85 34.77 41.28 49.54 64.79

Imputation
methods

and REGIf performs better in the remaining 42 combina- missing value imputation than that with traditional regression
tions. For another set of comparisons between TSIf-AL and model.
REGIf-AL, a similar pattern can be drawn that the former The primary reason why TS modeling-based methods can

has better performance in most cases. According to the above achieve better performance is that TS model is realized on the
descriptions, analyzing with TS model is more effective in premise of fuzzy partition, which considers the differences
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TABLE 10. The RMSE and MAPE values obtained from each imputation method for ILPD.

RMSE MAPE (%)
MCAR ' MNAR MCAR | MNAR
5% 15% 25% 35% 45% ' 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45%: 10% 20% 30% 40% 50%
KNNI  3.738 2.944 3.687 3.449 4.569:2.716 3.431 4.656 4.550 4.595|54.71 48.93 56.83 61.54 65.41.:31.62 31.81 37.50 42.90 46.83
EMI 2.909 2.656 3.207 3.450 4.884:'2.409 3.184 5.503 5.619 6.809(40.90 37.61 51.11 63.77 66.44520.17 64.89 36.44 46.29 54.88
FEMI  2.607 2.633 4.495 4.756 4.275:2.138 2.917 4.197 4.626 4.933|42.56 27.14 52.88 85.85 63.021:18.74 25.68 30.71 40.36 46.87
REGI 2,972 2.756 3.279 3.514 4.700;2.789 3.352 4.127 4.170 4.581(59.86 54.40 62.09 91.71 71.53536.11 54.60 38.94 47.89 46.68
TSI 2.823 2.681 3.155 3.432 4.456:2.483 2.968 4.058 4.148 4.547(57.70 43.17 51.28 63.26 61.83520.42 28.28 33.77 37.23 45.55
REGIf  3.100 2.638 3.118 3.404 4.471;2.420 3.299 4.283 4.061 4.525|40.84 44.34 58.21 60.13 63.11,29.53 30.23 30.04 40.76 44.33
TSIf 2.636 2.638 3.003 3.360 4.276&2.118 2.904 3.852 3.803 4.524|48.81 44.06 53.04 60.01 58.16522.01 24.29 28.64 35.12 44.30
REGIf-AL 3.621 3.191 3.770 3.566 4.278:2.663 2.925 4.163 4.020 4.521|51.72 46.92 57.80 59.58 62.20.25.48 27.71 28.73 40.06 43.79
TSIf-AL  2.656 2.460 2.957 3.004 3.859i2.560 2.778 3.455 3.439 4.427)48.65 40.39 47.55 52.22 M524.74 23.44 27.44 32.30 42.87

Imputation
methods

TABLE 11. The RMSE and MAPE values obtained from each imputation method for Wine.

RMSE MAPE (%)
MCAR : MNAR MCAR : MNAR

5% 15% 25% 35% 45%: 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% : 10% 20% 30% 40% 50%
KNNI  0.947 1.545 1.653 2.069 3.45911.666 1.837 2.231 —— —— [17.54 22.89 31.84 41.69 64.87114.82 24.12 2851 —— ——
EMI  1.189 1.831 2.510 2.690 2.186'1.433 2.867 2.002 3.136 4.047|16.96 22.24 40.82 47.57 42.41!13.83 33.90 20.73 34.71 40.04
FEMI  0.996 1.459 1.159 1.794 2.146:1.559 1.774 1.925 2.624 3.432[16.00 25.93 2528 28.21 31.86:18.30 22.52 20.14 29.78 37.73
REGI  1.131 1.506 1.646 1.829 1.596.1.643 1.915 2.212 2.250 2.533|18.62 24.09 30.94 35.05 30.38!16.92 20.81 27.00 27.74 33.84
TSI 1.132 1.379 1.324 1457 1.425:1.470 1.411 1.684 1.952 2.450|18.25 22.95 24.78 27.60 26.12114.50 17.81 19.02 20.87 31.25
REGIf 1433 1379 1.316 1420 1.446:1.555 1485 1.774 2.109 2.532|18.32 20.87 2032 22.93 24.09113.92 15.61 20.37 25.85 34.44
TSIf 0917 1.152 1.134 1398 1.374!1.489 1.403 1.600 1.960 2.440|16.13 19.97 19.92 22.64 23.72!13.13 15.51 18.17 22.69 32.11

REGIfFAL 1.130 1.294 1.242 1.409 1.38211.544 1429 1.738 2.100 2.505|18.01 20.73 20.29 22.68 22.97:13.44 15.34 19.48 25.34 33.11
TSIEAL 0911 1.129 1.118 1.272 1.300:1.394 1.357 1.528 1.801 2.391|15.48 17.72 18.68 21.37 22.13:12.42 14.11 15.99 19.63 30.66

Imputation
methods

TABLE 12. The RMSE and MAPE values obtained from each imputation method for Segment.

RMSE MAPE (%)
MCAR ‘; MNAR MCAR : MNAR
5% 15% 25% 35% 45% 1 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45% . 10% 20% 30% 40% 50%
KNNI 2488 4.482 14.16 20.64 20.145.252 13.58 29.41 35.42 37.86 [12.35 19.43 38.49 87.24 107.85) 13.66 25.82 44.52 59.92 69.63
EMI 2649 3.872 5.871 7.051 23394.789 6.842 11.72 2235 31.98 (1543 20.80 19.70 23.64 57.99 | 13.41 17.47 24.29 38.94 51.76
FEMI  1.509 2.871 8.488 10.14 18.674.356 6.791 12.91 16.10 34.36 9.11 11.00 12.08 30.49 55.45 ' 8.59 13.18 26.37 31.85 50.15
REGI 5460 8.675 12.65 13.57 14.65!12.84 13.80 19.22 24.88 31.37 [32.68 43.76 50.18 64.74 68.46 | 16.81 22.53 28.22 36.98 45.73
TSI 5.661 5.936 7.025 7.874 10.139.989 10.40 12.92 15.15 25.12 [23.85 35.24 32.92 29.96 34.26 | 29.52 46.63 37.99 40.80 43.43
REGIf  4.860 7.765 10.59 1131 12.89110.60 11.55 17.73 23.39 30.49 [27.98 41.37 39.10 48.74 53.77 1 16.93 19.90 25.35 34.28 46.76
TSIf  2.768 4.447 6.836 8.011 10.615.863 8.348 12.00 1534 25.59 [15.35 26.12 29.02 34.76 38.32 ! 13.18 17.41 22.40 30.49 43.04
REGIf-AL 4.326 6.145 8.736 9.287 10.7818.429 11.39 13.67 18.28 26.18 27.87 32.41 30.34 35.15 43.33 | 14.71 20.96 24.55 29.89 39.69
TSI-AL 2354 3.433 5.457 6.893 9.49 4.782 6.437 10.15 13.27 22.21 |13.79 18.57 18.70 22.98 29.14 . 12.94 1537 18.84 23.82 34.87

Imputation
methods

TABLE 13. The RMSE and MAPE values obtained from each imputation method for Dow.

. RMSE MAPE (%)
Ir;it‘g(‘l‘;n MCAR | MNAR MCAR | MNAR
5% 15% 25% 35% 45% . 10% 20% 30% 40% 50% | 5% 15% 25% 35% 45%: 10% 20% 30% 40% 50%
KNNI 0.076 0.079 0.095 —— —— 10.088 0.103 0.181 0.203 — [32.64 37.88 52.88 —— —— '17.04 23.98 32.02 43.97 —

EMI 0.068 0.076 0.087 0.088 0.092:'0.082 0.092 0.275 0.288 0.164 |25.62 30.29 61.55 83.59 136.955& 17.29 50.16 61.66 70.56
FEMI  0.058 0.065 0.083 0.086 0.089:0.096 0.104 0.168 0.166 0.168|19.26 23.75 60.87 79.20 116.70: 13.25 27.40 44.39 53.48 62.81
REGI ~ 0.073 0.085 0.102 0.159 0.14550.105 0.125 0.177 0.193 0.248 {41.47 54.04 67.41 117.87109.445 20.04 22.78 37.29 42.46 66.17
TSI 0.081 0.088 0.097 0.099 0.096‘:0.099 0.112 0.118 0.144 0.238(40.26 43.17 62.05 68.71 73.63522.48 26.34 29.45 34.97 59.85
REGIf  0.071 0.079 0.083 0.091 0.095:0.098 0.113 0.156 0.190 0.237|38.56 48.37 59.24 70.09 76.33:15.54 22.19 30.46 41.63 57.51
TSIf  0.070 0.078 0.083 0.087 0.090‘:0.083 0.095 0.110 0.138 0.233[29.56 54.37 55.44 59.33 53.985 14.92 19.64 24.30 32.57 56.47
REGIf-AL 0.075 0.082 0.076 0.081 0.096:0.090 0.099 0.146 0.184 0.237{46.92 51.13 53.21 61.33 76.68:15.37 19.64 30.26 41.53 56.56
TSIf-AL  0.052 0.062 0.078 0.080 0.084i0.077 0.084 0.100 0.123 0.233[26.83 34.76 40.54 48.06 50.195 13.87 17.08 20.55 26.70 56.21

of attribute relationships between subsets while carrying out and summing those values derived from each fuzzy rule.
regression analysis. Besides, TS model is a nonlinear model In general, these fuzzy rules can reflect the local character-
in essence, which obtains the model output by weighting istics of incomplete data, and thus mine the distribution of
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association among attributes in different partitions to some
extent. Therefore, it is more capable of data estimation than
traditional regression model, and thus performing better in
missing value imputation.

2) THE EFFECT OF ALTERNATE LEARNING ON

IMPUTATION PERFORMANCE

According to the RMSE values in Tables 2 to 13, TSIf-AL
performs better than TSIf, and the performance of REGIf-AL
is also superior to the REGIf, which indicates that the esti-
mated values derived from the incomplete data model are
more approximate to their actual values after using the alter-
nate learning strategy. Taking the Abalone datasets with
different missing ratios as examples, when applying the pro-
posed strategy, the accuracies of regression modeling-based
imputation are increased by more than 15% in most cases,
and the performance of TS modeling-based imputation also
has a further improvement. Therefore, the feasibility and
effectiveness of alternate learning strategy can be verified
based on those descriptions.

The feasibility and effectiveness lie in the following two
aspects. On the one hand, model output values are able to
approximate to their actual values with the adjustment of
model parameters, which means that imputations can be
more reasonable with the optimization of incomplete data
modeling. On the other hand, model parameters can reflect
the real attribute relationships with the development of data
quality, and thus further enhancing the reliability of those
imputations. In summary, the accuracy of incomplete data
modeling and the effectiveness of missing value imputation
can be enhanced in a collaborative way.

3) THE COMPARISON BETWEEN TSIF-AL AND
NON-REGRESSION-BASED METHODS

Comparing the imputation performance of TSIf-AL, KNNI,
EMI and FEMI in Table 2 to 13, it can be seen that TSIf-AL
has a higher imputation accuracy in most cases. In a total
of 240 set of results, TSIf-AL outperforms the other methods
in 197 sets. Moreover, TSIf-AL has an even better imputation
results when the missing ratio of the incomplete data is large.
Specifically, the results of TSIf-AL are totally better than
those of KNNI, EMI and FEMI except for the Iris dataset,
the Abalone dataset and the Dow dataset when the missing
ratio is not less than 35%, and TSIf-AL has a better impu-
tation performance in 92 out of 96 sets. The above analysis
shows that TSIf-AL can impute missing values in an effec-
tive way. Furthermore, taking into account the relationship
among attributes may contribute to the imputation accuracy,
especially in the case of high missing ratios.

D. FURTHER EVALUATION

1) CONVERGENCE OF ALTERNATE LEARNING

Convergence is one of the key concerns for iterative
algorithms. In this subsection, the convergence of alternate
learning strategy is verified using present values due to the
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consideration that only those values are available in real-
world datasets. Taking the Segment datasets with different
missing ratios as an example, the RMSE values obtained in
each iteration are shown in Fig. 4.

e 40%

% - - - -45%

Y026 8 10 12 14 16 18 20
The number of iterations

FIGURE 4. The variation of RMSE values in alternate learning process.

As shown in Fig. 4, all the curves present the same trend
in general, which drops rapidly at the beginning and then
tends to be stable. Specifically, the RMSE sharply goes to a
small value within the first 3 iterations for each missing ratio,
then the convergence rate decreases gradually and remains
unchanged. Therefore, it can be easily concluded that the
alternate learning strategy has a fast convergence speed and
good stability.
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FIGURE 5. Average execution time (ms) for methods on 12 datasets.

2) TIME EFFICIENCY

The average execution time for 10 datasets (2 mechanisms
and 5 different incomplete datasets per mechanism) for each
benchmark dataset is shown in Fig. 5. In order to make
the results more reliable, we use the same machine to carry
out the experiments. As shown in Fig. 5, TSIf-AL generally
takes more time than KNNI, EMI and FEMI in order to pay
the cost of apparently better imputation accuracy. We can
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also find that in respect of Wireless and Abalone datasets,
the time consumption of KNN is obviously larger than the
other methods due to the increase in data size, and for Segment
dataset, the gap of execution time between TSIf-AL and
FEMI is not obvious. These results indicate that the problem
of time consumption for TSIf-AL can be neglected to some
extent when the size of data gets larger, and the reason lies in
that TSIf-AL can obtain the ideal performance of imputation
compared with the other methods.

Next, we analyze the time complexity from the perspec-
tive of theoretical analysis. TSIf-AL is realized by premise
parameters identification, input variables selection and the
alternate learning of model parameters with imputations. Let
N, ¢, s and [ represent the numbers of records, clusters,
attributes and iterations for alternate learning respectively.
Since we take FCM-PDS algorithm with the complexity of
O(Nc?s) to identify the premise parameters for all the TS
models and utilize stepwise regression algorithm which has
the complexity of O(Ns?) to select the input variables for
each TS model, the complexity of the above step can be
described as O(Nc?s + Ns3). In each iteration of alternate
learning, the consequence parameters of each TS model are
obtained through the least square method with the com-
plexity of O(c’s®). Therefore, the complexity of TSIf-AL
is O(Nc2s + Ns® + lc3s4). Generally, [, ¢ are chosen to
be numbers significantly smaller than N [12], and thus the
complexity of TSIf-AL can be simplified to O(Ns®> + s*).
Additionally, the complexity of KNNI, EMI and FEMI are
O(Ns), O(Ns? + s%) and O(Ns? + s), respectively. Although
TSIf-AL needs higher computation time compared with the
other methods, imputation accuracy generally has a higher
priority in the imputation of missing values especially when
the difference of time computation is not obvious.

V. CONCLUSION

Taking the differences in regression relationships among sub-
sets into consideration, we propose a method of incomplete
data modeling based on TS model for imputing missing
values. The method performs regression analysis on each
subset obtained by fuzzy clustering algorithm and takes the
weighted sum of the regression models to build the global
model, which has higher precision and better imputation
performance than traditional regression model. Meanwhile,
concentrating on the problem of incomplete model input
caused by data corruption, this paper carries out an alternate
learning strategy for training model parameters together with
imputations, in which missing values are treated as variables
to promote training. Through this strategy, a collaborative
improvement of model accuracy and imputation accuracy
can be realized additionally as the problem of incomplete
model input is resolved. Experiments on 12 UCI datasets
with different missing ratios and mechanisms demonstrate
that precise TS modeling with the consideration of differ-
ences among subsets is capable of missing value imputation,
which derives more appropriate estimation values than the
traditional regression model. Furthermore, the effectiveness

VOLUME 8, 2020

of incomplete data modeling is enhanced by engaging all the
present values in modeling, and the performance of missing
value imputation is further improved when training with alter-
nate learning strategy.

In addition, the variation of RMSE values in alternate
learning process indicates the ideal convergence of TSIf-AL,
and the comparison among TSIf-AL with KNNI, EMI and
FEMI on time complexity shows that TSIf-AL requires
higher computation time, but obtains the obviously better
imputation performance. From the perspective of execution
time, the gaps in time consumption between the proposed
method and comparison methods are not obvious when the
size of dataset gets large, and can be neglected to some extend
since imputation accuracy generally has a higher priority in
the imputation of missing values.
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