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ABSTRACT Annotating a large amount of data manually for supervised learning is an indispensable and
expensive part. A novel system using the simulation dataset is proposed in this paper. This framework can
train the neural networks for remote sensing object detection without any manually labeled dataset. The
whole system can be divided into three parts. The first part is the dataset simulator. The simulator synthesizes
remote sensing images with the aircraft targets based on real remote sensing images (without any aircraft
targets). In the process of data generation, the simulator automatically marks the position information of the
aircraft. The second part is the image dataset domain adaptation work. We introduce the work of Cycle-GAN
into this part to bridge the perceptual gap between the simulation dataset and reality dataset. Specially,
we propose a multi-scale generator into the original Cycle-GAN model to achieve better domain adaptation
performance. The final part is the object detection neural network. The domain adaptation quality of the
remote sensing images reconstructed by our novel cycle-gan network achieves better performance both in
the structural similarity measure and visual appearance. The object detection model trained with the dataset
processed by our novel system can get better detection precision. The analytic experiments on the test dataset
demonstrate that the object detection model trained with the dataset processed by our novel system can get
better detection precision.

INDEX TERMS Remote sensing image, generative and adversarial network, object detection, data
simulation.

I. INTRODUCTION
Neural network training and testing rely on a large amount of
annotated data for supervised learning. But manually anno-
tating datasets is a very time consuming and laborious task.
Especially when tasks require a lot of expertise or manual
tagging is too difficult, we won’t be able to get a lot of data.
A small amount of data does not well drive the training of
the entire neural network, so the performance of the neural
network will not achieve the desired goal. For example, in the
field of remote sensing image object detection, it takes a lot
of time to filter a remote sensing image containing a target
and mark the target in the image.

A promising way to overcome data limitations is to use
a data simulation platform to generate auto-annotating data
in recent years, several such annotated dataset has been
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created for geometric problems such as optical flow, scene
flow, stereo disparity estimation, and camera pose estima-
tion. Handa et al. [1] focus their attention on depth-based
semantic per-pixel labeling as a scene understanding problem
and show the potential of computer graphics to generate
virtually unlimited labeled data from synthetic 3D scenes.
Butler et al. [2] first introduce a new optical flow dataset
derived from the open-source 3D animated short film Sintel.
Later, Dosovitskiy et al. [3] generated a large synthetic flight
chair dataset to solve the problem of using deep learning
to study the lack of datasets for optical flow estimation.
Mayer et al. [4] propose three synthetic stereo video datasets
with sufficient realism, variation, and size to successfully
train large networks for disparity, optical flow, and scene flow
estimation.

These methods are capable of generating high-quality sim-
ulation data. However, the synthesis of the real quality of
photographs in the above methods requires the researchers
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to model the specific environment and application in detail.
So the cost of data simulation is very large. This is in contrast
to the use of a simulation dataset to reduce the cost and mark-
ing difficulty of marking neural network training datasets.
At the same time, the simulated composite image is somewhat
different from the actual image. At present, many methods
do not pay attention to the differences between these differ-
ent domain images. These methods train the neural network
directly with the simulation dataset without thinking that the
trained networks may not suitable for the actual dataset and
may not achieve a promising result. Howe et al. [5] proposed a
novel data augmentation strategy based on simulated samples
object detection in remote sensing images. These methods
consider the problem of how to match the target object
with the background image in terms of size, tilt angle, and
image resolution. All these strategies alleviate the problem of
distortion of analog image synthesis results to some extent
and achieve a better result. However, from the results of the
simulation dataset, it can be found that the texture of the
actual background remote sensing image is different from
that of the surface texture of the simulation aircraft. From
the perspective of human vision, simulation data and real
image data can be clearly identified. If the image distribution
difference between the simulated image and the real image
can be further processed, the simulated image can better fit
the distribution of the actual image data, and the network’s
adaptability to the actual data set can be improved to a certain
extent.

With the application of deep convolution neural networks
(CNNs) [6] in object detection, more and more efficient
detection algorithms have been proposed, such as region
proposals with convolution neural networks (RCNN) [7],
Spatial Pyramid Pooling Network (SPP-Net) [8], and
Fast-RCNN [9]. Faster-RCNN [10] proposes a Region Pro-
posal Network (RPN) structure and improves the detec-
tion efficiency while achieving end-to-end training. Instead
of relying on regional proposals, You Only Look Once
(YOLO) [11] and Single Shot MultiBox Detector (SSD) [12]
directly estimate the object region and truly enable real-time
detection. Feature Pyramid Network (FPN) [13] adopts the
multi-scale feature pyramid form and makes full use of the
feature map to achieve better detection results. Region-based
Fully Convolutional Networks (R-FCN) [14] builds a fully
convolution network, which greatly reduces the number of
parameters, improves the detection speed, and has a good
detection effect. [15]–[17] propose a set of remote sensing
images object detection methods based on deep neural net-
works. These methods are constantly improving the detection
accuracy of the target detection or the detection speed. How-
ever, in many practical situations, the performance of the tar-
get detection network is sufficient for everyday applications.
Researchers rarely pay attention to the importance of labeling
data.

In this paper, we design a method of remote sensing
image object detection training with simulation data. First,
we propose a remote sensing dataset simulator-based on the

engine of Unity 3D. Our simulator synthesizes the dataset
based on the given target aircraft models and actual remote
sensing images. At the same time, the position annotation
of the object targets will be generated automatically. Our
simulation system doesn’t need to model specific scenes, nor
do we need to pay attention to too much detail and have
fewer restrictions. Then, we innovatively use the domain
migration idea to shorten the distribution gap between the
simulated image domain and the actual image domain. The
simulation image composited by our simulator can better fit
the real remote sensing image data with the domain adapta-
tion process. CycleGAN [18] uses an unsupervised way to
achieve data conversion tasks between different image style
domains and achieves good results. Based on CycleGAN,
we have innovatively proposed a multi-scale generator net-
work. Compared with the original generator in CycleGAN,
the multi-scale generator network can better capture the data
distribution of the target domain image, so as to achieve
better domain conversion effect. Finally, we use the simulated
image data and automatically generated tag data after the
domain migration to directly train the target detection net-
work, and test the trained network directly on the real remote
sensing image data. In summary, the main contributions of
this work are as follows:

1) We introduce the self-adaption step between the envi-
ronment and the aircraft objects by Cycle-GAN frame-
work into the generation of the remote sensing image
simulation.

2) We propose a multi-scale generator, which can better
adapt to remote sensing images with different resolu-
tions, and thus obtain better results.

3) We propose a data generation framework with better
fusion between the environment and the background of
the target object.

The remainder of this paper is organized as follows.
Section II introduces the details of our proposed method.
Section III verifies the effectiveness of our framework by
performing comparisons with the state-of-the-art methods.
In Section IV, we discuss the issues of our method according
to the experimental results. Section V concludes the discus-
sions of the study.

II. PROPOSED METHOD
A. FRAMEWORK
The entire framework, as illustrated in Figure 2, can
be divided into training and testing progress. The train-
ing progress includes a dataset simulation part as shown
in Figure 1, a domain adaptation part as illustrated in Figure 3,
and a target detection network training part. We use aircraft
models and common remote sensing images to obtain raw
simulation data. In the process of generating the simulation
dataset, the coordinates of the aircraft and other related target
detection parameter files are automatically generated by our
simulator program. There is a certain difference between
the simulated images and the real remote sensing images
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FIGURE 1. The framework of the dataset simulator.

FIGURE 2. The entire framework of our system.

when comparing the scenes and the aircraft targets. At the
same time, the detection network directly trained with the
simulated images can not achieve a good detection precision
on the actual remote sensing image dataset. So we propose a
domain adaptation part to improve the problem. The domain
adaptation part makes the image generated by the simulation
more consistent with the image data distribution of the real
scene, and can better improve the accuracy of the aircraft
target detection in the real remote sensing scene. Due to the
lack of paired simulation images and real images, we built
our domain adaptation module using the unsupervised Cycle-
GAN model. Finally, we use the transformed analog image
as the training set for the aircraft target detection network.

The training process for the entire framework does not rely
on any manually tagged data.

In the testing phase, we use the object detection model
trained with the remote sensing images processed by our
simulator and domain adaptation part to directly test the data
of the real remote sensing image dataset.

B. DATASET SIMULATION
We build a remote-sensing image simulation platform by
the Unity3D [19] game engine. The whole architecture is
illustrated in Figure 1. A randomnumber of aircraft are placed
in a 3D scene at random positions and orientations. The scene
is rendered from a changing viewpoint from −20 degrees
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FIGURE 3. The framework of CycleGAN.

to 20 degrees, after which the result is composed over a
random background remote-sensing image. It is worth noting
that the poor-quality images are removed from results by
sum modulus difference (SMD). The resulting images, with
automatically generated xml files with ground truth labels,
are used for training the neural network. More specifically,
images were generated by randomly varying the following
aspects of the scene:

• Number and types of aircraft. Design a set of aircraft 3D
models, including fighter-planes, bombers, early warn-
ing aircraft and transport aircraft.

• Location and direction of aircraft. Train the SVM clas-
sifier to find a location that is suitable for parking the
aircraft.

• Terrain texture rendering. 44k remote-sensing images
are randomly rendered by terrain engine and baked the
illumination using light-mapper.

• Location of the virtual camera with respect to the scene.
Set the height and change the position of the virtual
camera based on the satellite trajectory.

• Dynamic sky domes with day and night cycle, dynamic
clouds and physically based atmospheric scattering.
Our pipeline uses an internally created plug-in to the
Unity3D that is capable of outputting 512 pixels ×
512 pixels images with annotations at 10 Hz.

C. DOMAIN ADAPTATION
1) CycleGAN FRAMEWORK
Our domains adaption framework is an enhanced version of
the CycleGAN architecture. One domain is the distribution of
our simulation dataset and the other is the real remote sensing
images. As shown in Figure 3, the whole network architecture
is composed of two generators and two discriminators. One
of the generators is forward mapping G, which converts

the image of the x domain into an image that matches the
probability distribution of the y domain. Another generator
F is the inverse of generator G. The two discriminators are
Dx and Dy. The Dx aims to distinguish the between images
x and translated image F(y). In the same way, Dy aims to
discriminate between y and G(x).

2) MULTI-SCALE GENERATOR
The generator is decomposed into two sub-networks as shown
in Figure 4: Gglobal and Glocal . Gglobal is designed as a global
generator operator at a low resolution and Glocal outputs an
image with a high resolution. The Gglobal is proposed as the
main part to generator the basic structure of the images and
the Glocal can be regarded as a local enhancer network to
capture fine structure of the inputs.
The CNN architecture of Gglobal is similar to the one

proposed by Johnson et al. [20], which has been proven
successful for style transfer task. It contains two stride con-
volution blocks with stride 1

2 , nine residual blocks and two
transposed convolution blocks. Each residual block consists
of a convolutional layer, instance normalization layer [21] and
ReLU activation.

The Glocal consists of two convolutional blocks, a set
of residual blocks and a transposed convolutional blocks.
According to Figure 4, the input to the residual blocks in
Glocal is the element-wise sum of the output feature map of
the two convolutional layers in Glocal , and the feature map
of Gglobal .

3) LOSS FUNCTION
The whole architecture profits from the combination of
cycle-consistency loss besides the regular discriminator and
generator losses. The cycle-consistency loss calculates L1−
norm between the original and cyclic image for unpaired
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FIGURE 4. The network architecture of our multi-scale generator.

domains translation task. The cycle consistency loss is the
same as utilized in CycleGAN.

LCYC (F,G) = Ex∼pdata(x)[||F(G(x))−x||1]

+Ey∼pdata(y)[||G(F(y))−y||1] (1)

where we denote the data distribution as x ∼ pdata(x) and
y ∼ pdata(y).

The original CycleGAN uses vanilla GAN objective as
the adversarial loss function for both mapping functions.
However, the original GAN loss function will result in model
collapse and unstable training. Recently, the least square
GAN [22] is proposed as a more stable alternative method,
which can generate higher quality results. We use the least
square adversarial loss as our model critic function. The
objective function LGAN (G,D) is calculated as follows:

LGAN (G) =
1
2
Ex∼pdata(x)[(Dy(G(x)))

2] (2)

LGAN (D) =
1
2
Ey∼pdata(y)[(D(y)− 1)2]

+
1
2
Ex∼px (x)[(D(G(x))+ 1)2] (3)

The full obeject of loss function are formulates as a com-
bination of adversarial and cycle-consistency loss:

L(F,G,Dx ,Dy) = LGAN (G,Dy,X ,Y )

+LGAN (F,Dx ,Y ,X )

+λLCYC (F,G) (4)

where λ controls the relative importance of the two objec-
tives.We aim to solve:

G∗,F∗ = argminG,FmaxDx ,DyL(F,G,Dx ,Dy) (5)

III. EXPERIMENT
A. SETTINGS
1) DATASETS
To promote our research in remote sensing images, we con-
struct a simulation dataset. The aircraft model in the synthetic
image mainly includes more than 30 kinds of aircraft includ-
ing fighter planes, bombers, early warning aircraft and trans-
port aircraft. The dataset contains a total of 9408 synthetic
remote sensing images. The training set contains 7526 remote
sensing images, and the test set contains 1882 remote sensing
images. The size of the image is 512 × 512.

We created a real-time remote sensing image dataset from
Google Earth, with data from Quickbird, WorldView, Land-
sat, and more. The actual remote sensing image contains
a total of 9044 images, where the training set contains
7668 images and the test set contains 1358 images.

2) TRAINING SETTINGS
For the domain adaption experiments, we use the Adam [23]
solver by setting β1 = 0.9, β2 = 0.999 and ε = 10−8. The
batch-size is 1. All networks were trained from scratch with
a learning rate of 0.0002. We keep the same learning rate for
the first 100 epochs and linearly decay the rate to zero over
the next 100 epochs. All convolutional filters are initialized
by the method of He et al.’s initialization [24].

For object detection experiments, the feature extraction
layer of the Faster R-CNN model uses the residual net-
work ResNet-50 [25] and is initialized using ImageNet
trained network weights. The optimization algorithm is a
stochastic gradient descent method. The network learn-
ing rate is 0.0005, the maximum number of iterations is
70,000 rounds, and one training image is input per round. The
non-maximum value suppression IOU threshold in RPN is set
to 0.7, the weight attenuation coefficient is 0.0001, and the
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FIGURE 5. Examples of our dataset. The first row is the actually remote sensing images, and the second row is the simulation
dataset.The network architecture of our multi-scale generator.

TABLE 1. Comparative experiments of our model on UC Merced for ×2
SR. Removing each component will degrade the final performance.

momentum coefficient is 0.9. Since the edge of the aircraft
bounding box in the dataset is between 20 and 120 pixels,
the initial side length of the multi-scale anchor is set to 16,
32, 64, 128, and the aspect ratio is set to 0.5, 1.0, 2.0, so
each the convolutional sliding window position defaults to
12 anchors. All the processes are computed with an NVIDIA
Tesla P100 GPU.

During the training process, the domain adaptive and object
detection parts respectively occupy about 4G graphics mem-
ory. The multi-scale Cycle-GAN takes the same graphic
memory as the training process in the testing phase. The
memory usage of the target detection part during the test
depends on the input image size.

B. DOMAIN ADAPTION ANALYSIS
The domain adaptation process is designed to make the sim-
ulated dataset tend to be a distribution of real remote sensing
images. In order to obtain more realistic results, we propose
a multi-scale generator based on the original generator of the
CycleGAN framework. To demonstrate the effectiveness of
our new generators and to verify the effectiveness of this
multi-scale structure, we conducted experiments in actual
remote sensing images. Since we do not have paired simula-
tion datasets and actual remote sensing images, we use actual
captured remote sensing images and network reconstructed
images to assess the effectiveness of the network.

We use the peak signal-to-noise ratio (PSNR) [dB] and
structural similarity index measure (SSIM) [26] as criteria to
evaluate the performance of our proposed model. The experi-
ment results show in Table 1, which aremeasured by themean
value of PSNR and SSIM on the testing dataset. From the

TABLE 2. Target detection mean accuracy of comparative experiments.

quantitative results, our multi-scale generator obtains higher
indicators. The PSNR and SSIM of our generator are 1.565dB
and 0.0134 higher than the original one respectively.

In order to more fully demonstrate the effectiveness of
our approach, we also show some of the visual comparisons,
as shown in Figure 6. We observe that our proposed method
can achieve better image reconstruction performance. The
structure and texture of the target objects after domain trans-
fer are more clear with our multi-scale generator. As shown
in the first row of Figure 6, the head part of the airplane
fused with the background after processed by the original
generator, and an object that did not exist originally appeared
next to the aircraft. Our designed generator can keep the basic
structure of the target object and do not create new objects.
According to the second row, when the target object in the
scene is small, our improved domain migration method can
better reconstruct small targets in the scene compared to the
single-scale generator. Therefore, in general, our method has
a more prominent effect on visual evaluation.

C. OBJECT DETECTION ANALYSIS
Our ultimate goal is to improve the accuracy of target detec-
tion, so we designed a set of experiments to validate our
approach. We use three different types of data: raw simula-
tion data, original CycleGAN migration data, and improved
CycleGAN migration data as a training set for the target
detection network. To ensure the fairness of the comparison
experiment, we used the same parameter settings to train the
three target detection networks.

We use the actual remote sensing image data directly
as the test set of the three optimized target detection
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FIGURE 6. The comparison of the image conversion visual quality.

FIGURE 7. The PRC results on the actual remote sensing images.

networks without performing any fine-tuning operations. The
precision-recall curve (PRC) and average precision (AP) are
adapted to quantitatively evaluate the performance of the
object detection method. The indexes of precision and recall
contain true positive (TP), false positive (FP) and false neg-
ative (FN). TP denotes the number of correct detections,
FP denotes the number of false detection, and FN denotes
the number of missing detections. The precision metric mea-
sures the fraction of detections that are TP. The recall metric
measures the fraction of positives that are correctly retrieved.
The precision and recall metrics are defined as:

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

Figure 7 shows the quantitative comparison results of the
PRC. From this result, we can clearly see that our optimized
method can have a very outstanding advantage compared to
other methods.

The AP metric computes the area under the PRC. A higher
AP value indicates better performance and vice versa. The AP
trained in the original simulation dataset has a target detection
value of 11.44% on the real remote sensing dataset, which is
far from the requirements of aircraft detection. Comparing
the results of Table 1, the dataset after processed by the basic
CycleGANcan obtain a litter higher target detection precision
compared with the raw simulation remote sensing dataset.
However, the magnitude of accuracy improvement is very
small. Our improved method achieved 38.87% AP value in
the comparative test. Our approach has more than tripled
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FIGURE 8. The left side is the cross-domain detection result of the original composite image, the middle
is the detection result after using the CycleGAN style migration, and the right side is the multi-scale
CycleGAN for the style migration result.

the accuracy of the row simulation remote sensing dataset
and more than twice the accuracy of the original CycleGAN.
According to the analytic experiments, our improved method
can better fit the image distribution of the actual test remote
sensing image dataset and achieve better object detection
accuracy.

It can be seen from Figure 8 of the aircraft target detec-
tion result that the simulated image has a large number of
missed detections on the test set. From the second column of
Figure 3, it can be concluded that the image after the original
CycleGAN domain migration process can not capture the
aircraft target on the test set better, and more cases capture
the tail of the aircraft. From the target detection result graph
of our multi-scale CycleGAN network, it can be analyzed,
which can give greater confidence to the large target network
on the test set, and can also be detected for small targets in
the scene. Through the above analysis, our method has certain
advantages.

D. COMPARISON WITH OTHER METHODS
To verify the effectiveness of our method, we compared it
to Yan’s [27] method currently published. Yan et al. first
proposed the importance of a simulation dataset in remote
sensing object detection. However, the code of the relevant
comparison method is not open source, we implemented the
algorithm according to the strategies in the author’s paper by
ourselves. According to the content of section II-A, we use
Yan’s method to generate simulation images and use them to
train the target detection network. Finally, the trained model
is used to detect real remote sensing images. The comparison
result is shown in Table 3.

According to the first and the second rows of the result,
we can find that the object detection accuracy of ourmethod is
only a little better thanYan’s. However, our dataset simulation

TABLE 3. Comparison result with other methods.

takes more computing sources for introducing SVM algo-
rithms, dynamic skydomes, and other factors, to obtain only a
little promotion. So Yan’s algorithm is a simple but effective
method to simulate more remote sensing images.

When comparing the final results of our system and Yan’s,
we can conclude that our whole simulation system has a more
prominent performance in the final target detection accuracy,
which also proves the power of the domain adaptation in our
method.

IV. DISCUSSION
We propose a target detection method that does not require
manual marking, and verify the effectiveness of the method
through several experiments. Although our method has
achieved good results, there is still much room for improve-
ment in aircraft target detection accuracy on test dataset.
By observing the results of domain migration processing and
target detection, we analyze the effect of domain migration
processing on the accuracy of subsequent target detection.

In the domain migration experiment, it is important that
the converted image fits the distribution of the actual test
dataset well. It can be seen intuitively from Figure 9 that
the original CycleGAN processed data is not visually dif-
ferent from the original dataset. In the improved CycleGAN
network, the overall distribution of images is closer to the
distribution of test data. However, the aircraft structure in
the processed image data is partially missing. On the test
dataset, the network trained by our domain migration dataset
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FIGURE 9. Domain transfer image comparison.

FIGURE 10. The object detection results with lower accuracy.

has greatly improved the accuracy of aircraft target detection
compared to the network trained by the original simulation
dataset. However, from Figure 10, there aremany false alarms
and missed detections on the test dataset. Therefore, a higher
quality completion domain migration task is a problem wor-
thy of further study.

V. CONCLUSION
In this article, we present a new framework. The framework
automatically generates image datasets through data syn-
thesis tools and automatically generates relevant annotation
information. In order to establish a data domain distribution
relationship between the composite image and the actual
image, we propose an improved multi-scale cycle-gan net-
work to bridge the reality gap. Our framework is tested in the
real remote sensing dataset. Experiments have shown that our
framework can achieve certain detection results in real remote
sensing image datasets without any annotation data. In the
future, we will continue to focus on image synthesis tech-
nology, automatic markup technology and domain adaptive
technology. By combining these techniques, we will further
improve the accuracy of target detection without manual
labeling of data.
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