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ABSTRACT Motion artifacts may occur in coronary computed tomography angiography (CCTA) due to the
heartbeat and impede the clinician’s diagnosis of coronary arterial diseases. Thus, motion artifact correction
of the coronary artery is required to quantify the risk of disease more accurately. We present a novel method
based on deep learning formotion artifact correction in CCTA.Because the image of the coronary arterywith-
out motion (the ground-truth data required in supervised deep learning) is medically unattainable, we apply
a style transfer method to 2D image patches cropped from full-phase 4D computed tomography (CT) to
synthesize these images. We then train a convolutional neural network (CNN) for motion artifact correction
using this synthetic ground-truth (SynGT). During testing, the output motion-corrected 2D image patches
of the trained network are reinserted into the 3D CT volume with volumetric interpolation. The proposed
method is evaluated using both phantom and clinical data. A phantom study demonstrates comparable results
to other methods in quantitative performance and outperforms those methods in computation time. For
clinical data, a quantitative analysis based on metric measurements is presented that confirms the correction
of motion artifacts. Moreover, an observer study finds that by applying the proposed method, motion artifacts
are markedly reduced, and boundaries of the coronary artery are much sharper, with a strong inter-observer
agreement (κ = 0.78). Finally, evaluations using commercial software on the original and resulting
CT volumes of the proposed method reveal a considerable increase in tracked coronary artery length.

INDEX TERMS Computed tomography, deep learning, image restoration, motion correction and analysis,
coronary angiography.

I. INTRODUCTION
Coronary artery disease (CAD), also known as ischemic heart
disease, is the leading cause of death globally [1]. Recently,
non-invasive coronary computed tomography angiogra-
phy (CCTA) has been widely adopted for the diagnosis of
CAD. The diagnostic accuracy of CCTA is comparable to that
of conventional invasive coronary angiography, with a sig-
nificantly lower risk of complications [2]. However, motion
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artifacts may occur in the acquisition of CCTA, which can
cause errors in tracking or segmentation of the coronary
artery.

Prospective electrocardiography (ECG)-gating can be used
to address this problem by timing the CCTA acquisition to
the most quiescent phase of the heartbeat, although motion
artifacts can occur if the heart rate is very high or irregular.
Drugs such as beta-blockers may generally be administered
to slow down the patient heart rate when it is higher than
65 beats per minute, but often with limited efficacy [3] or
more frequent angina and ischemia [4].
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FIGURE 1. (a) CT images of the phantom data that imitates the coronary artery. The degree of motion artifacts
varies from minimal, when the heart motion is slow, to severe, when fast. Ground-truth data, with no absolute
motion, can be obtained when the phantom is completely stopped. (b) CT images of the coronary artery of clinical
data. Ground-truth data cannot be obtained because the heart cannot be stopped.

To the best of our knowledge, previous image process-
ing methods for CCTA motion compensation are based on
motion estimation through image registration or minimizing
a motion artifact metric. Methods based on 3D-3D non-
rigid image registration [5]–[7] have demonstrated excellent
motion compensation results. However, they require multiple
phases of CT images, and it is possible that motion estimation
is erroneous in the presence of motion artifacts, which in
turn would lead to the degradation of motion compensation.
Rohkohl et al. [8] presented the method of improving
best-phase image quality using a single 3D reconstructed
image; its motion estimation is based on minimizing motion
artifact metrics. This method has produced superior results
in more quiescent cardiac phases; in contrast, in more rapid
cardiac phases, 3D-3D nonrigid image registration-based
methods produce superior image quality because they use
information from neighbor phases. Kim et al. [9] used a
partial angle reconstructed (PAR) image, which is recon-
structed using a smaller angular range than a short scan,
to improve temporal resolution. They estimate motion using
PAR images based on 3D-3D nonrigid registration, so they
require multiple phases of CT images. Hahn et al. [10] pre-
sented a coronary motion-compensation method based on
PAR images from short-scan data, that has benefits concern-
ing dose efficiency. That method optimizes an image artifact
measuring cost function for motion estimation, as proposed
by Rohkohl et al. [8]. Using the motion vector field estimated
by various approaches, such as registration and minimiz-
ing an artifact metric, the aforementioned methods require
motion-compensated reconstruction from raw or projection
data.

In this study, we present an image-based coronary
motion correction method that does not require projec-
tion or back-projection steps and can be applied when
raw data are not available. Our approach assumes that
a physician can estimate motion artifacts and envision a
motion-corrected image more accurately when he or she
has more experience. Our hypothesis is that motion correc-
tion in CCTA can be learned with a large set of training
images. Coincidentally, methodologies based on deep learn-
ing have demonstrated revolutionary performance in various

domains [11], [12]. Deep learning-based methods effectively
address relevant problems, including image super-
resolution [13], image denoising [14], and image deblur-
ring [15]. These methods adopt a supervised learning
approach where it is assumed that accurate ground-truth
corresponding to the input data is available.

Critically, it is medically impossible to obtain precise
corresponding coronary CT images devoid of motion arti-
facts, which are the ground-truth images required in super-
vised learning. This problem and comparison using phantom
data are visualized in Fig. 1. This problem is among the
many various situations when ground-truth is unattainable,
which often occurs when learning from images, including
urinary bladder segmentation [16], 3D pose estimation [17],
the social behavior of honeybees [18], learning eye gaze
direction estimation [19], and object detection in indoor
scenes [20]. These methods offer effective ways to generate
the ground-truth images or realistic synthetic images appro-
priate for their particular problems by utilizing Position Emis-
sion Tomography (PET) acquisitions for automatic urinary
bladder segmentation in CT images [16], rendering various
configurations of a single 3D model [17]–[19] or rendering
a composite 2D image of various partial 2D images [20].
However, these processes are most likely insufficient for
the motion correction of coronary arteries in 3D CCTA
because a single 3D model cannot represent variations in the
3D structure, nor can a composite image of various CCTA
slices be used to generate a 2D slice consistent with a realistic
3D volume.

We propose a novel method using a style transfer method,
such as those proposed in [21], [22], to generate a syn-
thetic ground-truth (SynGT).We apply style transfer to image
patches from 4D CT volumes containing phases with large
and small amounts of motion artifacts, as depicted in Fig. 2.
Compared to using the patches directly, the local deforma-
tions that occur from the heartbeat motion can be considered
using style transfer. Our aim is to suppress the effect of
genuine appearance change and isolate only the effect of
motion artifacts. Using the SynGT, we can subsequently learn
to generate images with reduced motion artifacts from the
corresponding training input images.
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FIGURE 2. Appearance of the motion artifacts of a coronary artery in
different phases within a full heartbeat cycle, sampled from a 4D CT.
Based on a 5-point Likert scale, as described in Sec. III-B4, the image
patches are (a) completely unreadable or have (b) significant motion
artifacts, (c) apparent motion artifacts, (d) minor motion artifacts, or
(e) no motion artifacts.

The overall process of the proposed method is as fol-
lows. First, we compile a dataset of spatially corresponding
2D image patches, extracted from 3DCT volumes at different
phases within a 4D CT. Next, we apply style transfer with the
patch from the phase with significant motion artifacts as the
source, and the patch from the phase with minimal motion as
the target, to generate the SynGT. We then train the motion
artifact compensation network (MAC-net) using the patches
with significant motion and the SynGT. At the test stage,
we assume a 3DCT volumewith motion artifacts is given and
that the centerline of the coronary artery has been annotated.
We generate the 2D cross-sectional image patches along the
centerline and feed them into the trained motion artifact
correction network. The output motion-corrected 2D image
patches are reinserted into the original 3D CT volume with
volumetric interpolation to obtain the final motion-corrected
3D CT volume.

The three main contributions of our work are as follows:
First, we propose a method for motion correction using deep
learning, in which the ground-truth is synthesized using style
transfer between corresponding 2D image patches of the
coronary artery extracted at different phases within a 4D CT.
Second, we propose a method to perform motion correc-
tion on the coronary arteries of the 3D CT volume by rein-
serting motion-corrected output 2D patches with volumetric
interpolation. Third, we provide extensive quantitative and
qualitative evaluations to demonstrate the degree of motion
correction after applying the proposed method.

This paper is an extension of our previous work in [23],
with extended quantitative and qualitative evaluations.
We include a comparative analysis with other methods using
the phantom dataset, which is publicly available, and the
results are presented in Sec. III-A. In Sec. III-B, we evaluate
the proposed method quantitatively by measuring motion
artifact metrics [24] and image quality metrics for the clin-
ical dataset. An observer study, a straightened curved planar
reformation (CPR) example, and the tracking results of the
proposed method are presented in Sec. III-B for qualitative
analysis.

II. METHODS
Our approach is to solve the problem of motion correction
using a deep neural network, such as a convolutional neural
network (CNN). Thus, given a new 3D CT volume at the

test stage, we want to generate a motion-corrected version of
that volume as the output of our trained CNN. Accordingly,
the proposed method is designed based on the following
decisions:

1) The network input and output are defined in terms of
corresponding image patches of the coronary artery
with and without motion artifacts.

2) 4D CTs are used to achieve corresponding pairs of
patches extracted from the same patient at relatively
slower and faster heart motions within the heartbeat
cycle. It is clinically impossible to achieve images with
no motion artifacts because the heart motion cannot be
arbitrarily stopped.

3) Style transfer is used to synthesize a patch with
the corresponding phase, in which the appearance is
preserved, but motion artifacts are reduced. The cor-
responding patch at the slower motion acts as a ref-
erence to guide artifact correction while preserving
local appearance at that motion phase. This syn-
thesized patch, rather than the patch at the slower
motion, is defined as the ground-truth to learn motion
correction.

4) A very deep CNN [13] is used as the deep learning net-
work for motion correction. The deep structure helps
to generalize the complex changes between the original
and synthesized patches.

5) Motion-corrected patches are reinserted and interpo-
lated into the original 3D CT volume to compensate
for the motion artifacts of the entire coronary artery.

Based on these decisions, the overall framework comprises
the following subprocesses: 1) extraction of corresponding
coronary artery patches from 4D CT, 2) synthesis of mor-
phed source patches using style transfer, 3) training and
applying the motion artifact correction network, which we
term MAC-net for the patch-wise motion artifact correc-
tion, and 4) reinsertion of motion-corrected patches to the
3D CT volume. It is important to note that the style transfer
network for generating synthetic motion-corrected patches
andMAC-net have different roles. Style transfer is performed
between pairs of patches on corresponding points on the
coronary arteries in different phases in a 4D CT and alters
only the style (local texture), not the content (structure). Our
assumption is that motion artifacts are closer to style and
thus can be reduced using this process. In contrast, patches
with motion artifacts are paired with the generated SynGT
from style transfer for supervised learning of the MAC-net
for motion compensation. While corresponding patch pairs
from 4D CT are required for removing motion artifacts by
style transfer, once the MAC-net is trained, any 3D CT patch
with motion artifacts can be given as an input to generate
a motion-compensated patch at test time. Fig. 3 provides a
visual summary of the second and third subprocesses, which
are technically the most critical. The subsequent subsections
describe these processes and the original 4D CT data in
detail.
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FIGURE 3. Workflow of the proposed method. In step 1, generate synthetic motion-corrected patch (SynGT) using style transfer
method. In step 2, train the motion artifact correction network (MAC-net) using SynGT. Detailed descriptions of steps 1 and 2 are in
Sections II-B and II-C, respectively.

A. EXTRACTING CORRESPONDING CORONARY PATCHES
FROM 4D CT
Weused 4DCT images acquired by retrospective gating using
a dual-source CT scanner (SOMATOM Definition Flash,
Siemens). All raw data 0% – 90% were reconstructed in 10%
increments of the heartbeat cycle (R-R interval). The images
reconstructed at 40% and 70% usually have the highest image
quality in terms of motion artifacts because they are around
the end-systole and end-diastole, respectively. The images
reconstructed at other phases mostly contain considerable
motion artifacts of the coronary arteries.

Without loss of generality, we will hereby specifically
focus only on the middle of the right coronary artery
(mid-RCA) as the region of interest, which generally has the
most motion. Given the temporally sampled 3D CT volumes,
the mid-RCA is manually annotated by an experienced reader
in each volume using commercial coronary analysis soft-
ware (QAngioCT, Medis Medical Imaging Systems, Leiden,
the Netherlands). The first right ventricle (RV) branch and
acute marginal branch are defined as the respective start and
end points of the mid-RCA.

The mid-RCA centerline Cφ of a 3D volume at phase φ
is represented as a discretized set of ordered 3D coordi-
nates Cφ =

{
cφi |0 ≤ i ≤ N

φ
c − 1

}
, where cφi denotes the ith

3D point coordinate of Cφ . Nφc denotes the total of number
of points within Cφ . The exact centerline is approximated as
a piecewise linear function between the points in Cφ . Thus,
the entire length of the mid-RCA centerline is defined as
the sum of all distances between subsequent point pairs, and
denoted, as lφ =

∑i<N−1
i=0 ||cφi+1 − c

φ
i ||2.

To extract the corresponding 2D image patches on
Cφ , the corresponding points must first be determined.
We assume that the start and end points for all φ will corre-
spond because they correspond to the same anatomical land-
marks: first RV branch and acute marginal branch. A fixed
number of M equidistant points Vφ =

{
qφj |0 ≤ j ≤ M − 1

}
each spaced lφ

M are sampled between the start and end points
of Cφ . Because the mid-RCA centerline is being approxi-
mated as a piecewise linear function, we applied interpolation

FIGURE 4. Determining positions and normals for corresponding patches
of mid-RCA in 3D CT volumes at different temporal phases, included
within the full-phase 4D CT volumes. The centerlines of the mid-RCA are
assumed to have been manually annotated, and the start and endpoints
are manually annotated by anatomical landmarks in the volumes.

to compute the exact equidistant point coordinate. Finally,
we define the normal directions Enφj for the planar patches

centered at each qφj as the tangential direction of Cφ at qφj .
Fig. 4 visualizes this process of determining the correspond-
ing points and the 3D CT volumes at different temporal
phases.

The corresponding patches P =
{
Pφj |0 ≤ j ≤ M − 1

}
are extracted by sampling the voxel intensities on an R ×
R discrete grid centered at qφi with normal Enφj within the
corresponding 3D CT volume. To align the spatial distribu-
tion of the grid points physically, we constructed a 2D grid
(on the xy-plane as a reference) with 3D coordinates consider-
ing the physical dimensions of the CT, and applied translation
based on the center point and rotation based on the normal
direction, to obtain the projected grid coordinates. Because
these coordinates are not integers, bilinear interpolation is
applied when assigning intensity values to each pixel in the
extracted patch.

B. GENERATING SYNTHETIC MOTION-CORRECTED
PATCHES USING CROSS-PHASE STYLE TRANSFER
The corresponding patches extracted from coronary arteries
within different phases of a 4D CT are not just different
in terms of the severity of the motion artifacts. The motion
during the heartbeat also causes differences in its local
appearance. We want to obtain the corresponding patch
with identical local appearance but without motion artifacts,
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because we would like to train a CNN to remove only the
artifacts. Because this is clinically unattainable, we aim to
synthesize this same-phase-no-artifact patch, P̃φj , using style

transfer to the source patch Pφj with a different-phase-no-

artifact patch as the target patch Pφ?j . We refer to this process
as cross-phase style transfer, where φ? denotes the phase
within the heartbeat when the motion is the slowest, resulting
in the minimum number of motion artifacts.

Style transfer is the process of converting only the style, not
the contents, of a source image to the style of the target image.
The aspects of the style include texture, color, and contrast,
both local and global. Content, in contrast, generally refers
to the outlines, textures, and colors required to recognize
the scene, including the specific objects or persons. In our
framework, we assume motion artifacts as part of the style
but local appearance as content.

In the proposed framework, we applied a recent method for
style transfer using deep neural networks [21], often referred
to as the neural style transfer method. The central concept is
as follows. First, a CNN—theVisual GeometryGroup (VGG)
network [25] pre-trained on the ImageNet database [26]—is
used to compute local image features subsequently defined
as the numerical representation of the content. If we denote
the tensor of the CNN features at layer l as F1

x and F1
c for

the synthesized image EIx and content reference image EIc,
respectively, the loss function for the content is defined as

Lcontent
(
EIx , EIc

)
=

1
2
|| EIx − EIc||22. (1)

Next, the numerical representation of the style is defined
using the Gram matrix Gl , where each element is the inner
product between different CNN features at layer l, as

Glij = F li · F
l
j , (2)

whereGlij denotes the element at row i, column j ofGl , F li and
F lj denote the ith and jth features, respectively, corresponding
to the ith and jth convolutional kernels, respectively, at layer l.
The loss function for style is subsequently defined as

Lstyle
(
EIx , EIs

)
=

1

2N l
x
2
× 2N l

s
2 ||G

l
x − G

l
s||

2
2, (3)

where Glx and G
l
s are the Gram matrices, and N l

x and N
l
s are

the number of features at layer l, for EIx and style-reference
image EIs, respectively.
Finally, EIx is determined by using a gradient descent to

minimize the balanced loss, defined as

Ltotal
(
EIx , EIc, EIs

)
= αLcontent

(
EIx , EIc

)
+ βLstyle

(
EIx , EIs

)
, (4)

where α and β are coefficients to balance the effect between
the content and style loss terms. The process of optimizing the
loss in Eq. (4) does not involve training the network, which
is fixed. Instead, a modified version EIx of the input images is
generated. For further details, we refer the reader to [21].

From the review above, P̃φj , P
φ
j , and P

φ?
j correspond to EIx ,

EIc, and EIs, respectively. Whereas the phase φ? with the mini-
mum amount of motion is determined manually, the patches
from all other phases φ can be assigned as the source, i.e., the
reference patch for content Pφj .

C. TRAINING AND APPLYING THE MOTION ARTIFACT
CORRECTION NETWORK
We adopted the Very-Deep network for Super-Resolution
(VDSR) [13] to our problem of motion artifact correction.
The VDSR is a specific type of CNN, configured with deep
layers and gradient clipping suitable for high learning rates
in the gradient descent of the training process. The input and
output dimensions are set to be identical, we apply supervised
learning with our training dataset so that a motion-corrected
version of the input image patch is given as the output.
We chose VDSR because 1) our problem is primarily a noise
reduction problem, and noise reduction is similar to achieving
super-resolution, 2) the input data in VDSR is upscaled such
that patch sizes of the input and output are assumed to be
the same, which is the configuration of our case, and 3) it
illustrates acceptable performance and fast convergence dur-
ing training.

The acceptable performance is primarily due to the deep
structure of the network, which combines the very deep CNN
model of [25] together with the residual learning of [27].
Whereas skip connections were added at every other con-
volutional layer in [27], only a single skip-connection from
the input to output is created in the VDSR network. This
connection learns the difference between the input and out-
put and prevents the vanishing gradient problem. Further-
more, there is a gradient clipping scheme [28] that is often
used in training recurrent neural networks to expedite train-
ing convergence. We adopt an adjustable gradient clipping
scheme [13], in which the gradients are clipped to

[
−
θ
γ
, θ
γ

]
to

boost the convergence, where γ denotes the current learning
rate and θ denotes gradient clipping. VDSR exhibits the
fast convergence of a CNN with a 20-layer network using
adjustable gradient clipping. Also, to keep the sizes of al
feature maps the same, we pad zeros before convolutions.

The structure of the MAC-net follows the VDSR network,
which comprises 20 convolutional layers and 19 rectified lin-
ear unit (ReLU) non-linear activation functions, as depicted
in Fig. 5. We used 64 3 × 3 kernels for each convolutional
layer. The corresponding cross-phase style transferred patch
P̃φj is assigned as the GT output for the input patch Pφj . The

loss function is defined as the mean squared error 1
2 ||P̃

φ
j −(

Pφj − f (P
φ
j )
)
||
2, where f denotes the network prediction of

the residual between P̃φj and P
φ
j . Subsequently, the final result

of the network becomes f (Pφj )+ P
φ
j .

We can denote the training dataset as

{
Pφk,lj , P̃φk,lj

}j=M−1,k=K−1|k 6=?,l=L−1
j=0,k=0,l=0 ,
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FIGURE 5. Architecture of the MAC-network based on the VDSR network [13]. A pair of convolutional layers and an
activation function are cascaded repeatedly. The last convolutional layer denotes a learned residual image. A single
skip-connection from the input to output is applied.

FIGURE 6. Volumetric interpolation of motion-corrected patches. (a) reinserted motion-corrected patches into a 3D volume
(b) dotted line is a bounding box which covers two patches Pφj , Pφj+1 and shaded region is the ROI of volumetric
interpolation (c) bilinear interpolation is applied to all of voxels in the ROI.

where j represents the index of the patch within a single
coronary artery centerline, k represents the index of phase
within the 4D CT volume, excluding φ?, which is assigned
as the phase without motion correction, and l represents the
index for the 4D CT volumes. Thus, the total number of
patches in our training data should be the productM ×K ×L
of the M points in K phases in L 4D CT volumes.

We used the Caffe [29] framework for our implementation.
The hyperparameters for the training are set as follows: a
batch size of 64, a learning rate of 0.0001, an epoch of 100,
and a weight decay of 0.0001, while using the optimizer
‘‘Adam’’ [30].

During testing, the MAC-net is applied after sampling M
equidistant coronary patches based on a manually annotated
artery centerline, as described in Sec. II-A. All patches are
then fed independently into the trained MAC-net.

D. REINSERTION AND VOLUMETRIC INTERPOLATION OF
MOTION-CORRECTED PATCHES INTO 3D CT VOLUME
The 2D patch outputs of the MAC-net are reinserted back
into the CT volume, as illustrated in Fig.6, to apply motion
correction to the entire 3D volume. Volumetric interpolation
must be performed to propagate the motion correction to the
3D volume of the coronary artery and ensure a continuous
appearance.

Because the center point Eqj and the normal Enj of each
patch are already known through the patch extraction process
described in Sec. II-A, output patches Pj are first reinserted
into the 3D volume by the inverse of the known transform.
We can denote the planar grid of 3D coordinates correspond-
ing to the pixel coordinates, obtained from the projection
as Qj.

Volumetric interpolation is performed for two adjacent
patches Pj and Pj+1. Within the bounding box enclosing the
two reinserted patch coordinate grids Qj and Qj+1, we define
R × R vectors vkj,j+1 = qkj + t(q

k
j+1 − q

k
j ) defining 3D lines

that pass through the corresponding voxel coordinates qkj and
qkj+1, respectively, where k, 1 ≤ k ≤ R2 denotes the index
for the reinserted 3D coordinate grid and t is the parameter
for the line equation. For each voxel with coordinate q within
the bounding box, and in the volume between the two patches,
we determine the vector vk?j,j+1 among {vkj,j+1, 1 ≤ k ≤ R2},
that is closest with the voxel coordinate, i.e., that has mini-

mum point-to-line distance dp2l(q, vkj,j+1) =

∣∣∣(q−qkj )×(q−qkj+1)∣∣∣∣∣∣qkj+1−qkj ∣∣∣ .

Then, we determine the two 3D coordinates q†j and q†j+1
which are on the line defined by q + t(qk?j+1 − qk?j ) and
the planes corresponding to the grids Qj and Qj+1. The
final value for voxel q is the weighted average defined as
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I (q) = wqj Pj(q̃
†
j ) + wqj+1Pj+1(q̃

†
j+1), where Pj(q

†
j ) is the

intensity obtained from bilinear interpolation on Pj at 2D
non-integer coordinate q̃†j , and w

q
j =

dp2p(q,Qj+1)
dp2p(q,Qj)+dp2p(q,Qj+1)

is
the weight defined by the point-to-plane distances dp2p of q to
the planes containingQj andQj+1.We compute dp2p using the
equation dp2p(q,Qj) =

|(q−Eqj)·Enj|
|Enj|

, where Eqj and Enj are the grid
center coordinate and normal vector of the plane containing
the grid Qj. The definitions are similar for q̃†j+1 and w

q
j+1.

III. RESULTS
A. PHANTOM STUDY
We evaluated our method on the C AVAREV platform [31],
which is based on simulated dynamic projections based on
the 4D XCAT phantom with contrasted coronary arteries
derived from patient data. We used the dataset Dc (cardiac
motion only) for the proposedmethods. Geometry calibration
was obtained from a real-world clinical angiographic C-arm
system.

To apply the proposed method, we reconstructed
10 C-arm CT volumes on a 2563 grid with an isotropic voxel
size of 0.5 mm with 10 different target reconstruction heart
phases. Similar to the previous studies at the C AVAREV
website [32], we used the reconstructed volume at heart
phase 0.9, which shows quiescent motion, as the target phase
for cross-phase style transfer, as described in Section II-B.
Based on the description in Section. II-C, the training data
are comprised of patches from M = 25 points in K =
10 − 1 − 2 = 7 phases in L = 1 4D CT volume.
A total of 175 pairs of mid-RCA patches were extracted,
which were augmented to 1,050 using vertical and horizontal
flips and rotations. Because of the lack of data, we sampled
the centerline points M as densely as possible and used
seven volumes for training and two volumes for testing.
The testing data are comprised similarly as the training
data.

To evaluate our motion correction results, we used the 3D
metric introduced as Q3D as defined by C AVAREV [31].
We evaluated the similarity using the Dice similarity coeffi-
cients (DSCs) for the overlap of two binary images ranging
from zero (no overlap) to one (perfect match). The motion
corrected volume is binarized through thresholding and then
evaluated with the ground-truth, which is the segmentation
mask of the coronary artery within the volume reconstructed
at the quiescent heart phase. TheDSC of the proposedmethod
is the mean of the DSCs of two test volumes. A comparison
of the Dice score with other methods that are introduced on
the C AVAREV website [32] is presented in Table 1. For use
in urgent medical sites, the processing time is also an impor-
tant consideration, so computation time is compared for the
right coronary artery (RCA). The proposed method requires
less than 1 minute of duration: 0.15 seconds for the test step
of the MAC-net (Sec. II-C) and approximately 50 seconds
for the reinsertion and volumetric interpolation (Sec. II-D).
The computation time was obtained on Intel(R) Core(TM)
i7-8700 CPUs (3.19GHz) with 16 GB of memory and

TABLE 1. Dice score comparison with the other methods using
the C AVAREV dataset.

a NVidia Titan XP GPU (12GB). The comparison
methods [33], [34] are cost minimization-based approaches,
and [35]–[37] are 2D–2D or 3D–3D registration-based
approaches. In Schwemmer et al. [36], registration times
were obtained on two Intel(R) Xeon(R) E5540 CPUs
(2.53 GHz) with 16 GB of memory, and since [37] was
their follow-up, the hardware specs would be the same or
similar. When considering a trade-off between the DSC and
computation time, the proposed method is comparable to
other methods in terms of the DSC and outperforms in terms
of computation time.

Fig. 7 illustrates examples of the test volumes with minor
(φ = 80) and severe (φ = 50) motion artifacts. Given that
the image quality is not high, motion artifacts are reduced in
the results of the proposed method. The proposed method,
as a deep learning-based approach, demonstrates promising
results quantitatively and qualitatively using the C AVAREV
dataset.

B. CLINICAL DATA
1) DATASETS
Based on the description in Section II-C, the training data
comprised patches from M = 10 points in K = 10 −
2 = 8 phases in L = 100 4D CT volumes. The num-
ber of phases K = 8 was determined by the number of
temporal-phase quantizations, 10, minus the 40% and 70%
phases designated as the targets for cross-phase style transfer.
Several 4D CT volumes had K less than 8, in which phases
with extreme motion artifacts were excluded because man-
ual annotation of the coronary artery was impossible. The
final dataset comprised a total of 5,868 pairs of mid-RCA
patches, which were then augmented to 35,208 using ver-
tical and horizontal flips and rotations. With R = 60,
each patch sampled from the 3D volume was constructed
to be of size 60 × 60 pixels. Validation and test sets, com-
prising 2,152 patches from L = 30 4D CT volumes and
734 patches from L = 10 4D CT volumes, were similarly
constructed.
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FIGURE 7. Qualitative examples with minor and severe motion artifacts among the test data in the C AVAREV dataset. Each
pair consists of the test patch data containing the mid-RCA (left), results of the proposed MAC-net (middle), and the
corresponding reference patch (right). Source information (phase φ in 4D CT) is presented above the pacthes. The radial
artifacts are generated because of the number of projections (n = 133).

FIGURE 8. Visual description of motion artifact metrics (a) isotropy, (b) fold overlap ratio (FOR), and (c) low-intensity region score (LIRS).

2) QUANTITATIVE EVALUATION: MOTION ARTIFACT
METRICS
In quantitative evaluation, because the nature of the metric
makes it difficult to consider plaque, we cover only nor-
mal coronary arteries and exclude diseased coronary arter-
ies. To quantitatively evaluate the proposed method, we first
measure the isotropy of the vessel region to quantify the
level of motion artifacts for the coronary artery. Because the
cross-section shape of arteries is generally round, the seg-
mented vessel area in the image patches should have an
isotropic shape if it has not been corrupted by motion arti-
facts. We measured the isotropy using the ratio of the two
eigenvalues (λ1, λ2) of the segment shape, as in [38].
We adopt the motion artifact metrics proposed in [24].

We present the results of three metrics having the high-
est agreement with three expert readers: fold overlap ratio
(FOR), low-intensity region score (LIRS) and their product,

the motion artifact score (MAS). Like isotropy, the FOR also
measures the shape of the vessel region, but measures the
extent of mirror symmetry, rather than the overall isotropy.
Given the vessel segmentation, an axis v that passes the region
centroid is defined that subdivides the region in two. Then,
one subregion is folded along the axis onto the other subre-
gion, at which point the ratio of the intersection and union of
those two regions are defined as LFORv . In our implementa-
tion, we define the two orthogonal eigenvectors (v1, v2) of the
region shape, corresponding to (λ1, λ2), as two different axes
and determine the final FOR LFOR = min(LFORv1 ,LFORv2 ).
The LIRS is defined as the mean of the low-intensity region
intensity-score (LIR-IS) and low-intensity region area-score
(LIR-AS). LIR-IS and LIR-AS respectively measure the
intensity and the size of the low-intensity shading of the
motion artifact that occurs on the myocardium. LIR-IS is
defined as the ratio of the intensity values of the shaded

81856 VOLUME 8, 2020



S. Jung et al.: Deep Learning Cross-Phase Style Transfer for Motion Artifact Correction

FIGURE 9. Results of motion artifact metrics (a) isotropy, (b) fold overlap ratio (FOR), (c) low-intensity region score (LIRS), and (d) motion artifact score
(MAS). The results of randomly sampled 100 patches of test cases before and after applying the proposed motion correction method is depicted and their
median and interquartile range (IQR). P-values were computed by a Wilcoxon ranksum test, and all indicate statistical significance.

area and the myocardium and LIR-AS are defined as the
ratio of the area of the shading and the size of the artery.
A visual description and the specific mathematical notations
and equations are presented in Fig. 8.

To compute these metrics, the specific vessel region,
regions where the low-intensity shading artifact occurs, and
the myocardium region must be determined. To perform
this process efficiently, we apply a simple seed-based region
growing method to annotate the vessel and low-intensity
artifact regions semi-automatically. Not only is the region
growing more efficient, but it also aids in delineating the
segment boundary and maintaining the consistency of the
region intensity. Regions of the myocardium were manually
annotated, in contrast, because it may have various appear-
ances and shapes, it is thus unsuitable for region growing.

For comparative evaluation, the results of the four motion
artifact metrics for the input and output of the MAC-net
for the randomly sampled 100 patches of the test set are
presented in Fig. 9. The isotropy, FOR, LIRS, and MAS, all
of which increased, represent improved results. The median
and interquartile range (IQR) of each metric are presented
in Fig. 9 and increased 57.5% from 0.40 (0.30 − 0.58)
to 0.63 (0.46 − 0.75), 6.8% from 0.59 (0.54 − 0.62) to
0.63 (0.59 − 0.67), 5.4% from 0.92 (0.89 − 0.95) to 0.97
(0.93 − 1.00), and 13.0% from 0.54 (0.48 − 0.59) to 0.61
(0.55 − 0.67), respectively. To test statistical significance,
p-values were computed by a Wilcoxon ranksum test. The
statistical significance of improvements is supported with
p-values all smaller than 0.0001.

3) QUANTITATIVE EVALUATION: BACKGROUND
PSNR AND SSIM
In the previous subsection, a quantitative evaluation for the
coronary artery region is presented, and in this subsection,
a quantitative evaluation for the background region is pre-
sented. To evaluate the degradation of the background of
the 2D patches of the test set, we analyze two well-known
image quality metrics: the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index, and the results

FIGURE 10. Background PSNR (top) and SSIM (bottom) of the patches in
test cases.The Y-axis represents PSNR and SSIM, respectively, and the
X-axis represents the number of test patches.

are presented in Fig. 10. The mean of PSNR is 33.6 dB
(standard deviation of 4.25), and the mean of SSIM index
is 0.97 (standard deviation of 0.01). Both metrics illus-
trate that there was minimal to no image quality
degradation.

4) QUALITATIVE EVALUATION
Two experienced readers evaluated the degree of motion
artifacts based on a 5-point Likert scale [39], where 1 =
completely unreadable, 2= significant motion, 3= apparent
motion, 4=minor motion, and 5= nomotion.We performed
a blind test on this inter-observer study: the observer did not
know whether the patches were from before or after applying
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FIGURE 11. Qualitative examples of the original patch containing the mid-RCA (left) and results of the proposed MAC-net (right). Samples represent
variational range of improvements. Expert evaluated scores based on 5-point Likert scale [39] (1 = completely unreadable, 2 = significant motion, 3 =

apparent motion, 4 = minor motion, 5 = no motion) and source information (case number and phase φ in 4D CT) are presented above. For all patches in
the test set, motion artifact metrics are measured quantitatively in Sec. III-B2.

FIGURE 12. Qualitative examples of the input mid-RCA patch (left) and MAC-net results (right). Samples represent specific cases that distinguish the
primary vessel from the branch. The third sample pair also illustrates correction for the artery plaque. Expert-evaluated scores and source information are
presented above.

the proposed method. Both original and motion-corrected
patches are depicted completely randomly to the observers
without any delay.

Table 2 presents the ratio of frequencies of each cat-
egory for test patches before and after motion correction
using the MAC-net. The proportion of images presented with
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FIGURE 13. Qualitative examples of the input mid-RCA patch (left) and MAC-net results (right). Samples represent worst cases where there is no
improvement. There were no cases where the score decreased. Expert-evaluated scores and source information are presented above.

FIGURE 14. Straightened curved planar reformation (CPR) example of a right coronary artery (RCA) of case #7.
(a) straightened CPR at phase (φ = 60) with motion artifacts (b) straightened CPR of MAC-net result at phase (φ = 60)
(c) straightened CPR at the best-phase (φ? = 40). Below represents the magnified view of three parts blurred by motion
artifacts.

completely unreadable, significant, and apparent motions
(Likert scale 1, 2, and 3) were 98.5% previously but decreased
to 35% for the results of the MAC-net (p < 0.001).
The mean±standard deviation based on the Likert scale
was significantly improved from 1.43±0.66 to 3.80±0.87.
(p < 0.001). The inter-observer agreement was calculated
with the kappa (κ) statistics for the motion score and exhib-
ited strong agreement as before κ = 0.85; 95% confi-
dence interval (CI) 0.76–0.95 and after κ = 0.70; 95%
CI 0.61–0.81.

The sample results of the motion-corrected patches are
presented in Figs. 11, 12, and 13. Each pair of images
represents those before and after applying the MAC-net.
Changes in the Likert scores and the source information

of each patch are presented above the patches. Fig. 11
provides a comparison of various levels of improvement.
Improvements range from extremely positive (from com-
pletely unreadable [score 1] improved to no motion [score 5])
to moderate (significant motion [score 2] improved to minor
motion [score 4]) to incremental (apparent motion improved
to minor motion). In all cases, after applying the MAC-
net, the edge of the coronary artery more visible and
motion artifacts reduced, while distortion of local appear-
ance is limited. Fig. 12 demonstrates the robustness of
the MAC-net for special cases where the coronary artery
diverges or contains plaques. The MAC-net performs only
a gentle modification on the artery appearance to improve
visibility.
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FIGURE 15. Results of RCA tracking using an automatic tracking method of commercial software (QAngioCT, Medis Medical Imaging Systems,
Leiden, the Netherlands) on the original (top row) and the motion-corrected (second row) CT volumes. The table (bottom row) presents the total
length(mm) of the tracked RCA in each case. φ? (Ref) in the table represents the best-phase of each case. Source information is presented below
the second row.

FIGURE 16. Ablation study for hyper-parameters for style transfer value of β in 4 (with α fixed to 1) and number of iterations on (a) motion
artifact score circularity and (b) structural similarity. Results were measured on 10 random patches from 5 different cases.

Samples of worst cases are depicted in Fig. 13, in which
therewas no change in the score. These casesmay occurwhen
motion artifacts are too severe or the intensity of the coronary

artery is indistinguishable from the right atrium or the right
ventricle. There were no cases where the score decreased.
Overall, the MAC-net is highly likely to improve the image
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TABLE 2. Motion artifact before and after applying proposed method.

quality with a very small probability of causing harm. We
also present straightened curved planar reformations (CPRs)
of case #7 in Fig. 14. These include straightened CPRs of a
right coronary artery (RCA) at phase (φ = 60) with motion
artifacts and the MAC-net results at the same phase and at the
best-phase (φ = 40). The boundary of the RCA is blurred by
motion artifacts in Fig. 14(a), whereas in Fig 14(b), the border
is clearer than before.

Furthermore, we present qualitative results of the volumet-
ric motion correction, as described in Sec II-D, in Fig. 15.
We collected five example cases in which the automatic
tracking method [40] provided by the commercial software
QAngioCT fails to track the RCA due to motion artifacts
among ten test cases. After applying the proposed method,
the RCAs were tracked 62% longer on average. Again, there
were no cases where tracking was reduced, supporting our
claim that even for the worst case, the proposed method is
unlikely to cause harm.

C. ABLATION: HYPER-PARAMETERS FOR STYLE
TRANSFER
For most of the hyper-parameters of components applied off-
the-shelf in the proposed method, such as the pre-trained
network used with style transfer or parameters for training
the MAC-net, little or no tuning was required to obtain
acceptable results. Thus, we present ablations regarding the
hyper-parameters for iterative optimization within the style
transfer process, including the β value and the number of iter-
ations gradient descent for the style loss before termination,
in Fig. 16.

We measure the amount of motion correction using the
MAS and the amount of change in local appearance using the
SSIM [41]. As described in Sec. III-B2, MAS is measured on
the regions containing the vessel and motion artifacts, anno-
tated manually, whereas SSIM is measured on the remaining
background regions. Although the results are unexpectedly
stable for different values of β, the MAS increases and SSIM

decreases during the iterations as expected. In all experi-
ments, we used β = 100 and terminated the style transfer
after 100 iterations to balance the motion correction and
appearance change.

IV. CONCLUSION
We have proposed a novel framework for motion correction
of CCTA. With practicality and efficiency in mind, the pro-
posed framework has the following characteristics: 1) actual
learning is performed on 2D patches of the coronary artery,
2) corresponding patches are extracted from 3D volumes
from different phases with strong and weak motion in a
4D volume, 3) style transfer [21] is used to generate syn-
thetic motion-corrected ground-truth images, 4) a separate
deep CNN is used to learn the motion correction from the
synthesized ground-truth data, 5) during testing, patches are
extracted frommanually annotated coronary artery in an input
3D volume,motion-corrected, and reinserted and interpolated
back into the volume.

We have performed a quantitative and qualitative evalua-
tion that confirms the effectiveness of the proposed method
using phantom and clinical dataset. In the phantom study,
the proposed method shows acceptable results when con-
sidering the DSC and computation time. In the experiments
using clinical dataset, in terms of the MAS—the product
of fold-overlap ratio and low-intensity region score, as pro-
posed in [24]—the proposed method resulted in a 13.0%
improvement in the median compared to the uncorrected
input. Qualitatively, for the motion-corrected 2D patches,
the mean±standard deviation values of the 5-point Likert
scale graded by expert readers was significantly improved
from 1.43±0.66 (between completely unreadable and sig-
nificant motion) to 3.80±0.87 (between apparent motion and
minor motion). For the motion-corrected 3D volume after
reinsertion and interpolation, commercial software QAn-
gioCT tracked the RCA 62% longer on average. Furthermore,
we provide an ablation study concerning the setting of the
style transfer method [21]. We found that the results were
consistent with significantly varying values of β—the ratio of
scale between style and content loss—and that 100 iterations
were sufficient to obtain acceptable results.

For our future work, we plan to explore alternative meth-
ods to generate ground-truth motion correction images.
The recent success of using generative adversarial net-
works (GAN) in synthesizing realistic training data [19]
upholds its potential to address the motion correction
problem.
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