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ABSTRACT This research paper aims to analyze the minimax approach used in the semivariogram fitting
process that forms one stage of the kriging operation performed for interpolation. The conventional method
uses the weighted least squares fit for various theoretical functions such as stable, exponential, spherical.
However, several recent approaches have been developed using machine learning regression techniques.
This research employs the ordinary kriging technique where the proposed minimax approach is expected to
increase the accuracy of the interpolation resulted by reducing the error of the final result. Kriging, which is
based on the stochastic method, is widely used for spatial values and has been proven to be a better predicting
process than deterministic methods. The novel approach to ordinary kriging discussed here, the minimax
approach, is able to increase result accuracy based on the experiments performed. Minimax can predict the
weights of the semivariogram values better than the weighted least-squares method and performs faster than
machine learning approaches.

INDEX TERMS Minimax techniques, interpolation, approximation methods.

I. INTRODUCTION
A. BACKGROUND
Kriging is an interpolation process based on a stochastic
approach invented by Danie G. Krige and developed by
Georges Matheron. It is a geostatistical field applied for
earth phenomenon prediction [1] initially applied to mineral
observation in the field of mining. Interpolation is particu-
larly required when the known or measured points are not
well distributed within an area (commonly known as discrete
data). This has to be implemented for a discrete data val-
ues to produce a continuous data. The principle of kriging
states that values of closer samples have a more substantial
effect than values at more distant locations [2], known as
the regionalized variables theory. There are several types
of kriging interpolation, including block kriging, disjunctive
kriging, simple kriging, ordinary kriging, universal kriging,
and cokriging [3]. The development of kriging has further
increased these types to include adaptive kriging and regres-
sion kriging [4]. Kriging has advantages in predicting values
in comparison to other deterministically based methods such
as spline, IDW (Inverse DistanceWeighting), and polynomial
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methods [5]. Kriging, as the stochastic techniques enables
the deficiencies of deterministic methods to be addressed [3].
Several implementations and developments of kriging inter-
polation have been applied to the digital elevation model
(DEM) interpolation [6]. A modification of kriging has been
applied to mapping the organic carbon stock of soil [7],
and ordinary kriging has been proven as an interpolation
method with relatively accepted accuracy for the prediction
of land total phosphorus [4]. The kriging process performs
value prediction at the unsampled area. In the field of control
and approximation, several techniques have been applied for
robotics or tracking control such as adaptive neural fuzzy
inference system (ANFIS) [8] and fuzzy output tracking
controller [9].

The kriging interpolation process comprises of five steps:
data representation, data exploration, model fitting, diag-
nostics, and model comparison [10]. Data exploration is
conducted by calculating semivariance of known points
and fitting the semivariogram. After the weights are deter-
mined from this stage, the kriging interpolation process is
conducted. The final step is a result comparison.

A semivariogram represents the differences between two
variables, distance and semivariance values. Measured or
known points produce semivariance values on a discrete
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semivariogram. Semivariogram calculation is conducted by
calculating semivariance values at a specific distance between
two known points and graphically presenting the results.
Semivariogram fitting requires the calculation of a con-
tinuous semivariogram model to generate precise weight
predictions for a particular distance. The fitting is a process
of modeling using a functional approach that represents the
shape of the distribution of semivariogram values. Several
works of literature state that the semivariogramfitting process
plays a vital role in operational kriging. Various semivari-
ogram parameters affect ordinary kriging weights [11].

B. REVIEW THE SEMIVARIOGRAM FITTING
DEVELOPMENT
Variogram modeling is an essential part of the kriging inter-
polation process [12]. The initial approach for this stage
is defining a function considering values of, for exam-
ple, nugget, range, sill, and other variables. These initial
approaches type of equations solved by applying weighted
least squares [3]. The problem using the weighted least
squares is the subjectivity of choosing the available options.
The options for this method are stable, spherical, exponen-
tial, etc. [12]. Improvement of the semivariogram modeling
is still a wide-open topic in the data-regression fields of
various disciplines. Since kriging itself requires a variety of
practices [11], especially for semivariogram modeling.

Early development of semivariogram modeling is started
with the weighted least squares followed by machine learn-
ing regression approaches. This approach is applied to the
semivariogram fitting process in preference to conventional
methods. It is aimed to improve the weight determination
aspect of semivariogram modeling. Previously, support vec-
tor regression has been applied to variogram modeling [13]
and the least squares support vector machine (LS-SVM),
invented for optimal control of the SVM [14], has been used
to interpolate missing oceanic data [12] and coal seam thick-
ness [13]. SVM and gaussian process regression (GPR) can
improve result accuracy compared to conventional methods
for DEM interpolation [15]. LS-SVM can be used to improve
the cokriging fusion process [16].

In minimizing the uncertainty of the semivariogram mod-
eling, robust optimization has been developed for weighted
least square models [17].

C. PROBLEM FORMULATION AND MOTIVATION
There are two problems in the two previous method
approaches. The first is the subjective selection of functions
at the weighted least square and the second is the length of
computational time using machine learning regression. Even
though machine learning approach to semivariogram regres-
sion increases result accuracy, the computational processing
effort is still higher than in weighted least squares techniques.
The traditional approach to the semivariogram fitting pro-
cess using weighted least squares can be replaced with other
methods to increase result accuracy with less computational
effort. To this end, different approaches to the norm, such as

minimax, can be implemented for this case by expecting the
reduction of the average error. Minimax is assumed to be able
to minimize the maximum error in the semivariogram fitting
process with the approximation approach.

D. NOVELTY AND CONTRIBUTION
Based on the systematic literature study that has been
conducted previously, the minimax approach has not been
implemented for kriging interpolation. Therefore, the mini-
max approach is a novel approach for a semivariogram fitting
process, particularly for kriging interpolation.

The minimax approach is based on approximation theory.
This type of approximation technique is occasionally
called ∞-norm, and the 2-norm is sometimes called the
least-squares norm [18]. The minimax approach has been
applied to various mathematical experiments, and some of
the literature is convinced that minimax is better than least
squares for such operations [19], [20], [21] and that mini-
max provides better accuracy than least squares [22], [23].
The minimax means squared error (MSE) estimator can sig-
nificantly outperform the least-squares estimator [24], and
the minimax approach can minimize the maximum error of
regression in such functions. In terms of computational effort,
minimax is assumed to be faster thanmachine learning for the
regression process. It is because a learning stage is required
for the machine learning process. The effort also depends on
the size of data as an input.

E. RESEARCH OBJECTIVE AND SCOPE
This research paper aims to implement a novel approach
to the semivariogram fitting process of ordinary kriging
interpolation by using a minimax approach. The novelty of
this research focuses on developing a minimax exchange
algorithm to approximate the semivariance distribution which
previously using least square method. Minimax has a dif-
ferent type of norm approach compared to the least square.
The contribution of this research project is that minimax, as a
novel approach, can add alternatives in semivariogram mod-
eling in the kriging process. Secondly, minimax is considered
to be a better fit and improving the accuracy of the final result.

The data used in this research is the elevation point in the
form of a cloud point that commonly used for developing
DEM. The proposed method can also be implemented for
another similar type of data.

The hypothesis is that minimax manages to increase result
accuracy compared to the traditional weighted least squares
approach. Also, it is able to run faster than the machine
learning regression approach. The structure of this research
paper is as follows: Section 1 introduces the background of
the research, problem statement, novel solution approach, and
the goal of the study. Section 2 provides a theoretical review
of the process and the innovative approach. Section 3 explains
the experimental methodology, the specifications of the data
being used and the limitations of the research. Section 4 gives
the results and brief analysis of the results in comparison to
the theoretical review and updated literature. And the last
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section discusses the whole research result and opportunities
for further research.

II. THEORETICAL REVIEW
This section explains in detail the academic background
of ordinary kriging, experimental semivariogram, the fitting
process, minimax approximation, basis functions, and valida-
tion methods.

A. ORDINARY KRIGING
The most commonly used form of this technique is
ordinary kriging [25], which estimates or predicts the value
at a point of a region where a variogram is determined. The
determination is conducted using measured data surrounding
the estimation location. In this study, ordinary kriging is
chosen as the applied technique because of its popularity.
Also, the accuracy of estimated values is determined by the
sample size and distribution of sampling points [4]. It is a
proper technique for this data (height value generated from
satellite imagery) because it features uniformity and density
of sampling points in complicated topographical areas and
that the auxiliary variable is not defined.

The formula for ordinary kriging is as follows [4], [25]:

Z∗ (x0) =
∑n

σ=1
wαZ (xα) (1)

where x0 is a value to be predicted using the data values from
n surrounding the sample points of xα using weights wα .

The weights values wα are calculated from the value of
semivariance predictions. The calculation is conducted using
a function that fits the distribution of semivariance val-
ues γ (h). The values are from measured points. The matrix
operation for weights determination is as follows [25]:
γ (x1 − x1) · · · γ (x1 − x1)

...
. . .

...

γ (x1 − x1) · · · γ (x1 − x1)

1
...

1
1 . . . 1 0



wOK1
...

wOKn
µOK



=


γ (x1 − x0)

...

γ (xn − x0)
1

 (2)

where h is the distance between points and n is the number of
pairs of sample-point measurements of the values at separated
distance h.

B. EXPERIMENTAL SEMIVARIOGRAM
The experimental semivariogram is a plot of semivariance
values γ (h) against distance h. The first step toward a qualita-
tive description of the regionalized variables is the building of
an experimental variogram [3]. The semivariance is defined
by the following initial formula [26]:

γ
(
xi − xj

)
=

1
2
var(Zxi − Zxj) (3)

where var is the variance between points i and j. The semivar-
iogram calculation of measured points in detail is then based
on the formula of semivariance [3]

γ ∗ (h) =
1

2Nh

Nh∑
i=1

[Z (xi)− Z (xi + h)]2 (4)

where Nh is the number of pairs separated by lag distance, h.
The distribution of semivariance values against lag dis-

tance is then plotted into an experimental semivariogram.

C. SEMIVARIOGRAM FITTING
The experimental semivariogram illustrates as a distribution
of the semivariance values at a specific lag. Semivariogram
fitting is conducted to create a continuous semivariogram
model. Fitting a semivariogram by using such a theoretical
model is a vital process since the variogram model provides
useful information for interpolation, sampling optimization,
and spatial pattern determination [3]. The fitting process can
be defined as a form of regression process analysis. 50 to
100 semivariance values are suggested to construct a stable
variogram. Therefore it is required to determine semivari-
ogram fitting functions [3].

Four values determine the characterization of the spatial
data used: lag (h), nugget, sill, and range [3]. Nugget is the
variance of error frommeasurement added to that drawn from
spatial variation at much shorter distances than the sample
spacing. Sill is the value of the lag where there is no spa-
tial dependence between semivariance values at a particular
separation distance. The range is a value of h where γ (h)
rises to the sill. The initial semivariogram model uses these
approaches and is fitted using selected functions. The options
for purposes include spherical, exponential, stable, etc. The
standard procedure usually proceeds using a weighted least
squares technique where the weights are calculated from the
numbers of pairs [3].

D. MINIMAX APPROXIMATION
An alternative approach to the least squares technique
for fitting discrete data is minimax approximation. Both
approaches are based on approximation theory and meth-
ods [18]. The approximation is the process of estimating
unknown values from the best approximation function devel-
oped from known values. The differences between approxi-
mation and interpolation functions are [27]:
- Interpolating functions pass exactly through the known
height points used for calculating the functions.

- Approximating functions do not necessarily pass through
the known height points but approach them in a controlled
manner.
The approximation functions introduced by Powell [18]

are polynomial, minimax, least-squares, and b-splines. These
are continuously updated and have been developed recently
for many applications, including spatial analysis. The vector
norm is based on the mathematical concept behind the mini-
max and least squares theories. Norms on the real line furnish
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ameasure of distance. Rn, together with a norm onRn, defines
a metric space. Familiar notions including neighborhood,
open sets, convergence and continuity are used when working
with vectors and vector-valued functions [28].

The vector norm on Rn is a function of f : Rn
→R that

satisfies the following conditions:

f (x) ≥ 0 x ∈ Rn, (f (x) = 0 if x = 0

f (x + y) ≤ f (x)+ f (y) x, y ∈ Rn

f (∝ x) = |∝| f (x) ∝∈ R, x ∈ Rn (5)

In terms of notation, in the function f (x) = ‖x‖ , the
double bar is used to distinguish between various norms.
Useful classes of vector norms are the p-norms defined by:

‖x‖p = (|x1|p + . . .+ |xn|p)
1
p p ≥ 1 (6)

Of these the 1, 2, and∞ norms are the most important:

‖x‖1 = |x1| + . . .+ |xn|

‖x‖2 = (|x1|2 + . . .+ |xn|2)
1
2
= (xT x)

1
2

‖x‖∞ = |xi| (7)

A unit vector concerning the norm ‖·‖ is a vector x that
satisfies ‖x‖ = 1.
Based on Powell [18], if f and A are in the space l [ab], this

is the set of continuous real-valued functions that are defined
on the interval [a, b] of the real line. Turning to discrete
problems, where f and A are in Rm this is the set of real
m-components vectors. All the spaces are linear and there
are choices of norms, namely Lp-norms in the cases when
p = 1, 2,∞. Then if we consider finite p, the Lp-norms in
f ∈ [a, b] are defined to have the value

‖f ‖p =
[∫ b

a
|f (x)|p dx

]1/p
(8)

Then for p = 1, 2,∞

p = 1→ ‖f ‖1 =
∫ b

a
|f (x)| dx

p = 2→ ‖f ‖2 =
[∫ b

a
f (x)2dx

]1/2
p = ∞→ ‖f ‖∞ = max |f (x)| (9)

The ∞ norm provides the foundation of much of
approximation theory in specific theorems showing that, if it
succeeds in finding an approximation a ∈ A such that the
∞-norm distance function d (f , a) is small, then the 2-norm
and 1-norm distance functions are also small [18].

Minimax calculation requires basis function and initial
reference determination based on the data being used. The
steps of the exchange algorithm for minimax approximation
are shown in Figure 1 [29].

Several iterations are performed until convergence is
accomplished. Convergence is defined if one of the following
criteria is fulfilled:

FIGURE 1. Exchange algorithm [29].

1. Conditions when the value of h and the coefficients of the
equation are stable. Also, the value of the difference from
the iteration n and the previous iteration n-1, 1h is lower
than the tolerance value, t .

2. Cyclic condition or reentry is when the reference point that
has been exited in the previous iteration process re-enters
the next iteration process.

The output for this process is in the form of function
coefficients, p(x)∗ after the process reaches convergence. The
computational complexity of the exchange algorithm is n3.

E. BASIS FUNCTIONS
Minimax approximation is applied using basis function as
an input. There are several options for functions that might
be injected into the process, and exponential and polynomial
bases can be used as function inputs. The exponential basis
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formula is:

f (x) = α + βexpx + γ exp(2x) (10)

f (x) = exp (α + βx + γ x2) (11)

while the polynomial option formula is:

f (x) = αx2 + βx + γ (12)

f (x) = αx3 + βx2 + γ x + δ (13)

The rational reason why these basis function types are chosen
is due to the character of semivariogram point distribution.
These basis functions are assumed to represent the distribu-
tion of data. So, thesemight require soft analytical or intuition
in selecting the right basis function in the expert domain.

F. VALIDATION METHODS
Validation of the output method is conducted by applying
mean error (ME), mean absolute error (MAE), and root mean
square error (RMSE) to evaluate the differences between
height values from the empirical data and the estimated
results. The following error formulas have been used in sim-
ilar research [4], [16]:

ME =
1
n

∑n

i=1

[
z (xi)− ẑ (xi)

]
(14)

MAE =
1
n

∑n

i=1

∣∣z (xi)− ẑ (xi)∣∣ (15)

RMSE =


n∑
i=1

(z (xi)− ẑ (xi))
2

n


1/2

(16)

where z (xi) = height value at reference data and ẑ (xi) is
predicted height value.

III. METHODOLOGY
The data uses in this experiment is height data derived from
satellite acquisition as height point maps. The experimental
processing will transform this discrete data into continuous
data in the form of a DEM.

The experimental method consists of three major stages:
data preparation, the processing experiment, and result val-
idation. Data preparation is a standard image processing
method in which the input is raw image data, and the output
is a height point map for specific horizontal and vertical
data. The processing experiment is shown in Figure 2 in
which the input is height data in the form of point clouds and
semivariance values are then calculated using formula 4.

Semivariogram fitting or modeling is carried out using
three approaches: minimax, machine learning, and weighted
least squares. Minimax experimentation uses functions 10,
11, and 12. As the final analysis, the validation stage is con-
ducted using formulas 14, 15, and 16, comparing predicted
height value and height value at reference data. The reference
data as the most valid value is measured from relative GPS
geodetic measurements.

FIGURE 2. Experimental flowchart.

The general algorithm for the research experiment is as
follows:
Semivariance calculation:
1 Define the study area.
2 Coordinate transformation into the same horizontal and
vertical datum.
3 Calculate semivariance values of selected height points
using formula 4.
4 Plot semivariance values into the semivariogram.
Semivariogram fitting model (minimax):
1 Calculate the average of semivariance values for
50–100 values.
2 Define basis function to perform minimax approxi-
mation: polynomial (formulas 12 and 13) or exponential
(formulas 10 and 11).
3 Define initial references based on the selected basis
function.
4 Run the pseudo algorithm as shown in Figure 1 until the
iterations reach convergence.
5 Plot the exchange algorithm into the semivariogram fit-
ting model.
Ordinary kriging interpolation:
1 Define the semivariance values based on distances of pair
points to solve matrix operation using formula 2.
2 Calculate weight values using formula 2.
3 Define the surrounding measured or known points of the
point to be predicted.
4 Calculate the predicted height value of the point using
formula 1.
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Post-process validation/ground truth:
1 Coordinate transformation into the same horizontal and
vertical datum.
2 Calculate the error using formulas 13, 14, and 15.

Weighted least square is implemented using all measured
data by applying the following functions: stable, spherical,
and exponential. Meanwhile, machine learning regression is
implemented on all data by applying several types of SVM
and GPR (Gaussian process regression). SVM types being
used are SVM linear (SVML), SVM Gaussian (SVMG),
SVM quadratic (SVMQ), SVM cubic (SVMC), SVM fine
Gaussian (SVMGF), SVM medium Gaussian (SVMGM),
SVM coarse Gaussian (SVMGC) and least squares SVM
(LS-SVM). While the types of GPR being used are Gaus-
sian process regression, Gaussian process regression rational
quadratic (GPRRQ), Gaussian process regression squared
exponential (GPRSE), Gaussian process regression matem
5/2 (GPRM), and Gaussian process regression exponential
(GPRE). Themachine learning technique has been conducted
in previous experiments [15], [16].

The research experiment is conducted using several tools,
whilst the algorithm is implemented and developed using
Matlab software and its apps. Another utilized tool is the
ArcGIS Geostatistical Analyst.

IV. DATASET AND STUDY AREA
The novel approach to the semivariogram fitting process
is applied to two datasets. Both datasets contain similar
data: point clouds generated from optical stereo satellite
imagery and validation points drawn from differential Geode-
tic Global Navigation Satellite System (GNSS) measure-
ments and the national base coordinate system. The detailed
specifications of both datasets are shown in Table 1 [30], [31].

Height points in the form of point cloud data are extracted
from the stereo imagery using ERDAS Imagine. Typically,
the point cloud contains height information (z) of a particular
point in the coordinate (x, y). The horizontal and vertical data
are set as the same type of datum. The point cloud generated
from each stereo satellite imagery is shown in Figure 3.

The study area is selected from data representing both flat
and hilly areas. The study area of dataset 1 is located where
height (z) varies from 623.23 m to 635.36 m in a relatively
flat area covered by the plantations. In Figure 3, the trend
projection of dataset 1 is plotted in red and blue lines and
shows that the domain is relatively flat. In the study area of
dataset 2, the height (z) varies from 700.26 m to 717.86 m,
a relatively hilly area mostly covered by plantations. The
trend projection of dataset 2 in Figure 4 is plotted in red and
blue lines, which also shows that the domain is relatively
steep or hilly. The statistical description of the point cloud
is shown in Table 2.

V. RESULTS AND ANALYSIS
A. SEMIVARIOGRAM
The experimental methodology is applied to the processing
of both datasets. This section describes the results of the

TABLE 1. Dataset specifications.

FIGURE 3. Height point cloud of datasets.

processesmainly in terms of the semivariogramfittingmodel.
The initial result is a semivariogram that represents the semi-
variance values of each point cloud. It is shown in Figure 4.

A semivariogram is a plot of semivariance distribution.
This semivariogram will be an input for the semivariogram
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FIGURE 4. Semivariogram of point cloud datasets.

TABLE 2. Point cloud statistical description of the z value.

fitting process. In this experiment, the average value of semi-
variance for a particular lag is defined. The average value is
determined as follows: 20, 30, 40, 50, 60, 70, 80, 90, 100. The
values are determined because 50–100 semivariance values
are required to build stable semivariogram fitting process [3].
These experiments aim to prove how fewer than 50 semivari-
ance values can define such fitting functions.

B. EXCHANGE ALGORITHM
Minimax approximation is performed to produce an exchange
algorithm and each process pass through several iterations
until it reaches convergence. The output is in the form of
model function coefficients, α, β, γ for each function. The
results are shown in Table 3 for dataset 1 and Table 4 for
dataset 2.

The minimax process commenced by defining both
types of polynomial and exponential functions. The initial
reference is based on basis function. In the case of both
functions, four initial references are selected randomly over
measured points that represents the distribution of the data.

TABLE 3. Exchange algorithm for the semivariogram model of dataset 1.

TABLE 4. Exchange algorithm for the semivariogram model of dataset 2.

Generally, three to five iterations are needed until conver-
gence is achieved. Several attempts of the iteration produced
cyclic conditions, mostly at large numbers of γ ∗ (h). This
type of circumstance is categorized as an acceptable result
of the minimax operation. The samples of both polynomial
and exponential semivariogram fitting are shown in Figure 5.

The weight of ordinary kriging is then calculated using
a semivariogram model using formula 2. Ordinary kriging
interpolation is conducted to produce height prediction based
on the weight, using equation 1. The final experiment is the
validation process, carried out by measuring residual error
using the RMSE technique. This process is conducted by
calculating the difference between predicted height values
and reference height values. The output results are shown
in Table 5 as an error report summary of the values of
the minimax experiment and Table 6 as an accuracy report
summary of the weighted least square and machine learning
experiments.
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FIGURE 5. Minimax semivariogram fitting of dataset 1.

TABLE 5. Validation of each minimax semivariogram fitting function of
dataset 1.

C. PERFORMANCE ANALYSIS
The results for dataset 1 show that several attempts of the
minimax operation is able to improve accuracy compared to
the weighted least-squares approach at a smaller number of
γ ∗ (h). The least residual error is produced by polynomial
minimax at 50 γ ∗ (h) of 0.45 m. This accuracy achievement
is better than machine learning, which has the best accuracy
of 0.46 m. In a machine learning experiment for semivari-
ogram fitting conducted previously [15], machine learning
regression processes are set at five-folds.

The overall result of minimax height prediction accuracy is
shown in Figure 6 for accuracy trends over different values of
γ ∗ (h). The figure shows that the polynomial function trend
is slightly increasing as the value of γ ∗ (h) increases and

TABLE 6. Validation of weighted least square and machine learning
experiment of dataset 1.

FIGURE 6. The error of height prediction based on minimax (dataset 1).

the exponential function is relatively flat from overall values
of γ ∗ (h). There is an extreme error shown at polynomial
with n of γ ∗ (h) 30 (7.65 m). This phenomenon reflects that
minimax is somehow not stable as a possible result of several
factors, of which initial reference determination can be one.

Further experimental work is conducted for dataset 2 to
gain more analysis and depth of understanding of the
minimax operation for semivariogram fitting. The sample
results of semivariogram fitting for dataset 2 are shown in
Figure 7 and the overall results are shown in Table 7 for the
minimax method. Table 8 shows the weighted least squares
and machine learning methods.

The results of the minimax operation for semivariogram
fitting on dataset 2 are similar to dataset 1. The best result
is reached at polynomial with n of γ ∗ (h) of 70 (2.06 m).
The accuracy is better thanmost weighted least squares meth-
ods but is still less accurate than machine learning regres-
sion at 1.62 achieved by the SVMGF method. An unstable
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FIGURE 7. Minimax semivariogram fitting of dataset 2.

FIGURE 8. The error of height prediction based on minimax (dataset 2).

phenomenon similar to the previous analysis occurs in the
accuracy list where residual increases significantly for the
polynomial with n of γ ∗ (h) of 40 as shown in Figure 8.
The figure presents the overall accuracy of minimax ordinary
kriging for dataset 2.

TABLE 7. Validation of each minimax semivariogram fitting function of
dataset 2.

TABLE 8. Validation of weighted least square and machine learning
experiment of dataset 2.

Figure 8 shows that the polynomial function trend is
decreasing as the value of γ ∗ (h) increases, perhaps caused
by the residual error of n of γ ∗ (h) of 40. The exponential
function is relatively flat on all values of γ ∗ (h) and this is
similar to the accuracy trend seen for dataset 1.

D. BASIS FUNCTION ANALYSIS
In a broader range of data the accuracy test is conducted with
2nd order polynomial, 3rd order polynomial, and exponential.
Error of the three basis functions as shown in Figure 9.

In general, the semivariogram distribution characters that
exist in both dataset 1 and dataset 2, exponential function (11)
produce the smallest errors then followed by 3rd order poly-
nomial (13) and 2nd order polynomial (12). Therefore it can
be said that the exponential function is more precisely applied
to the dataset used in this study.

E. COMPUTATIONAL EFFORT
In addition to residual error or accuracy analysis, the mea-
surement of computational effort for minimax and machine
learning are also reported. The effort is measured using the
processing time needed for the same CPU specification.
The computation is performed using the Matlab tool and
programming on CPU with specifications as follows: Intel
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FIGURE 9. Error (m) of each basis function.

Core i7-2640M CPU @ 2.80 GHz and 4 RAM. The results
are shown in Table 9.

The overall results show that minimax performs faster than
machine learning regression for the semivariogram fitting
process with the quickest method achieved by SVMGC at
1.31 s for dataset 1 and 1.34 s for dataset 2.

VI. DISCUSSION
Based on the analysis result of the experiment, the min-
imax approximation can contributes as an alternative to
improve kriging interpolation. The benefits or advantages
of this technique are accuracy improvement compared to
traditional weighted least square and rapid process compared
to machine learning approaches. Moreover, minimax approx-
imation guarantees process convergence without a derivative
optimization requirement.

Even though this novel approach contributes to decreasing
the resulting error, difficulty arise when running the process.
Minimax is highly dependent on the selection process of
the right functional space. A sufficient understanding of the

TABLE 9. The computational effort of the semivariogram fitting process.

distribution of the input data is required to select the right
functional one. The knowledge lies in the domain of the
expert assuming that the expert of the field character knows
the real condition.

Both polynomial and exponential basis functions are able
to decrease the error. Nevertheless, it has an extreme error
at 30-40 numbers of average semivariograms. As the aver-
age amount is increasing, the error is declining for dataset
2 but growing for polynomial function for dataset 1. This
phenomenon leads to uncertainty in minimax approximation
for kriging operation which will be a challenge for further
research.

The proposed exchange algorithm can be used for defining
weight value for kriging interpolation, as shown in Figure 10.
The figure shows that the procedure of the operation is
divided into four stages. First stage starts with preprocessing
the data where the input is measured or known spatial data
points and the output is semivariogram. Then, second stage
is the main point of this research where the detail process is
explained in Figure 1 and also the production in the form of
function coefficients p(x)∗. Subsequently, third stage is the
kriging process where the input is p(x)∗ for weight calculation
in kriging operation. And the last stage is validation for
determining the error of the final result.

The proposed method might be called as minimax krig-
ing that can be applied for data prediction. It might be
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FIGURE 10. Systematic operational procedure of exchange algorithm.

useful for practitioners and researchers in the field of spa-
tial data analysis. The experiment in this research is still
developed for generating height points from satellite stereo
imagery. The proposedmethod is deployable for other field of
research. Particularly, those who make continuous data from
a discrete type of data, for example, height data, temperature
data, bathymetry.

VII. CONCLUSION
In summary, overall minimax approximation manages to
improve accuracy compared to the weighted least squares
method for the semivariogram fitting process. This approach
can lead to novelty in kriging interpolation that previously
used weighted least squares. Even though minimax is rel-
atively better than the conventional method if compared
to the machine learning approach, a similar level of accu-
racy is achieved. The overall error of both approaches is
not significantly different. The advantage of minimax com-
pared to the machine learning approach is less computational
effort.

Factors that affects the minimax results are function selec-
tion based on the distribution of data and initial reference
determination. Both factors can be analyzed in further studies
of minimax approximation.

Besides minimizing the uncertainty of the minimax
exchange algorithm, the most challenging future work of
this research is developing weighted minimax by considering
three factors: lag (h), nugget, sill, and range [3] for kriging
interpolation.

Further works in the mathematical approach is to build a
local basis function by using a specific technique such as
spline or wavelet.
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