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ABSTRACT A point cloud visualizes information by placing a voxel with a color value and a position value
in a three-dimensional space. Since a point cloud uses hundreds of thousands or millions of points to visualize
information, a large number of bits is needed compared to existing 2D media. Therefore, it is essential to
compress point data for transmission and storage. TheMoving Picture Expert Group (MPEG) is developing a
point cloud compression method based on 2D video that takes advantage of the benefits of coding efficiency
and the wide adaption of video codecs by various industries. This compression method is called video-
based point cloud compression (V-PCC). Generally, video codecs use a compression method that employs a
block matching algorithm. Currently, V-PCC is conducted using 2D video codecs, which means that motion
information used by V-PCC is obtained from 2D video sequences. Thus, this 2D-based motion information
limits the characterization of the motion in terms of 3D-points, which is also disadvantageous to compression
efficiency. In this paper, we propose a method for estimating and compensating the motion in terms of a 3D
object when compressing a dynamic object point cloud using a conventional video codec. The proposed 3D
motion estimation and compensation technology showed higher gain overall in terms of BD-rate and was
proven to effectively compress 3D point cloud content on the basis of 3D motion.

INDEX TERMS Video-based point cloud compression, 3D motion search, 3D motion estimation, compres-
sion of vector information.

I. INTRODUCTION
Conventional 2D images represent objects and scenes as a set
of pixels with color values. Like a 2D image, a point cloud
represents objects and scenes as a set of voxels with color
values in terms of the 3D domain. In other words, a point
cloud is a medium that visualizes information by placing
a voxel with a color value and a position value in a three-
dimensional space. However, unlike in a 2D image, in a point
cloud, all of the expression space of the voxels in the 3D
point cloud domain is not filled with the position and color
information. Point cloud content is seen as the next generation
of media in the fields of virtual reality (VR) [1], augmented
reality (AR) [2], and autonomous driving [3]. Since a point
cloud uses hundreds of thousands or millions of points to
visualize information, a large number of bits is needed com-
pared to existing 2D media [4]. Therefore, it is essential to
compress point data for transmission and storage [5], [6], [7].
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In the Moving Picture Expert Group (MPEG) under ISO/IEC
JTC1, an international standardization organization, the stan-
dardization of point cloud compression is under discussion.
In MPEG, a dynamic point cloud of moving objects is called
a dynamic objects point cloud and is considered to be a video
with a point cloud. MPEG has started to develop a compres-
sion method for dynamic point clouds that uses an existing
video codec [8]. All existing video codecs were developed
based on 2D images. Therefore, in MPEG, a point cloud is
projected in 2D space to create a 2D image, and 2D video is
compressed using an existing video codec such as Advanced
Video Coding (AVC)/H.264 [9] or High Efficiency Video
Coding (HEVC) [10]. This compression method is known as
video-based point cloud compression (V-PCC) [11].

In V-PCC, the 2D video codec basically uses a motion-
search-based compression method such as a block matching
algorithm [12]. This requires that the motion search is con-
ducted only in a projected 2D domain generated in a direc-
tion orthogonal to the 3D points. However, this 2D-based
motion search method is not suitable for the 3D motion that
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occurs in a point cloud video sequence. Thus, it is neces-
sary to develop a 3D motion estimation and compensation
mechanism for better compression efficiency. To solve this
3D motion search, Li et al. [13] proposed a method of
transferring 3D motion to a 2D video codec and obtained
better compression efficiency. This approach shows high
compression efficiency, but has limitations in that the 2D
video codec needs to bemodified, whichmeans to develop 3D
motion estimation methods suited for each 2D video codec.
To effectively apply the V-PCC technology to various 2D
video codec, it is necessary to develop 3D motion estimation
method regardless of a 2D video codec to be used.

In this paper, we propose a method for estimating and
compensating the motion in terms of a 3D object when com-
pressing a dynamic object point cloud using a conventional
video codec. This paper is structured as follows. Chapter II
describes the V-PCC technology, which proceeds as devel-
oped by MPEG. A technology for achieving motion estima-
tion and compensation in terms of 3D objects is proposed in
Chapter III. In Chapter IV, we compare the results obtained
using the proposed technology and existing technologies
developed by MPEG. Finally, further work being considered
for better compression efficiency is suggested in Chapter V.

II. VIDEO-BASED POINT CLOUD COMPRESSION
With the development of computer graphics and image pro-
cessing technologies, attention is being focused on point
cloud technology that expresses real space and object infor-
mation as 3D content [14]. A point cloud can visualize
information by positioning a point having a color value in a
three-dimensional space [15]. Point cloud technology is being
actively researched in a variety of fields, including immer-
sive media such as AR and VR and autonomous vehicles.
In particular, because of the increased computing power now
available, the 3D graphics processing field has also begun to
use point cloud data. This trend is accelerating with the devel-
opment of point cloud acquisition devices such as Kinect.

As the number of point cloud applications increase and
acquisition methods become more common, there is growing
need for point cloud compression. As a result, the inter-
national organization for standardization known as MPEG
has begun the development of technology for compressing
point cloud content in which point cloud content is classi-
fied into three categories: static, dynamic, and dynamically
acquired [16]. Static data and dynamically acquired data
include characteristics that represent a specific point of time
in an environment or object, and dynamic data include char-
acteristics that represent moving objects. Fig. 1 shows an
example of dynamic point cloud data.

Since V-PCC is designed in terms of a 2D video com-
pression scheme, the 3D point cloud must be projected
into 2D space for use by existing video codecs such as
AVC/H.264 and Fig. 2 and 3 show the architecture of the cur-
rent V-PCC encoder and decoder, respectively. As explained
previously, V-PCC requires that 3D points be projected into
a 2D space for use by 2D video codecs. The patch generation

FIGURE 1. Example of dynamic point cloud data.

function shown in Fig. 3 produces 2D patches from 3D points
with the most similarities among points along the normal
direction [17], then the patch packing function generates the
patch location information [18]. On the basis of this patch
location information, texture and geometry images are gen-
erated for the color and 3D location information of the 3D
points, respectively [19]. Since 3D points can be duplicated
during the projection into the 2D domain, two geometry and
two texture images are used [20], one based on the minimum
location value and the other based on the difference between
the minimum and maximum location value (called the thick-
ness image). To improve 2D video compression performance,
high frequency in the geometry and texture images must be
reduced. Thus, the image padding function in Fig. 2 is used to
fill up the empty space in the 2D texture and geometry images
[21], [22]. The original locations of the patches to be deleted
by this function are determined by the occupancy map image,
which consists of 0s and 1s indicating whether or not there are
points packed in each pixel. Information related to the 3D-to-
2D projection, such as projection plane information and the
size of each patch, is separately compressed in the auxiliary
patch information compression function. Finally, the padded
geometry and texture video sequences are compressed by
existing video codecs [23].

The decoding of the V-PCC is shown in Fig. 3, which is the
reverse of the encoding process explained in Fig. 2.

As explained previously, V-PCC is currently conducted
using 2D video codecs, which means that motion informa-
tion used in the V-PCC is obtained from 2D padded video
sequences. Thus, this 2D-based motion information limits the
characterization of the motion in terms of 3D points, which
is disadvantageous to compression efficiency.

III. 3D MOTION ESTIMATION AND COMPENSATION
As explained in the previous chapter, V-PCC performs a
compression of dynamic point cloud content using a 2D video
codecwhich allows for a highly reliable and economical com-
pression method. Thus, V-PCC has excellent performance
and has proven to be a suitable architecture for the compres-
sion of dynamic point cloud data.

However, currently, V-PCC projects 3D point cloud con-
tent into a 2D video sequence. A 2D video codec, which
applies a 2D motion search and compensation mechanism,
is used for compression. Thus, there exist limitations when
3D motion information is used, which can improve the
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FIGURE 2. Architecture of the V-PCC encoder.

FIGURE 3. Architecture of the V-PCC decoder.

compression benefits. This paper proposes an algorithm for
point cloud compression that uses 3D motion estimation and
compensation.

A. ARCHITECTURE
The 3D motion estimation and compensation algorithm pro-
posed in this paper is based on the V-PCC architecture shown
in Fig. 4, where the functions of 3D motion search, vector
image generation, and delta image generation are additionally
provided.

The current V-PCC algorithm in [11] produces the
same number of geometry, texture images, and occupancy
maps with all the input point cloud frames. However, the
3D-motion-based encoder proposed in this paper selects a
point cloud frame as an intra-frame, and the subsequent point
cloud frames are considered to be predicted frames. The
intra-frame is compressed according to the current V-PCC
encoding procedure, and the predicted frames are compressed
using 3D motion vector and delta images from the intra-
frame.

The 3D-motion-compensation-based decoder is illustrated
in Fig. 5, which shows an intra-frame being reconstructed by
the current V-PCC decoding procedure and a predicted frame
being reconstructed by combing the 3D motion vector and
delta image with the reconstructed intra-frame.

This chapter will explain how to select an intra-frame and
a predicted frame, and describe how to generate a 3D motion
vector, a vector image, and a delta image in terms of 3D point
clouds.

B. INTRA AND PREDICTED FRAMES
To use the proposed 3D motion estimation and compensation
algorithm, an intra-frame and a predicted frame are deter-
mined as follows:

f(t+1t) =


Predicted,

N∑
1
Sn
(
f(t), f(t+1t)

)
< �

Intra,
N∑
1
Sn
(
f(t), f(t+1t)

)
≥ �

(1)

where f(t) represents a 3D point cloud frame, and Sn() repre-
sents a motion search function for N points in an intra-frame.
The details of the motion search function will be explained in
Section C. As explained in (1), the summation of the motion
search function outputs is less than a certain value �, which
means a frame f(t) and a subsequent frame f(t+1t) have a
similar point distribution, and thus the subsequent frame is
defined as a predicted frame. An intra-frame is defined for a
subsequent frame, which has less similarity with frame f(t).

An example of the processing procedure for determining an
intra and a predicted frame is shown in Fig. 6. The red arrow
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FIGURE 4. Architecture of the proposed 3D motion estimation technology.

FIGURE 5. Architecture of the proposed 3D motion compensation technology.

indicates the example in which � is exceeded, and the blue
arrow indicates an example in which it is not. If the result of
motion estimation does not exceed�, the frame is determined
to be a predicted frame, otherwise, it is determined to be
an intra-frame. If the current frame is determined to be an
intra-frame, the following frames are searched on the basis
of the newly-determined intra-frame. As shown in Fig. 6,
the intra-frames are reconstructed as a geometry image and a
texture image, as is done in the existing V-PCC scheme. The
predicted frame is reconstructed as a vector image and delta
image using the proposed 3D motion search and estimation
scheme.

C. MOTION SEARCH BASED ON THE NEAREST
NUMBER OF POINTS
As described in the previous section, the determination of
whether an input point cloud frame is to be an intra or pre-
dicted frame is made on the basis of a 3D motion search.

The 3D motion search proposed in this paper is conducted by
finding the most similar points within a specific 3D search
range, where the similarity and 3D search range are obtained
in terms of a texture image sequence and a geometry image
sequence, respectively. However, it is impossible to perform a
3Dmotion search using amacro cube such as themacro block
used in a 2D image motion search. This is because the interior
of a point cloud dataset is not completely filled with voxels,
unlike the interior of a 2D search region in a 2D image for 2D
motion estimation. Thus, this paper proposes a motion search
method based on the nearest number of points, called 2NoP.
This method finds similar points in reference to a group of
points rather than to a single point.

An example of motion search based on 2NoP is shown
in Fig 7. One point within the intra-frame (f(t)), such as a point
pn in Fig. 7, is chosen as a reference point. A corresponding
point within the subsequent frame (f(t+1t)) is selected as a
target point, such as a point p′n in Fig. 7. However, the target

VOLUME 8, 2020 83541



J. Kim et al.: 3D Motion Estimation and Compensation Method for V-PCC

FIGURE 6. Illustration of predicted frame determination method.

FIGURE 7. Illustration of the motion search method based on 2NoP.

point p′n is not located in the same 3D coordinate position,
and thus the target point p′n should be defined for a motion
search. Thus, this method uses points in a specific region R as
candidate target points, such as the blue points in Fig. 7. Since
the proposed 2NoP search method uses a group of points,
the nearest k points around the reference and the target point,
such as the points in the red and yellow boxes in Fig. 7, are
selected for motion search. The details of the proposed 2NoP
motion search are as follows:

pn = [x, y, z, r, g, b] , (pn ∈ f(t)) (2)

Pn = {p1, p2, . . . , pk} , (n (Pn) = k, pn ∈ Pn, Pn ⊂ f(t))

(3)

where pn is a point in the intra-frame with its 3D position and
color information, and which is spatially centered among the

points of Pn. Pn, a group of k points being compared in the
2NoP motion search. The k points in Pn can be selected using
various nearest neighbor searches [24]–[26] or a closest point
search [27]. Similarly, p′n is a point in the subsequent frame
and is located at the center of P′n. All points in P′n are to be
compared to all points in Pn.

p′n =
[
x + dx , y+ dy, z+ dz, r, g, b

]
,(

−R ≤ dx , dy, dz ≤ R
)

(4)

P′all =
{
p′n|p

′
n ∈ f(t+1t)

}
(5)

P′n =
{
p′1, p

′
2, . . . , p

′
k
}
,

(n
(
P′n
)
= k, p′n ∈ P

′
n,P
′
n ⊂ f(t+1t)) (6)

where p′n is a point within a subsequent frame which belongs
to a specific range R. Then, all points in a range R are defined
as P′all . Further, P′n is defined as the set of k points closest to
p′n as in Pn. As described before, the 2NoP motion search
compares Pn with P′n in terms of a group of points rather
than a single point. Each P′n is to be defined according to
a candidate target point in P′all . The similarity ωn between Pn
and P′n can be obtained by (7) as follows:

ωn =

J∑
j=1


(
rpj − rp′j

)2
+

(
gpj − gp′j

)2
+

(
bpj − bp′j

)2
/3K ,

{
pj ∈ Pn, p′j ∈ P

′
n

}
(7)

As described in (7), the similarity is obtained using the
difference in color information between neighboring points
in a range in an intra-frame and a subsequent frame. Thus,
the similarity in color and geometry information can be deter-
mined using (7). Finally, the points pn and p′n producing the
smallest value of ωn are considered to be reference and target
points for the motion vector. If the minimum value of ωn is
not small enough, themotion search of pn is considered failed,
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FIGURE 8. Vector image and delta image compression process.

in which case the output of Sn() in (1) is 0. Conversely, if the
motion search is successful, the output of Sn() is 1. Thus, intra
frame and predicted frame are determined by the number of
points of the successful motion search.

The motion vector mvpn is obtained as follows:

mvpn =
[
dx , dy, dz

]
=
[
xpn , ypn , zpn

]
−
[
xp′n , yp′n , zp′n

]
(8)

The result of the 2NoPmotion search proposed in this paper is
a three-dimensional vector, as shown in (8). Since every point
in an intra-frame will have a motion vector, it is necessary
to develop a method of efficiently compressing these motion
vectors, which will be discussed in Section D.

D. VECTOR AND DELTA IMAGE GENERATION
AND COMPRESSION
This section describes a method for compressing the 3D
motion vector obtained by the 2NoP motion search proposed
in Section C. This method is based on a 2D video codec.
Since the motion between an intra and a subsequent frame
is continuous, neighboring 3D motion vectors will be similar,
and thus a conventional 2D video codec can perform efficient
compression while maintaining the similarity of input values.
Additionally, the parameters used to convert a 3D value to a
2D value in V-PCC can be used to transform a 3D motion
vector to 2D images. This can also improve compression.

The motion vector described in (8) can accurately move
a point in an intra-frame to a point in a subsequent frame,
but the color values cannot be compensated. To solve this
problem, this paper proposes a method that uses the delta
value. The delta value is used to compensate for the difference
in color values between an original frame and a decompressed
frame, and can be expressed by (9) as follows:

deltapn =
[
rpn , gpn , bpn

]
−
[
rp′n , gp′n , bp′n

]
(9)

where, deltapn indicates a difference in color value between
a point pn in an intra-frame and point p′n in a subsequent
frame. As described previously in Section C, motion vectors
are created at every point in an intra-frame and thus, each
point in an intra-frame has a correspondingmotion vector that
is realized in terms of 3D position values such as x, y, and z.
Thus, this paper proposes using the texture image generation
method of V-PCC to generate 2D vector images from the 3D
motion vectors, such as mvpn described in (8).

To use a conventional 2D video codec, this paper proposes
assigning each element of deltapn , such as dr , dg, and db,
to YUV values in an image and generating delta images
(Fig. 8). However, the elements of mvpn are independent of
each other, and thus it is not suitable to generate a 2D vector
image by assigning dr , dg, and db to the YUV domain as
is done for deltapn . Hence, this paper proposes using three
vector images corresponding to dx , dy, and dz, as shown
in Fig. 8.

Additionally, an intra-frame is divided into two point
clouds: a position point cloud Ppo and a thickness point cloud
Pth [28]. Then the 3D motion vectors and delta values should
be obtained in terms of those position and thickness point
clouds as indicated in Fig. 8. Finally, the generated vector and
delta video sequences are compressed using a conventional
2D video codec with 4:2:0 subsampling, where the video
codec configuration (such as QP for vector and delta video
sequences) is set to be the same as the geometry and texture
video sequence configuration for the V-PCC. The method for
3D motion compensation based on this proposed 3D motion
estimation is discussed in Section E.

E. MOTION COMPENSATION
As described in Section A, compressed vector and delta
video sequences are decoded using a conventional 2D video
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FIGURE 9. Example of the minimum values for the 3D and 2D position of
the patch.

decoder, where the decoded vector and video sequences are
used to reconstruct a point cloud of subsequent frames based
on decoded intra-video sequences, such as texture and geom-
etry video sequences. The 3D motion compensation method
proposed in this paper is defined as follows:

p∗n = [x, y, z, r, g, b] , (p∗n ∈ f
∗

(t+1t)) (10)

where p∗n is a reconstructed point within a decoded point
cloud with subsequent frame f ∗(t+1t), and is described by its
position and color information, such as x, y, z, r, g, and b.
The position information for p∗n is generated by combining the
decoded geometry images of an intra-frame and the decoded
vector images of a subsequent frame, and is obtained using
equations (11), (12), (13), and (14):

xp∗n = s0+ u−u0+YV ∗x (u,v) (11)

yp∗n = r0+ v−v0+YV ∗y (u,v) (12)

zp∗n = δ0+ YGpo(u,v) + YV0∗z (u,v) (13)

zp∗n = δ0+ YGpo(u,v) + YGth(u,v) + YV1∗z (u,v) (14)

where s0, r0, and δ0 are the minimum values for the 3D
position of the patch, and u0 and v0 are the minimum values
for the 2D position of the patch (as shown in Fig. 9). These
are described in the auxiliary patch information that is created
in the patch generation step described in Chapter II [11]. The
values xp∗n , yp∗n , and zp∗n are the x, y, and z position values of
reconstructed point p∗n.

Since a 2D patch is generated on the basis of a vector
normal to the 3D point cloud, the normal vectors can be
defined by the X, Y, or Z direction. Thus, it is necessary to
use a vector oriented in the direction normal to a patch in
the decoded 2D frame when reconstructing 3D point clouds.
Further, a decoded 2D frame is recognized in terms of a
vertical and a

horizontal axis, such as U and V, respectively. The position
information of p∗n defined in equations (11) to (14) shows
the case in which Z is used as the directional normal vector,
where u and v represent the coordinate value in a 2D decoded
frame. Since the 3Dmotion estimation proposed in Section D
uses only Y values for vector images, YV ∗x (u,v), YV ∗y (u,v), and
YV ∗z (u,v) represent Y values in the YUV components of the
decoded vector images V ∗x (u, v), V

∗
y (u, v), and V ∗z (u, v),

respectively. Equations (11) and (12) can provide the position
information of a reconstructed 3D point cloud in terms of
the X and Y axes, respectively. Since the Z axis is used
for the normal vector direction, depth information is used
for the Z axis position information of the reconstructed point
cloud [11]. The Z axis position information can be found
using (13) and (14), where Gpo (u, v) and Gth (u, v) are the
decoded position and the decoded thickness image for an
intra-frame [28], and decoded vector images corresponding
to Gpo (u, v) and Gth (u, v) are defined as V0∗z (u, v) and
V1∗z (u, v), respectively. When a thickness image is not being
used, (13) is used to obtain the Z axis position information.
Otherwise, (14) is used.
The color value of reconstructed point cloud p∗n is obtained

using (15) and (16) as follows:[
rp∗n , gp∗n , bp∗n

]
= T0 (u, v)+10∗ (u, v) (15)[

rp∗n , gp∗n , bp∗n
]
= T1 (u, v)+11∗ (u, v) (16)

where T0∗ (u, v) and T1∗ (u, v) are the decoded texture
images of an intra-frame, and 10∗ (u, v) and 11∗ (u, v) are
delta images corresponding to each texture image, such as
T0∗ (u, v) and T1∗ (u, v). Since texture images are gener-
ated on the basis of two geometry images as explained in
Chapter II, the color information for a reconstructed point
cloud is found in terms of the generated texture images, as in
(15) and (16). Equations (15) and (16) are used to find the
color information of a reconstructed point cloud based on
position and thickness images, respectively.

Chapter III describes the process of compressing and
reconstructing a point cloud using the proposed 3D motion
estimation and compensation technology. The results of a
comparison of this method to V-PCC of MPEG are shown
in the next chapter.

IV. EXPERIMENTAL RESULTS
The performance of the 3Dmotion estimation and compensa-
tion technology proposed in this paper was determined using
V-PCC reference software v4 [29]. HEVC was used as the
2D video codec, and the test point cloud sequences called
‘‘Soldier’’, ‘‘Queen’’, ‘‘Longdress’’, ‘‘Red and Black’’ and
‘‘Loot’’ were used under Common Test Conditions (CTC) in
V-PCC [30]. In the CTC of V-PCC, the test sequences are
encoded with quantization parameter (QP) values that vary
from R1 to R5, as shown in Table 1.

The CTC uses the Bjontegaard-Delta-rate (BD-rate) as
a quality verification method, which derives a quantitative
value by combining the results of various qualities obtained
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FIGURE 10. BD-rate results of ‘‘Soldier’’ and ‘‘Queen’’ data in D1, D2, Y, Cb, and Cr.

TABLE 1. Quantization parameters of the common test condition.

from individual QP values using the peak signal-to-noise ratio
(PSNR) and a bitrate [31]. A conventional BD-rate for a 2D
video sequence is expressed in terms of color information.
However, the BD-rate for a 3D point cloud should show
coding efficiency not only in terms of color information, but
also in terms of geometry information. This is because a 3D
point cloud is realized in terms of color and 3D position
values.

The PSNR of the geometry information can be obtained
using point-to-point and point-to-plane distances, where the
point-to-point distance is determined by the Euclidean dis-
tance between a reference point and a nearest point, and
the point-to-plane distance is determined by estimating the
distance between the reference point and a projected point
along a normal direction. The point-to-point distance PSNR
is denoted by D1, and the point-to-plane distance PSNR by
D2. The color information PSNR are expressed in terms of
Luma, Cb, and Cr. The coding efficiency achieved by the
proposed 3D motion estimation and compensation technol-
ogy was determined by comparison with the current V-PCC
reference software v4 [32].

Fig. 10 shows the PSNR results of the proposed technology
compared to the V-PCC reference software v4. As shown
in Fig. 10, the proposed technology achieved a higher geome-
try PSNR value than the V-PCC reference for bit rates of up to
about 15Mbps, which indicates that the proposed technology

is more suitable for a lower bitrate environment, such as
mobile wireless 4G and LTE environments [33].

The proposed technology has been also applied to ‘‘Long-
dress’’, ‘‘Red and Black’’ and ‘‘Loot’’ of the test sequences,
however, there is no gains obtained. This is because the 3D
motion in those sequences have relatively larger between
frames, and thus, cannot be found in the 3D motion search
region proposed in this paper. Thus, it is needed to have
further research on search region and 3D motion search
algorithm.

As described earlier, the CTC uses the BD-rate as a quality
verification method, and thus the proposed technology must
be compared in terms of the BD-rate. Table 2 compares the
‘‘Soldier’’ data results of the proposed 3D motion estimation
and compensationmethodwith theV-PCC reference software
v4 in terms of the BD-rate. The proposed technology has a
better compressed bitstream size, as shown in the bitstream
size column of Table 2. However, it produces slightly lower
PSNR values, as described in Fig. 10. Since the BD-rate
considers bitstream size and PSNR, these values are included
in Table 2. It was confirmed that the proposed technology
produces an overall higher BD-rate gain of up to 19.9%,
which means that the gain in bitstream size is larger than the
loss in PSNR. Therefore, the proposed 3D motion estimation
and compensation technology obtains better compression
gains overall than the current V-PCC reference software v4.
However, it is observed that the PSNR between the V-PCC
reference and the proposed are crossed at higher bitrate as
displayed in Fig. 10. This is because the bitstream size from
the proposed is larger than one from the V-PCC reference
at R5 as being shown in Table 2. Since R5 bitstream uses
lower quantization parameter, it causes the vector and delta
images to have more higher frequency components compared
to other bitstreams, which resulted in less efficient 2D video
compression.

Compared to the V-PCC reference the proposed technol-
ogy increases additional computational complexity caused by
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TABLE 2. Bitstream size, PSNR, and BD-Rate results of proposed technology and V-PCC reference (‘‘solider’’ data).

FIGURE 11. a) Uncompressed ‘‘Soldier’’ data, (b) ‘‘Soldier’’ data result of the V-PCC reference, (c) ‘‘Soldier’’ data result of the proposed technology,
d) Uncompressed ‘‘Queen’’ data, (e) ‘‘Queen’’ data result of the V-PCC reference, (f) ‘‘Queen’’ data result of the proposed technology.

both the nearest algorithm used for 3D motion search, and
encoding three vector images instead of a geometry image.

The results are shown visually in Fig. 11, where (a) and (d)
is the uncompressed ‘‘Soldier’’ and ‘‘Queen’’ data, (b) and (e)
show the ‘‘Soldier’’ and ‘‘Queen’’ R05 decompressed data
using the V-PCC reference, (c) and (f) show the ‘‘Soldier’’
and ‘‘Queen’’ R05 decompressed data using the proposed
technology, respectively. As shown in Fig. 11, there is no
significant degradation in the proposed technology result.

These experimental results demonstrate that the proposed
3D motion estimation and compensation technology more
efficiently compresses 3D point cloud content without signif-
icant degradation in quality, and also needs to further studied
for higher bitrate.

V. CONCLUSION
Three-dimensional point cloud content requires more storage
space than a conventional 2D image because millions of data
points are needed to represent the 3D point content. Thus,
it is essential to efficiently compress this point cloud content.
In accordance with this requirement, the international stan-
dardization organization MEPG developed V-PCC, which
compresses dynamic point cloud content using a conventional
2D video codec. However, since this compression scheme is
based on a 2D video codec, the 3D motion of point clouds
cannot be effectively used for compression. Thus, this paper
proposes a 3D motion estimation and compensation technol-
ogy suitable for use with the V-PCC architecture.

The 3D motion estimation and compensation scheme pro-
posed in this paper is as follows. First, an intra-frame and
a predicted frame are distinguished in the input point cloud
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sequence. Intra-frames are converted into geometry and tex-
ture video in the same manner as in V-PCC. The predicted
frames are converted into vector video and delta video using
the 3D motion vector obtained as a result of the 2NoP search
discussed in this paper. The 2NoP search is used to perform a
3D motion search that is suitable for a point cloud sequence
because it takes into account the fact that a 3D domain in a
point cloud frame is not fully represented by point voxels.
The 3D vector information generated from the 2NoP search
is converted into a vector image to be compressed using the
V-PCC architecture, and a delta image is used to compensate
the color difference. Thus, the geometry and texture images of
the predicted frame are replacedwith vector and delta images.
In particular, each vector has independent values for each
axis, and thus this paper proposes a method for generating
three vector video sequences corresponding to the x, y, and
z axes. Each video sequence is compressed and decompressed
using a conventional 2D video codec, and decompressed
video sequences are combined to reconstruct a 3D point
cloud. The proposed 3Dmotion estimation and compensation
scheme produces better compression efficiency by using 3D
motion in a point cloud sequence rather than 2D motion with
a conventional 2D video codec.

As shown in this paper, the proposed 3Dmotion estimation
and compensation technology achieved higher gain overall in
terms of BD-rate, and effectively compressed 3D point cloud
content on the basis of 3D motion. However, the proposed
technology is limited in higher bitrate ranges such as R05,
as shown in Table 2. In the future, our work will improve
the efficiency at higher bitrates by investigating a motion
search method that is more suitable for the structure of the
motion estimation and compensation technology proposed in
this paper.
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