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ABSTRACT Visual Simultaneous Localization and Mapping (VSLAM) has developed as the basic ability
of robots in past few decades. There are a lot of open-sourced and impressive SLAM systems. However,
the majority of the theories and approaches of SLAM systems at present are based on the static scene
assumption, which is usually not practical in reality because moving objects are ubiquitous and inevitable
under most circumstances. In this paper the DDL-SLAM (Dynamic Deep Learning SLAM) is proposed,
a robust RGB-D SLAM system for dynamic scenarios that, based on ORB-SLAM2, adds the abilities of
dynamic object segmentation and background inpainting. We are able to detect moving objects utilizing both
semantic segmentation and multi-view geometry. Having a static scene map allows inpainting background
of the frame which has been obscured by moving objects, therefore the localization accuracy is greatly
improved in the dynamic environment. Experiment with a public RGB-D benchmark dataset, the results
clarify that DDL-SLAM can significantly enhance the robustness and stability of the RGB-D SLAM system
in the highly-dynamic environment.

INDEX TERMS DDL-SLAM, semantic segmentation, multi-view geometry, dynamic environments.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is a
precondition for some robot applications, such as industrial
automation, autonomous vehicles, and collision-less navi-
gation. The SLAM technology was first put forward by
Smith et al. [1], [2] in 1986.The autonomous robot estimates
the pose utilizing data attained by distinct sensors and infor-
mation of previous locations during it travels around in an
uncharted scene, while building incrementally a consistent
map of the scene in the meantime. The solution has been seen
as a pivotal landmark going after truly autonomous robots
over a decade. Nowadays, it is safe to say that the SLAM
problem has been solved in many ways, at the very least in
theory [3].

Visual SLAM, where the camera is used as the unique
exteroceptive sensor, has been extensively investigated over
the last years. It uses images as the unique source of external
environment information [4], because images contain a large
amount of useful information and may be applied to other
visual applications, such as semantic segmentation, object
detection and tracking. The typical visual SLAM algorithm
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mainly calculates the camera pose, and rebuilds the 3D map
with the multi-view geometry theory. In order to improve
the data processing speed, many algorithms extract sparse
feature points at first, and achieve inter-frame estimation and
loop closing through matching feature points. For instance,
SIFT [5] or ORB [6]features are widely applied to visual
SLAM, because they have better robustness and superior dis-
tinction, as well as fast algorithm processing speed. However,
manual sparse image features are limited at present, where
there are many challenging difficulties under the following
conditions: dynamics, too many or very few feature points,
large scale scenarios and so on. In visual SLAM, a hier-
archical image feature extraction approach represented by
deep learning has emerged over the years, which is applied
to visual odometry (e.g. [7]–[10]) and loop closure detection
(e.g. [11]–[13]). Deep learning is a representation-learning
method with multiple levels of representation, acquired by
consisting of simple but non-linear modules that each trans-
form the representation at one level (starting with the raw
input) into a representation at a higher, slightly more abstract
level [14]. Nowadays, the combination of deep learning and
SLAM is mainly in three aspects, namely, inter-frame esti-
mation [7], [9], [10], loop closure detection [15]–[17] and
semantic mapping [18], [19].
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In the past few decades, some impressive SLAM sys-
tems have evolved and achieved good performance in certain
cases. Notwithstanding, substantial issues remain unsolved,
for instance, how to cope with dynamic objects under the
dynamic circumstances, how to make robots fully compre-
hend the circumstances and complete advanced work. The
primary contributions of the paper are:
• A novel RGB-D SLAM framework combined with deep

learning is put forward to decrease the impact of moving
objects on the camera pose estimation. The combined
approach of semantic segmentation and multi-view
geometry serves as a preprocessing stage to filter out
data which are related to dynamic targets.

• A background inpainting method is utilized to repair the
frame background that is covered by moving objects.
Then these synthesized frames are used to generate an
octree map.

The rest of the paper is organized as follows. Section II
briefly presents a review of various SLAM achievements in
dynamic scenarios. Subsequently, section III elucidates the
architecture of our SLAM system. Whereafter, we show in
section IV, the qualitative and quantitative results of per-
formance of DDL-SLAM in the TUM RGB-D dataset [20]
revealing the effectiveness, availability and accuracy of the
system. In the end, in section V we conclude the paper and a
brief discussion is given.

II. RELATED WORK
The SLAM problem in dynamic circumstances has been
an active field of research in robot community over
the years. Some SLAM systems process dynamic con-
tents as outliers and then filter out observations of them.
Subsequently, the observations of static areas in the scene are
utilized to implement mapping, localization and navigation.
The concept of dynamic environments can be further clas-
sified in low-dynamic environments, which consist of static
objects and entities that move slowly or seldom like doors,
chairs, tables or parked cars, and highly-dynamic environ-
ments which are continuously changing their pose and occupy
most of the scene like moving people or cars.

In low-dynamic environments, [21] presents an algorithm
of occupancy grid mapping for robots running in circum-
stances where non-stationary objects frequently move, [22]
proposes a SLAMmethod for detecting and tracking moving
targets simultaneously using a laser scanner, and in [23]an
approach is proposed for adding the time dimension to the
process of mapping to make a robot preserve an exact map
while running in dynamic scenes, where the Dynamic Pose
Graph SLAM was presented. However in these methods the
laser scanner is used as a sensor, which is different from our
approach. On the other hand, [24] describes the parallel exe-
cution of monoSLAM and a 3D object tracker, which allows
inferring moving objects and occlusion, and [25] proposes an
incremental movement segmentation system that effectively
segments numerous dynamic targets and concurrently con-
structs themap of the outdoor scenes withmonocular camera.

Multiple clues on the basis of optical flow and two view
geometry are combined to implement the segmentation.
[26]presents a stereo-based visual SLAMMOT (simultaneous
localization, mapping and moving object tracking) approach
so as to handle moving objects while performing SLAM
in highly-dynamic circumstances. In [27]a method of the
combination of stereo-based visual SLAM and dense scene
flow is put forward to improve traditional algorithms in
highly-dynamic and large-scale environments. Furthermore,
some RGB-D SLAM systems deal with moving targets in
challenging dynamic scenes in the literatures [28]–[32].Our
goal is to enhance the robustness and stability of RGB-D
SLAM based on ORB-SLAM2 [33] in highly-dynamic sce-
narios. We propose some effective improvement measures to
achieve better results.

III. SYSTEM DESCRIPTION
We will introduce DDL-SLAM at length in this section. It’s
consist of five aspects. First, the framework of DDL-SLAM is
proposed. Second, we briefly describe the semantic segmen-
tation employed in our system. Then themulti-view geometry
algorithm which is utilized to improve the dynamic con-
tent segmentation is introduced. Subsequently, the tracking
and mapping module is demonstrated, which is based on
ORB-SLAM2. Finally, we show the method to inpaint the
obscured background and build an octree map.

A. FRAMEWORK OF DDL-SLAM
In real life applications (e.g. autonomous robots, unmanned
aerial vehicles), exact pose estimation and dependability in
severe circumstances are key factors. To the best of our
knowledge, ORB-SLAM2 has a prominent performance in
various environments from a handheld camera in indoor
scenes, to drones flying in outdoor scenarios and unmanned
vehicles driving around in a city. Therefore, in DDL-SLAM,
its RGB-D SLAM is adopted to provide an overall
SLAM scheme, which allows us to detect moving objects
and generate the octree map. Fig.1 shows the overview
of DDL-SLAM.

The framework of our DDL-SLAM system is displayed
in Fig.2. At first, the raw RGB images are dealt with a CNN
(convolutional neural network) that segments out pixel-wise
the a previousi dynamic objects, for example human. Then the
potentially dynamic objects have been segmented, the camera
poses are tracked utilizing the static part of the frame at this
phase, where the algorithm of ORB-SLAM2 is easier and
the computation load is smaller. Afterwards, the multi-view
geometry is used to enhance the dynamic objects segmen-
tation. After all of dynamic content has been detected and
the camera localization has been completed, the obscured
background of the current frame will be reconstructed
using static information born of previous frames. Then the
inpainted RGB and depth images are utilized to generate the
local point cloud that will be transformed and maintained in
an octree map. Finally, ORB features of the static part of the
frame are extracted to be used in the tracking and mapping
thread.
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FIGURE 1. The overview of DDL-SLAM. The raw RGB image is used to semantic segmentation through DUNet.
Both semantic segmentation and multi-view geometry are utilized to combine masks in order to filter
dynamic objects out thoroughly. Then delete ORB points in mask borders. An octree map is constructed in a
separate thread on the basis of the keyframe poses and inpainted images.

FIGURE 2. The framework of DDL-SLAM. The images pass through a CNN (DUNet) for computing the pixel-wise semantic
segmentation of the a priori dynamic content. The multi-view geometry is utilized to segment more accurately, for which a
low-cost tracking algorithm is required. The tracking and mapping thread is the same as ORB-SLAM2. An octree map is
built based on inpainting the background obscured by dynamic objects.

B. SEMANTIC SEGMENTATION
In order to detect dynamic objects, DDL-SLAM adopts
DUNet [34](deformable U-Net [35]) to implement pixel-wise
semantic segmentation on the basis of the PyTorch imple-
mentation by Tramac. 1 DUNet is an FCN-based [36] net-
work, it greatly enhances deep neural networks’ capability of
segmentation.

The DUNet trained on PASCAL VOC dataset [37] could
segment these classes that are potentially movable (bicycle,
person, boat, bird, horse, sheep, cat, cow, dog, aeroplane, bus,
car, motorbike, train). In real applications, the moving objects
likely to occur are inclusive of this list. The network could be
also trained on MS COCO [38], if other potentially dynamic
classes came out.

The input of DUNet is an original RGB image of size
h×w×3, and the output of the network is a matrix of size
h×w×n, where n is the number of dynamic objects in the
image. For each of output channel i ∈ n a binary mask is
acquired. By the means of merging all the channels into one,
the segmentation of all dynamic objects that appear in the
image of a scene is acquired.

1https://github.com/Tramac/awesome-semantic-segmentation-pytorch

C. SEGMENTATION OF DYNAMIC CONTENT USING
DUNET AND MULTI-VIEW GEOMETRY
Although the majority of dynamic objects can be segmented
with DUNet, there are a handful of objects which cannot
be detected just by this means. The reason is that they are
not transcendentally dynamic, but movable. For example,
the cup, telephone and book keep still in the Fig.3 (a),
then they become movable some time separately in the
Fig. 3, (c), (d). The multi-view geometry is added to the
system so as to improve the dynamic objects segmentation.
The segmentation of the dynamic content formerly acquired
through the DUNet is refined, what’s more, new dynamic
objects instances which are static most of the time and not set
to be moving in the network stage are detected.The algorithm
of multi-view geometry is shown in Algorithm 1.

D. TRACKING AND MAPPING
Based on ORB-SLAM2 this module is mainly constituted
of three parallel threads: tracking, local mapping and loop
closure. The RGB and depth images, as well as their seg-
mentation mask are input to this stage of the DDL-SLAM.
The ORB features belonging to the image segmentation clas-
sified as static are extracted in the tracking thread. Then
the camera poses are estimated with the previous frames by
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FIGURE 3. RGB images of freiburg2_desk_with_person from the TUM RGB-D dataset [20].

Algorithm 1Multi-view Geometry
Data: Current frame F1, depth image md
Result: MasksList

1 //Find the previous keyframes that have the highest
overlaps;

2 vRefFrames F ′← GetRefFrames(F1) ;
3 //Find dynamic keypoints;
4 for each keypoint x of F ′ do
5 Compute the projected point x ′ and projected depth

dpinF1;
6 Compute corresponding 3D point X ;
7 if α← 6 xXx ′ > τα then
8 mask == dynamic;
9 MasksList← added;
10 end
11 if 1d ← dp − dx ′ > τd then
12 mask == dynamic;
13 MasksList← added;
14 end
15 end
16 MasksList← CombineMasks(F1,mask);

finding features matching in the local map and minimiz-
ing the re-projection error employing motion-only bundle
adjustment (BA). The algorithm manages the local map and
optimizes it, and performs local BA at the same time in the
local mapping thread. It detects large loops and corrects the
accumulated drift using a pose-graph optimization in the loop
closing thread. Then the thread starts the next thread to exe-
cute full BA after the pose-graph optimization, to calculate
the optimal structure and motion solution.

E. BACKGROUND INPAINTING AND
OCTREE MAP BUILDING
To inpaint the obscured background utilizing static informa-
tion born of previous views, the last 15 previous keyframes

are selected to project into the dynamic parts of the current
frame. The synthetic images from input frames of some
sequences in the TUMRGB-D dataset are displayed in Fig.4.
It can be seen how all the dynamic objects have been suc-
cessfully detected and removed. Moreover, a majority of
the segmented areas have been correctly inpainted using the
information of static background. However, a few blocks are
not inpainted completely on account of their missing parts of
the scene have not come up heretofore in the keyframes, or,
they do not have valid depth information though they have
appeared. These gaps cannot be rebuilt just with geometric
approaches and a more elaborate inpainting technique will be
required in the future research work.

Then these synthesized frames are used to generate the
local point cloud, which will be transformed and maintained
in a global octree map. The octree map expression [39] is
flexible, compact and updatable. What’s more, it is stored
efficiently and employed easily for navigation.

IV. EXPERIMENTAL RESULTS
The DDL-SLAM system has been evaluated in the pub-
lic datasets TUM RGB-D in this section. It provides
many sequences in dynamic environments with ground truth
acquired using a highly accurate motion capture system, for
example walking, sitting and desk. There are two youngsters
walking from the foreground to background, then they sit
down at the desk in the sequences named walking. These
sequences are highly dynamic and hence difficult for general
SLAM systems. In the sitting sequences, two youngsters sit at
a desk while speaking and gesticulating. These sequences are
considered as low-dynamic because the people seldommove.
All of the experiments are carried out on a computer with Intel
i7 CPU, NVIDIA TITAN GPU, and 12GB memory.

DDL-SLAM adopts ORB-SLAM2 generally accepted as
the state-of-art algorithm at present as a global SLAM
solution. So we make a comparison against RGB-D
ORB-SLAM2. The metric of absolute trajectory error (ATE)
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FIGURE 4. The synthetic images of background inpainting. Two RGB raw images are shown in Figure 4 (a), the output of our
system is shown in Figure 4 (c), in which dynamic content has been segmented and the background has been reconstructed.
Figure 4 (b) and (d) show the depth images input and output respectively, which have also been processed.

TABLE 1. Results of metrics absolute trajectory error (ATE [m]).

TABLE 2. Results of metrics translational drift (RPE [m/s]).

TABLE 3. Results of metrics rotational drift (RPE [deg/s]).

is very suitable for measuring performance of the visual
system. And the metric of relative pose error (RPE) is uti-
lized to measure the drift of the visual odometry. So we
compute the metrics ATE and RPE for the quantitative
evaluation.

Tab.1 shows the quantitative comparison results,
where halfsphere, xyz, static and rpy in the first col-
umn stand for four categories of camera ego-motions [20]:
(1) halfsphere: a camera moves according to the trajec-
tory of a 1-meter diameter hemisphere, (2) xyz: a camera
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FIGURE 5. Plots of ATE for the highly-dynamic sequences freiburg3/w_halfsphere, w_rpy, (a) and
(b) are drawn with RGB-D ORB-SLAM2, (c) and (d) are drawn with DDL-SLAM.

FIGURE 6. Plots of ATE for the low-dynamic sequences freiburg3/s_halfsphere,
freiburg2/desk_person, (a) and (b) are drawn with RGB-D ORB-SLAM2, (c) and (d) are drawn with
DDL-SLAM.

respectively moves along the x-y-z axes, (3) static: a camera
is kept static manually, and (4) rpy: a camera revolves over

roll, pitch and yaw axes. The values of Root-mean-square
Error (RMSE), Mean Error, Median Error and Standard
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Deviation (S.D.) are presented in the research, while RMSE
and S.D. are more focused on account of they can prefer-
ably demonstrate the robustness and stability of the system.
It is obvious from Tab.1, our method makes the property in
most highly-dynamic sequences attain an order of magnitude
enhancement. As far as ATE is concerned, the improvement
values of RMSE and S.D. can respectively come up to 98.6%
and 98.2%. The results show that DDL-SLAM can signifi-
cantly enhance the robustness and stability of SLAM system
in highly-dynamic scenarios. And in low-dynamic scenes,
the error is similar to the original RGB-D ORB-SLAM2
system. The primary cause is that original ORB-SLAM2 is
adept in the low-dynamic environments and achieves good
performance, therefore the upside potential of the perfor-
mance is restricted. Tab.2 and Tab.3 display the performance
of visual odometry. It can be seen that the results coincide
with the above ATE analysis.

Fig.5 displays the selected ATE curve graphs for
the highly-dynamic sequences. It is obvious that the
errors are significantly decreased with our method. The
selected ATE curve graphs of the low-dynamic sequences
are shown in Fig.6. It can be seen that the origi-
nal ORB-SLAM2 expresses good performance in these
cases. With our method combined into the SLAM sys-
tem, the ATE values are greatly decreased. However, in the
freiburg2_desk_with_person sequences, we found that our
means could not improve the original capacity. We think the
primary cause is that there are not moving objects in the
early stage of the sequences, as a matter of fact the scenes
during this period are static. What’s more, the low-dynamic
movements are generally not successive in the sequences and
moving objects always turn out to be motionless in some
frames.

V. CONCLUSION
In this research, a robust and stable RGB-D SLAM
(DDL-SLAM) system in highly-dynamic environments using
deep learning is proposed. A pixel-wise semantic segmenta-
tion convolutional neural network namedDUNet is integrated
with themulti-view algorithm to filter out all dynamic content
of the scenario. Afterwards, the matched ORB feature points
will be deleted from those detected dynamic areas, and the
synthetic RGB frames without dynamic objects and with the
background inpainting, as well as their matching synthesized
depth images are acquired. Quantitative evaluations were put
into effect utilizing the challenging dynamic sequences of
TUM RGB-D dataset. Experimental results elucidate that
DDL-SLAM exceeds ORB-SLAM2 obviously due to its
the accuracy and robustness in highly-dynamic scenarios.
Nevertheless, our approach still possesses a few limitations
to be improved. For example, the real-time performance of
the algorithm requires to be improved, a more elaborate
inpainting backgroundmethod needs to be put forward, or the
octree map attained by our system would be endowed with
semantic information to be employed for navigation in future
work.
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