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ABSTRACT This paper develops an improved non dominated sorting genetic algorithm II (NSGA-II) based
on objective importance vector γ , abbreviated as γ -NSGA-II. Different importance levels for the multiple
objectives are incorporated in the objective importance vector, which is applied to determine the individual
selection of sorting individuals in the critical layer. And such an individual selection strategy is developed
to the NSGA-II algorithm in order to obtain the optimized solution for a task which has multiple objectives
with different importance. The differences between the γ -NSGA-II algorithm and the traditional NSGA-II
algorithm are discussed in detail. A notch filter is designed for the conducted emission suppression of a
transformer rectifier unit (TRU) used in C919 flight testing, and then the parameters optimization design of
a notch filter is discussed and conducted based on the γ -NSGA-II algorithm. The non-linear relationship
between the filter’s parameters and the suppression effect of the conducted emission is also discussed with
the help of an electromagnetic compatibility (EMC) evaluation model based on a back propagation (BP)
neural network. The experimental results show that the optimized design of the notch filter is effective and
the improved γ -NSGA-II algorithm be more specific.

INDEX TERMS Suppression conducted emission, multi-objective optimization, NSGA-II, BP neural
network, notch filter, autotransformer rectifier.

I. INTRODUCTION
In recent years, intelligent algorithms have been gradually
applied to many new fields, including fault diagnosis, system
control, and parameter optimization. [1]–[6]. Liu et al. [1]
presented a novel adaptive neural fault-tolerant scheme
using finite time convergence, which is the first time the
fault-tolerant of switched systems has been considered while
maintaining finite-time stability. Liang et al. [2] designed a
dynamic containment controller and a static containment con-
troller based on the linear matrix inequality (LMI) method
to use in the studied semi-Markovian multiagent systems,
respectively. The parameter design for airborne equipment is
closely related to the reliability and performance improve-
ment of the equipment. And the application of intelligent
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algorithms in electrical equipment modeling and parameter
optimization has attracted extensive attention [4]–[6].

Non dominated sorting genetic algorithm II (NSGA-II)
is a fast non dominated sorting genetic algorithm based
on crowded distance, and is a recent research hotspot for
multi-objective optimization algorithms. Compared with the
non dominated sorting genetic algorithm (NSGA), it not
only reduces the computational complexity, but also uses
a crowded distance strategy to improve population diver-
sity. The research on improving NSGA-II mainly focuses
on computational complexity and population diversity to
avoid premature convergence to the local optimum [5]–[15].
NSGA-II was improved by using the local differential method
in reference [5], so that its convergence performance is bet-
ter. Sun et al. [6] combined an improved partheno-genetic
algorithm (PGA) with NSGA-II to improve the non domi-
nated sorting and shorten the algorithm’s calculation time.
Cheng et al. [7] combined the non-revisiting mechanism
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based on binary space partitioning with NSGA-II to real-
ize non-repetitive search and save computing resources.
In reference [8], the ‘‘Neighboring-Max’’ mode, which not
only takes advantage of hybridization but also improves
the distribution of the population near the Pareto opti-
mal front, was chosen and used in NSGA-II on the
basis of a hybridization-encouraged mechanism. Deb and
Himanshu [14], [15] proposed the non dominated sorting
genetic algorithm III (NSGA-III) based on reference-point.
NSGA-III no longer uses the crowded distance strategy,
but analyzes individuals more systematically based on
reference-point in the critical layer to select the next genera-
tion. NSGA-III solves the problems of poor convergence and
individual diversity of NSGA-II in multi-objective optimiza-
tion tasks with three or more objectives.

However, current improvement research seldom takes
the impact of the importance of each objective on popu-
lation evolution into account. In engineering applications,
the importance of objectives is different in a multi-objective
optimization task, and the importance of objectives in the
same task may also change according to the users. The evo-
lution process of NSGA-II cannot reflect the emphasis on
more important objectives when the importance of each opti-
mization objective is different. Liu et al. [16] used a weighted
scale method to select a compromise solution from the Pareto
optimal solution. Although the weight of each optimization
objective can be considered, the evolution process of the
NSGA-II algorithm itself was not improved, and the weight
setting was not objective enough. This paper develops an
improvedNSGA-II algorithm based on objectives importance
vector γ and an an individual selection strategy of dimension
reduction sorting for individuals in the critical layer. Then
the Pareto optimal solution obtained by the evolution of
γ -NSGA-II is compared with the result before improvement,
which verifies the superiority of γ -NSGA-II in completing
optimization tasks with high-dimensional objectives of dif-
ferent importance.

This paper designs a conducted emission suppression unit
of a transformer rectifier unit (TRU) used in the power supply
system of C919 flight test equipment. The parameter selec-
tion process is used as an example to research the application
of the γ -NSGA-II algorithm. In order to solve the problem
of conducted interference on the equipment, it is necessary
to build an evaluation model for conducted interference and
determine an effective suppression scheme for conducted
emissions. The research on simulation modeling of electronic
components and functional modules of interference sources
is more common among the existing evaluation methods of
conducted emissions [17]–[23]. With the increasing com-
plexity of actual electromagnetic environments, it is difficult
for modeling and simulation based on physical characteris-
tics to evaluate electromagnetic interference (EMI) compre-
hensively and accurately. Therefore, some research builds
mathematical models based on data to predict and evaluate
EMI. Wu and Wei [24] took advantage of a back propaga-
tion (BP) neural network to simulate the interference current

waveform of electro-static discharge (ESD). Li et al. [25]
used a BP neural network to obtain the mapping between
input predictors and the interference responses of sensitive
devices through selecting effective EMI parameters as input
predictors. Zhou et al. [26] selected an appropriate BP neural
network structure to build an electromagnetic interference
damage model of a low-dropout (LDO) linear voltage regula-
tor and predicted the impact of electromagnetic interference
on LDO output voltage. These studies provide solutions to
specific problems related to EMI.

Qian and Chen [27] installed a notch filer on the power
supply side to filter conducted emission signals of specific
frequencies, which can prevent the interference generated
by equipment from being transmitted to the power grid side
through the power lines, thereby ensuring that the equipment
meets the requirements of conducted emission. At present,
it is difficult for notch filter parameters determined by sup-
pression frequency and engineering experience to achieve
optimal performance taking conducted emission suppression,
operational performance, and installation cost into account
concurrently. Wang et al. [28] applied an S parameter to
predict noise attenuation under impedance mismatch con-
ditions, leading to a better high-frequency performance of
the filter. Chang and Ko [29] proposed a particle swarm
optimization algorithmwith nonlinear time-varying evolution
based on neural network (PSO-NTVENN), which optimizes
the filter cost, filter loss, current, and voltage total harmonic
distortion (THD). Lu et al. [30] evolved the population to
the optimal coordination point of multi-objectives through
threshold restriction of the fitness function of the genetic
algorithm. However, the current research mainly focuses on
the optimization of the filtering effect and reactive power
compensation of the filter, and the optimized design aimed
at EMI suppression has not been discussed.

As a multi-objective optimization algorithm, γ -NSGA-II
introduces an objectives importance vector γ based on the
NSGA-II algorithm, then reduces the dimension of the γ
according to the importance of each objective and carries
out fast non-dominant sorting for individuals in the critical
layer. In addition, the optimized design of parameters of the
conducted interference notch filter is applied as an example to
analyze the application of the improved algorithm. This paper
is organized as follows. Section II introduces the objectives
importance vector γ into the traditional NSGA-II algorithm.
In section III, the conducted emission of the power line of
a 12-pulse autotransformer rectifier unit (ATRU) is mea-
sured according to the electromagnetic compatibility (EMC)
standard GJB152A [31], and the EMI suppression scheme
and optimization objectives of the notch filter parameters
are defined. In section IV, an evaluation model of conducted
interference suppression based on BP neural network is estab-
lished, and fitness functions corresponding to each objective
of this example are created. Section V includes the simu-
lation and experimental research of conducted interference,
which verifies the superiority of the proposed γ -NSGA-II
algorithm. Section VI presents conclusions.
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II. IMPROVEMENT OF NSGA-II ALGORITHM
NSGA is a multi-objective optimization genetic algorithm
based on Pareto optimality. To reduce the time complex-
ity and improve the population diversity, NSGA-II was
developed.

A. THE DEVELOPMENT OF NSGA-II
NSGA adopts the non-dominant stratification method, so that
the better individuals have a greater chance to proceed to the
next generation. The fitness sharing strategy enables indi-
viduals in the critical layer to distribute evenly, overcomes
the over-reproduction of super individuals, and prevents pre-
mature convergence. But application of the NSGA algorithm
exposes the following shortcomings. a.

1) The time complexity of non dominated sorting is very
high, and the worst case is O(mn3). Among them, m is
the number of objective functions and n is the popula-
tion size.

2) The elite strategy is not supported. This strategy
demonstrates good performance in maintaining good
individuals and accelerating convergence to the Pareto
set.

3) The shared parameters need to be assigned artificially,
which will have a significant impact on population
diversity.

As an improved algorithm of NSGA, NSGA-II overcomes
the above shortcomings. A fast non dominated sorting algo-
rithm is developed to reduce the time complexity of the sort-
ing algorithm to O(mn2). The congestion distance algorithm
and elite strategy are used to replace the shared function
algorithm in NSGA, so that the performance of diversity
maintenance is no longer dependent on the assigned shared
parameters.

However, the NSGA-II algorithm does not take into
account the impact of the importance of each target on popu-
lation evolution. In fact, whether it is the biological evolution
of nature or the application of genetic algorithm to solve engi-
neering problems, the importance of optimization objectives
should be reflected in the population evolution.

B. IMPROVED NSGA-II WITH TARGET
IMPORTANCE VECTOR
The flowchart of γ -NSGA-II is shown as Fig. 1. The ele-
ments of the target importance vector γ are the optimization
objectives of the arrangement of the importance from high to
low. Let four optimization objectives be T1,T2,T3,T4, then
γ = [T1,T2,T3,T4].
As shown in the flowchart, the paternal population Pt

whose number of individuals is N is randomly generated,
and its individuals are sorted using the fast non dominated
sorting approach. By selection, crossover, and mutation of
individuals in Pt , a sub-populationQt with individual number
N is formed. The parent population Pt and the offspring pop-
ulation Qt are merged as population Rt , the size of Rt is 2N .

We need to select N optimal individuals from Rt to
form the new parent population Pt+1. Rt is divided into n

FIGURE 1. Flow diagram of γ -NSGA-II algorithm.

non-dominating layers (F1,F2, . . . ,Fn) by a fast non dom-
inated sorting approach. If the total number of individuals
in F1,F2, . . . ,Fl−1 is L (L<N ), then the total number of
individuals in F1,F2, . . . ,Fl is more than N . Thus, there are
(N -L) individuals in Fl that should be selected for the new
parent population Pt+1. All of the optimization objectives are
contained in objective vector M and are sorted in descend-
ing order of importance. The least important objectives are
removed fromM, and the individuals of F1 are divided into x
non-dominating layers (H1,H2, . . . ,Hx) by a fast non dom-
inated sorting approach. If the total number of individuals in
H1,H2, . . . ,Hk−1 is K (K<N -L), while the total number of
individuals in H1,H2, . . . ,Hk is more than (N -L), the least
important optimization objectives from M are removed and
the individuals of Hk by fast are layered by a non dominated
sorting approach. These steps are repeated until the total
number of individuals in Pt+1 is equal to N .
The improved algorithm follows the main framework of

NSGA-II. To avoid repetition, the same part of the main loop
is not described in details, and the selection method of critical
layers is mainly introduced, whose pseudocode is as follows.

In this paper, the parameter optimization design of a con-
ductive interference notch filter is used as an example to
study the application of γ -NSGA-II. In different application
situations, notch filters have different target importance vec-
tors. If the notch filter is used to suppress the conducted
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Algorithm 1 Dimension Reduction By Importance(P,M,N)
P: set of population in critical layer,

input M: objective vector (importance in descending
order),

N: the number of Chromosomes need to be selected
Output Pselected: set of selected population
1: F← FastNondominatedSort(P,M)
2: m← 0, i← 0
3: while i < F.length() do
4: m← F[i].length() + m
5: if m ≤ N then
6: F[i] into Pselected
7: i← i+1
8: else break
9: end if
10: end while
11: if Pselected.length() < N then
12: M← remove the last element ofM
13: DimensionReductionByImportance(F[i],
M,N-m)
14: end if
15: return Pselected

emissions of power supply equipment in flight testing, its
volume and weight should be minimized and the importance
of its economy should be minimized on the premise of ensur-
ing that EMC meets the standard. However, for notch filters
that need batch production and are installed in civil equip-
ment, economy is obviously more important, while the opti-
mization of volume and weight may become insignificant.
The γ -NSGA-II algorithm distinguishes the two optimization
requirements.

III. MEASUREMENT AND SUPPRESSION
OF CONDUCTED EMISSIONS
In order to verify the effectiveness of γ -NSGA-II for
optimization of multi-objectives with different importance,
the optimal design of conducted emission suppression for the
12-pulse TRU is used as an example.

A. MEASUREMENT OF POWER LINE
CONDUCTED EMISSIONS
According to the test item CE102 ‘‘10 kHz-10 MHz power
line conducted emission’’, the EMC standard GJB152A,
the 12-pulse TRU used in the power supply system of
C919 flight test equipment was the research object, and
EMC testing was carried out. In the frequency range of
10 kHz-10 MHz, the transmission interference of the equip-
ment must be less than the allowable threshold.

The structure of the test equipment is shown in Fig. 3.
The rated frequency of the TRU in the power supply sys-
tem of test flight equipment is 400 Hz, and its working
frequency range is 360 Hz-800 Hz. The main reasons for
the transmission interference are the THD of the input
current of the transformer and the high transient voltage

FIGURE 2. Test results of TRU power line conducted emissions without
notch filters.

FIGURE 3. 12-pulse TRU for C919 flight test power supply system.

(dv/dt) and high transient current (di/dt) generated by the
switching-on of the rectifier bridge diode [32][33]. The blue
curve in Fig. 2 is the test result of the conducted emissions
of the TRU without notch filters shown in Fig. 3. The input
source is 115 V/400 Hz, and the load current is 150 A in the
test experiments. In Fig. 2, the red curve indicates the allowed
boundary of the conducted emissions, and it is from the
standard CE102 requirement of GJB152A. The test results,
show that the conducted emissions in the range from 10 kHz
to 30 kHz are over the boundary value. In order to suppress
the conducted emissions and make them meet the standard
requirements, it is necessary to design a notch filter to filter
the interference level in this frequency band and transmit the
400 Hz power to the load without attenuation.

B. CONDUCTED EMISSION SUPPRESSION METHOD
AND OPTIMIZATION OBJECTIVES
Passive filters have been widely used in passive harmonic
control and electromagnetic interference suppression in the
aviation field because of their small volume, weight, and
high reliability. Among them, the application of single-tuned
filter is the most mature. In Fig. 4, a notch filter consisting
of n single-tuned filters in parallel can filter the interference
signals at n frequency points.

The complex impedance of the ith single-tuned filter
in Fig. 4 is:

Zi = Ri + j(ωLi −
1
ωCi

) = Ri + j(XLi + XCi )

= Ri + jXi (1)
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FIGURE 4. Topology of notch filter.

In which, ω is the angular frequency, R, L, and C are
the values of resistance, inductance and capacitance of the
single-tuned filter, respectively. Eq. (2) shows that the reso-
nant frequency f0 of the circuit is only related to the values
of L and C . When the frequency of the external excitation
signal is consistent with the resonant frequency of the circuit,
the current flows into the filter, and seldom flows to the
load. To suppress the conducted interference in a specific
frequency band, this characteristic can be used to prevent the
interference level from flowing into the power grid.

f0 =
1

2π
√
LC

(2)

The resonant curve of the filter shows the relationship
between the current and the angular frequency. The resonant
curve peaks at the resonant frequency f0, where the current
value of the flow filter is the largest. The selectivity of the
resonant circuit depends on the quality factor Q. The larger
the Q value, the sharper the curve near the peak value, and
the better the selectivity of the circuit.

Q =
1
R

√
L
C

(3)

If the values of f0 and Q can be determined, only the
relationship between R, L, and C can be obtained according
to eqs. (2) and (3). Normally, the parameters of a notch filter
can be determined according to suppression frequency and
engineering experience, which makes it difficult to achieve
multi-objective optimal parameter design.

According to the results of the EMC test in Fig. 2,
the target frequency band of the study was determined to
be 10 kHz - 30 kHz. A notch filter must be able to elimi-
nate the interference in this frequency band. Based on the
requirements, four optimization objectives of the notch filter
are proposed: conducted emission margin (1CE), THD of
conducted emission (CETHD), weight of the notch filter, and
cost of the notch filter. The definitions of 1CE and CETHD
are as follows.

(1) Conducted emission margin: 1CE refers to the mini-
mum difference between the limit level and the transmitted
signal in the target frequency band. The higher the 1CE
value, the better the suppression effect of the conductive
emission. If the transmitted signal exceeds the limit level

curve at a certain frequency point, 1CE is negative, and the
electromagnetic compatibility of the equipment is not up to
the standard.

(2) THD of conducted emission: CETHD refers to the
square sum of the harmonic components Ui divided by the
fundamental components U1 in the target frequency band as
shown in eq. (4).

CETHD=

√√√√√ N∑
i=n

(
Ui
U1

)2

(4)

IV. CONDUCTED EMISSION EVALUATION MODEL
BASED ON BP NEURAL NETWORK
Because of the complexity of the electromagnetic environ-
ment, 1CE and CETHD can not be calculated by physical
formula. If the simulation model of conducted interference
measurement is established, the 1CE and CETHD corre-
sponding to different notch filter parameters can be obtained
by simulation. However, new chromosomes will appear in
each generation of genetic algorithm. If the1CE and CETHD
of each new chromosome are obtained by simulation, it will
consume a lot of time and the time complexity of the algo-
rithm is unacceptable. BP neural network has good general-
ization ability. After limited training, it can be used to predict
1CE and CETHD under different notch filter parameters.

A. CHROMOSOME CODING
Chromosome coding should contain all the genetic infor-
mation required. On the one hand, according to eqs.
(2) and (3), L and C can be calculated by R, f , and Q. On the
other hand, the initial range of f , which is necessary for gener-
ating the input data of γ -NSGA-II, can be estimated directly
from the results of the EMC test without notch filters (Fig. 2),
and the initial range of Q can be determined by engineering
experience. Therefore, a chromosome of a notch filter should
be composed of R, f , and Q of each single-tuned filter in
the notch filter. A notch filter contains k sets of single-tuned
filters, so the ith chromosome Xi is a gene chain containing
3k genes. As shown in eq. (5), Rij, fij, and Qij represent the
resistance, resonant frequency, and quality factor of the jth
single-tuned filter, respectively. The range of j is [1, k].

Xi = [Ri1, fi1,Qi1,Ri2, fi2,Qi2, . . . ,Rik , fik ,Qik ]T (5)

B. NEURAL NETWORK STRUCTURE AND
ACCURACY VERIFICATION
The BP neural network structure with m hidden layers is
shown in Fig. 5. Eqs. (6) and (7) give the input and output
vectors of the neural network, respectively. The number of
elements in the input vector is 3k , where k is the number of
single-tuned filters in a notch filter.

Therefore, the input layer of the neural network has 3k
neurons, including the resistance value, resonant frequency,
and quality factor of k single-tuned filters. The two neurons
in the output layer are1CE and CETHD corresponding to the
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FIGURE 5. Structure of neural network for conducted emission suppression evaluation.

TABLE 1. Mean absolute percentage errors (MAPES) of three sets of
simulation experiments.

input notch parameters. The number of nodes in each hidden
layer in Fig. 5 is n1, n2, . . . , nm. The weights and biases are
expressed in w and b, respectively.

X = [X1,X2, . . . ,Xk ]

= [R1, f1,Q1,R2, f2,Q2, . . . ,Rk , fk ,Qk ] (6)

Y = [1CE,CETHD] (7)

Therefore, the mapping relationship between notch filter
parameters and1CE and CETHD can be obtained by training
the BP neural network.

To verify the accuracy of the BP neural network, the sim-
ulation model of 12-pulse TRU for conducted emission mea-
surement was established by MATLAB/Simulink. Three sets
of simulations were conducted. In the first set of simulations,
one single-tuned filter was connected in parallel in each phase
of the power line; in the second set, two single-tuned filters
were connected in parallel in each phase; and in the third set,
three single-tuned filters were connected in parallel in each
phase. Eq. (6) is the input data, and eq. (7) is the output data.
For each set of simulations experiments, 5000 sets of data
were obtained and divided into training sets, verification sets,
and test sets. After the trained BP neural networks for each
set of simulation were obtained, mean absolute percentage
error (MAPE) was used to measure the relative errors on the
test sets to verify the accuracy of the BP neural network.

As shown in Table 1, the MAPEs of 1CE and CETHD are
less than 5%, which is acceptable for our optimization design
task.

C. FITNESS FUNCTION ANALYSIS
The fitness functions of four optimization objectives of the
notch filter parameters (1CE , CETHD, WF, CF) were estab-
lished as follows.

The fitness function of1CE is eq. (8), where c is a constant
that makes F1CE (Xi) positive.

F1CE (Xi) = c−1CE (8)

The fitness function of CETHD is eq. (9).

FCETHD (Xi) = CETHD (9)

WF is the sum of the weight of resistance, inductance, and
capacitance of each single-tuned filter in the notch filter. It is
calculated by eq. (10), where k is the parallel number of
single-tuned filters, j is the sequence number of single-tuned
filters, and w1, w2 and w3 are the unit weight factors of
resistance, inductance, and capacitance, respectively.

WF(Xi) =
k∑
j=1

(w1Rij + w2Lij + w3Cij) (10)

CF is the sum of the cost of resistance, inductance, and
capacitance of each single-tuned filter in the notch filter. It is
calculated by eq. (11), where k is the parallel number of
single-tuned filters, j is the sequence number of single-tuned
filters, and α1, α2, and α3 are the unit cost factors of resis-
tance, inductance, and capacitance, respectively[30][34].

CF(Xi) =
k∑
j=1

(α1Rij+α2Lij + α3Cij) (11)

V. SIMULATION AND EXPERIMENTAL VERIFICATION
In order to verify the correctness of the theoretical analysis,
simulation experiments are used for comparative study.

A. ALGORITHM RESULTS COMPARISON
According to the EMC test results of the TRU without notch
filters in Fig. 2, the target frequency range where EMI needs

83218 VOLUME 8, 2020



L. Zhang et al.: Multi-Objective Optimization Design of a Notch Filter Based on Improved NSGA-II

FIGURE 6. Evolutionary process of fitness value before and after algorithm improvement.

to be suppressed is 10 kHz-30 kHz. One single-tuned fil-
ter can only suppress EMI in a narrow frequency range,
so more than one single-tuned filter should be designed to
suppress EMI in the 10 kHz-30 kHz range. The results of
the simulations conducted in Section IV show that at least
three single-tuned filters connected in parallel are necessary
to make 1CE positive and to achieve satisfactory results.
Combined with the target frequency range (10 kHz-

30 kHz) and engineering experience, the initial ranges of
notch filter parameters are shown in Table 2. To ensure the
effectiveness of conducted emission suppression and make
genetic evolution converge faster, R, f , and Q are randomly
generated within their respective initial ranges when the pop-
ulation is initialized.

TABLE 2. Initialization value range of notch filter parameters.

In the ith simulation, three groups of notch filter param-
eters are generated randomly according to the range given
in Table 2, and the parameters vector of the notch filter is
formed as eq. (12). The simulation result vector is shown as

eq. (13). [X ,Y ] constitutes the sample data of the BP neural
network.

Xi = [Ri1, fi1,Qi1,Ri2, fi2,Qi2,Ri3, fi3,Qi3] (12)

Yi = [1CEi ,CETHDi ] (13)

In the range given in Table 2, the initial population with
50 individuals is randomly generated. The genetic informa-
tion of each chromosome is used as the input of the neu-
ral network, and the output is the corresponding 1CE and
CETHD. And eqs. (8), (9), (10), and (11) are used to calculate
the corresponding fitness values of the four objectives.

After 50 iterations using the traditional NSGA-II algo-
rithm, the average values of four optimization objectives of
Pareto solution sets of each generation are shown in Fig. 6(a).
For comparative analysis, γ -NSGA-II is utilized for 50 iter-
ations with γ1 and γ2 as the optimized objectives vectors,
respectively. The averages of four optimization objectives
of the Pareto solution sets of each generation are shown
in Fig. 6(b) and Fig. 6(c).

γ1 = [1CE,CETHD,WF,CF] (14)

γ2 = [CF,1CE,CETHD,WF] (15)

Comparing the evolutionary processes of populations in
the three situations shown in Fig. 6 leads to the following
three observations.
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TABLE 3. Comparison of the 50th generation Pareto solution set before and after algorithm improvement.

FIGURE 7. Notch filter for only the A phase of the 12-pulse TRU.

(1) From Fig. 6(b), which shows the evolutionary pro-
cess of the γ -NSGA-II algorithm, it can be seen that in the
condition of γ1 = [1CE , CETHD, WF, CF], the two less
important optimized objectives, WF and CF, show a slight
upward trend in the later evolution stage, which makes the
values of F1CE and FCETHD lower, and meets the needs of
users who have strict requirements for EMI suppression and
low requirements for economic costs.

(2) From Fig. 6(c), it can be seen that in the condition of
γ2 = [CF, 1CE , CETHD, WF], the least important optimized
objective, WF, shows a slight upward trend in the later evo-
lution stage, while reducing the CF value to a lower level to
meet the needs of users who regard the lowest economic cost
as the most important optimal objective.

(3) However, as shown in Fig. 6(a), each objective shows
a downward trend in the evolutionary processes of the
NSGA-II algorithm. Comparing the first graphs of Fig. 6(a)
and Fig. 6(b), it can be seen that the result of the most
important objective1CE in the condition of λ1 optimized by
γ -NSGA-II is lower than that of NSGA-II. And comparing
the fourth graphs of Fig. 6(a) and Fig. 6(c), it can be seen that
the result of the most important objective CF in the condition
of λ2 optimized by γ -NSGA-II is lower than that of NSGA-II.

FIGURE 8. Physical diagrams of TRU and notch filters.

In order to further verify the impact of different opti-
mized objectives vectors on evolutionary results, 12 rounds
of genetic evolution were carried out under the above three
conditions, and each of them experienced 50 generations of
evolutionary iterations. For each round of genetic evolution,
the average values of the individuals in the final Pareto solu-
tion set (the 50th generation) for four objectives are calculated
and listed in Table 3. By observing the average of 12 rounds
of genetic results, it can be seen that:

(1) In the condition of γ1 = [1CE , CETHD, WF,
CF], the average value of the most important objective
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FIGURE 9. Result comparisons of EMI tests for the TRU power line.

1CE is 62.903, which is the lowest of the three evolu-
tionary conditions. The average value of the least important
objective CF is 1.478, which is the highest of the three
conditions.

(2) In the condition of γ2 = [CF, 1CE , CETHD, WF],
the average value of CF is 0.937, which is the lowest of the
three conditions, and the average value ofWF is 2.407, which
is the highest of the three conditions.

(3) The results of the NSGA-II algorithm shows that none
of its objectives are optimized to the lowest of the three
conditions.

Furthermore, another comparison experiment was con-
ducted, in which the traditional NSGA-II algorithm was used
to evolve generations, and only the twomost important objec-
tives (1CE , CETHD) were optimized. As the results of the
experiment show, although the traditional NSGA-II can opti-
mize the two objectives to a lower value, two other objectives
(WF, CF) are not optimized at all. Their values are 3.101 and
2.712, respectively, which are evidently higher than the values
from the three other comparison experiments. However, in the
optimization task, WF and CF are also important and should
be optimized, although they may be less important than the
other two objectives.

The comparative analysis of the examples verifies the
advantages of the developed γ -NSGA-II over NSGA-II.
Firstly, the γ -NSGA-II algorithm makes the evolutionary
process take the importance of objectives into account. It can
reduce the value of more important objectives by sacrificing a

small part of the optimization effect of less important objec-
tives. Also, it allows users to set the objectives importance
vector γ according to the actual situation, so that the opti-
mization results can be satisfactory in different engineering
applications.

B. EXPERIMENTAL VERIFICATION
According to the importance of optimized objectives for the
power supply system of C919 flight test equipment, the objec-
tive importance vectors can be obtained: γ = [1CE , CETHD,
WF, CF]. The Pareto solution set shown in Table 4 is obtained
by evolution using the γ -NSGA-II algorithm. There are sev-
eral solutions in the Pareto solution set. The importance of
each optimization objective is quite different in different
applications, and the solution, which can make the most
important objective reach the optimum, is preferred. Thus,
in this case, the 8th group with the lowest 1CE in Table 4 is
chosen as the optimal solution, and the chromosome corre-
sponding to the optimal solution is:

X = [R1, f1,Q1,R2, f2,Q2,R3, f3,Q3]

= [4.08, 21500, 0.92, 4.06, 18200, 1.1, 4.15, 13100, 1.3]

(16)

According to eqs. (2) and (3), the notch filter parameters
are calculated, and the nominal values are selected. The notch
filter for the A phase consists of three branches, as shown
in Fig. 7, in which R1 = 4.1 �, R2 = 4.1 �, R3 = 4.1 �,
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TABLE 4. Optimization target values in Pareto solution set of γ -NSGA-II
algorithm.

C1 = 2 µF, C2 = 2 µF, C3 = 2 µF, L1 = 33 µH,
L2 = 47 µH, L3 = 63 µH. The prototype of the 12-pulse
TRU for the experiment is shown in Fig. 8(a), and the notch
filters for the A, B, and C phases, which contain three notch
filters shown in Fig. 7, are shown in Fig. 8(b).

EMI tests of a TRU power line with notch filters have been
conducted according to EMC standard GJB152A. The test
waveforms are shown in Figs. 9(c) and (d), in which the input
voltage frequencies are 360 Hz and 800 Hz, respectively. For
comparison, the waveforms of EMI tests of a TRU power
line without notch filters are shown in Figs. 9(a) and (b),
in which the input voltage frequencies are 360Hz and 800Hz,
respectively. It can be seen from the test waveforms that after
the notch filters are installed, the conducted emissions in
the 10 kHz to 10 MHz frequency band have been reduced
to below the standard line. The experiments show that the
designed notch filters can ensure that the conducted interfer-
ence meets the requirements of GJB151A.

VI. CONCLUSIONS
Based on the NSGA-II algorithm, the influence of the degree
of importance of different optimized objectives on population
evolution is studied. The main contributions of this article
include:

The concept of the objective importance degree is intro-
duced, and a γ -NSGA-II algorithm based on NSGA-II is
developed to obtain the optimal solution for objectives with
higher importance. Meanwhile, the dimensionality reduction
strategy based on the objective importance vector can avoid
the problem of non-uniform solution distribution caused by
the crowded distance strategy of NSGA-II when there are
more than two optimization objectives. They can be proved
by experiments in which parameters of a notch filter for EMI
suppression are optimized with 1CE , CETHD, weight, and
cost as the optimization objectives. In addition, the traditional
EMI test, which is time-consuming and expensive, is not
reasonable for data-based analysis. In order to obtain the
fitness function of the optimization objectives, a data-based
conducted EMI emission model is established. As shown in
section IV, the nonlinear mapping relationship between the
parameters of the notch filter and1CE ,CETHD is obtained by

training the neural network, which provides a new direction
for EMI evaluation modeling.

When the developed γ -NSGA-II algorithm is adopted,
the number and importance of optimization objectives can
be adjusted according to the characteristics and performance
of the application objects. Thus, the algorithm can be widely
extended to multi-objective optimization in other fields. The
method of establishing fitness functions based on a BP neu-
ral network can be used to solve other nonlinear mapping
relationships. The future work can be carried out from these
two aspects: (1) reduce the computational complexity of the
proposed γ -NSGA-II algorithm; (2) optimize the EMI eval-
uation model to represent the mapping relationship between
notch filter parameters and EMI.
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