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ABSTRACT As one of the widespread RNA post-transcriptional modifications (PTCMs), 5-Methylcytosine
(m5C) plays vital roles in better understanding of basic biological mechanisms and major disease treat-
ments. In experiments, traditional high-throughput approaches to find m5C sites are usually expensive and
laborious. Additionally, facing with a large number of RNA sequences, developing accurate computational
methods to distinguish m5C and non-m5C sites is an efficient solution. Here we introduced a novel
predictor, called iRNA-m5C_NB, to identify m5C sites inHome sapiens using Naive Bayes (NB) algorithm.
In this method, unbalanced dataset Met935 is firstly analyzed using efficient hybrid-sampling strategy
SMOTEEEN. Then top 57 features are selected by the ANOVA F-value from four kinds of well-performance
feature extraction techniques, including Bi-profile Bayes (BPB), enhanced Nucleic Acid Composition
(ENAC), electron-ion interaction pseudopotentials (EIIP) and mMGap_1. Based on the jackknife test, the
evaluated recall for the unbalanced training dataset Met935 is up to 82.81% withMCC of 0.63. And for the
independent dataset Test1157, the predictor still shows high recall of 70.06% and MCC of 0.34. It is the
first m5C predictor constructed using the unbalanced dataset, and the recall scores are increased by 19.82%
and 59.23% for jackknife and independent tests compared with the latest tool RNAm5CPred, respectively.
We demonstrate that the proposed predictor iRNA-m5C_NB outperforms other state-of-art models, which
hopes to be an efficient and reliable method to identify m5C sites.

INDEX TERMS 5-Methylcytosine, bi-profile Bayes, naive Bayes, unbalanced data, feature selection.

I. INTRODUCTION
5-Methylcytosine (m5C) is one of the widely spread post-
transcriptional modifications (PTCMs) in rRNA, tRNA and
mRNA sequences, which has been found in many organisms
[1]–[4]. Specifically, m5C can be formed on carbon atom
by the catalysis of RNA methyltransferase (such as NSUN2
and DNMT2), where a methyl group is attached in the 5th

position of the cytosine (C) ring [5]. As a research hotpot in
recent years, m5C has been discovered in various biological
processes, such as tRNA stabilization, rRNA translational
fidelity and codon identification [5]–[10]. Meanwhile, it is
proved that m5C has important effect on many major human
diseases, including breast cancer, autosomal-recessive intel-
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lectual disability and Dubowitz syndrome [11]–[16]. There-
fore, fast and efficient recognition of m5C is the primary task
of further researches on biological mechanisms and valuable
applications. Although kinds of biological experiments have
been proposed to detect m5C sites (i.e. bisulfite treatment
[17], [18], m5C RNA immunoprecipitation (m5C-RIP) [19],
5-azacytidine-mediated RNA immunoprecipitation (Aza-IP)
[20] as well as methylation iCLIP (miCLIP) [21], it is
believed that corresponding costs of time and money are very
high. Meanwhile, the number of RNA sequences shows sharp
accumulation with the mature sequencing techniques. There-
fore, constructing high-performance computational models
to predict m5C becomes a reliable method to resolve this
problem.

To our best know, totally eight models have been built
to recognize RNA m5C sites [22]–[29]. Except the tool
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PEA-m5C for Arabidopsis thaliana [26], the remaining
seven [22]–[25], [27]–[29] are all involved in the identifi-
cation of human sequences (abbreviated as H. sapiens). The
first computational model, m5C-PseDNC, was proposed by
Feng et al. using the Support vector machine (SVM). The
prediction accuracy is 90.42% over jackknife test, where
pseudo dinucleotide composition (PseDNC) features with
three physiochemical characteristics (entropy, enthalpy and
free energy) were used to encode RNA sequences [22].
Then, RF-based model iRNAm5C-PseDNC was provided by
Qiu et al. using PseDNC features with ten important proper-
ties considered, where jackknife test achieves high accuracy
of 92.37% [23]. Later on, Zhang et al. developed a novel
model m5C-HPCR by heuristic nucleotide physicochemical
property reduction algorithm (HPCR), in which MCC and
AUC are up to 0.859 and 0.962 [24]. Sabooh et al. developed
new method pM5CS-Comp-mRMR based on the Kmer fea-
tures (k = 2 ∼ 4). Particularly, feature selection approach
Minimum Redundancy and Maximum Relevance (mRMR)
was applied to choose effective features, which finally gives
the accuracy value of 93.33% [25]. And compressive and
cell-specific predictor RNAm5Cfinder was established by
Li et al. using binary encoding (BE) features to analyze m5C
sites in eight tissues/cell types, correspondingAUCvalues are
both higher than 0.77 and 0.87 [27]. At same time, Lv et al.
introduced iRNA-m5C model using four integrated features,
including Kmer, BE, pseudo k-tuple nucleotide composition
(PseKNC) and Natural Vector (NV) [28]. The jackknife accu-
racy is up to 92.9%. Very recently, Fang et al. published a
new predictor RNAm5CPred based on combination of three
nucleotide compositions, namely Kmer, K-spaced nucleotide
pair frequencies (KSNPFs, same as mMKGap in this paper)
and PseDNC [29], where the recall andMCC are 68.79% and
0.154 over independent test.

The datasets are the most basic and important part for
constructing model. For the five tools, namely m5C-PseDNC
[22], M5C-HPCR [24], Pm5cs-Comp-Mrmr [25], iRNA-
m5C [28] and RNAm5CPred [29], they all used the balanced
training dataset Met240 (containing 120 positive and 120
negative instances) collected by Feng et al. [22]. And for
iRNAm5C-PseDNC using the unbalanced dataset Met1900
(475 positive and 1425 negative samples), there are large
amount of redundant sequences with the accuracy and MCC
achieve 92.37% and 0.79. It means that serious overfitting
problem is existed in this model [23]. As for the latest pre-
dictor RNAm5CPred [29], kinds of sequences datasets (Bal-
anced: Met240; Unbalanced: Met1900, Met935, Train935,
Train839, Test96 and Test1157) were all investigated. How-
ever, the model was finally constructed using Met240 by
comparison of models results based on Met240 and Met935.
Finally, the results over independent dataset Test1157 are
unsatisfied (Re = 68.79%, Sp = 53.70%, Pre = 18.19%
andMCC = 0.154). Meanwhile, the jackknife performances
using unbalanced Met935 are still low (Re = 62.99%, Sp =
99.50%, MCC = 0.749, Pre = 95.24%), as well as inde-
pendent test using Test1157 (Re = 10.83%, Sp = 93.00%,

MCC = 0.050, Pre = 19.54%). In general, although the high
accuracies (more than 93%) were reported using the balanced
dataset over jackknife test, it is an urgent need to construct
the high-performance model using the unbalanced data based
on the fact that the m5C sites is distributed unbalanced.
In another hand, the number ofMet240 is so small that it lacks
statistics characteristics.
In this paper, we focused on the identification of RNA

m5C sites inH. sapiens using the unbalanced dataset Met935
and Test1157. Figure 1 displays the basic flowchart of
this work. Based on the training dataset Met935, several
unbalanced strategies are firstly tested using the single BPB
features, where four algorithms are also applied simultane-
ously, including RF, SVM, AdaBoost and NB. After prelim-
inary studies, hybrid-sampling technique SMOTEENN and
NB algorithms are selected for the next experiments. Then,
we investigate the results of five popular sequence representa-
tions, where four features (BPB, ENAC, EIIP andmMGap_1)
are finally used. The model is finally constructed using the
efficient top 57 features selected by the ANOVA F-value.

II. MATERIALS AND METHODS
A. BENCHMARK DATASETS
In the present work, two unbalanced benchmark datasets
Met935 and Test1157 are used for cross validation and inde-
pendent tests, as well as balanced Met240 for nucleotide
distribution analysis. As mentioned above, Met240 is the first
benchmark dataset collected by Feng et al. [22] to construct
m5C sites model. It is obtained from the popular RNA modi-
fication database RMBase [1] with 120 positive and 120 neg-
ative instances. Met935 is built by Fang et al. [29], which
includes 127 positive and 808 negative samples. Specifi-
cally, positive sequences are also obtained from RMBase
[1], and the negative sequences are obtained from 1425 non-
m5C samples in Met1900 collected by Qiu et al [23].
Testing dataset Test1157, containing 157 m5C and 808
non-m5C sequences, is used to evaluate the model perfor-
mances over independent test, which is selected from Gene
Expression Omnibus datasets (GEO) website with gse90963
(https://www.ncbi.nlm.nih.gov/geo/) by Feng et al. [22]. It is
noted that the sequence similarity is less than 70.00% using
CD-HIT program for the mentioned three datasets [30]. More
details can be found in [22], [23], [29], [31]–[34].

B. RNA FEATURE REPRESENTATION
Efficient RNA feature representation is important to building
the machine-learning-based predictors. Various state-of-art
feature-extraction platforms have been proposed to conve-
niently encode RNA segments [35]–[38]. In this paper, six
kinds of RNA features are applied to determine whether the
nucleotide C can be modified.

1) BI-PROFILE BAYES (BPB)
BPB is a popular sequence-encoding technique, which
is widely chosen to solve identification subjects in
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FIGURE 1. Flowchart of iRNA-m5C_NB model to identify RNA m5C sites using Naive Bayes in this work.

bioinformatics [39]–[48]. In this method, nucleotide distribu-
tion properties in positive and negative samples are separately
used to represent sequences, which well reflects the sequence
position-specific information. Considering a l-length RNA
sequence S = R1R2R3 . . .Rl , BPB features can be formulated
as

VBPB = (p1, p2, . . . , pl, nl+1, nl+2, . . . , n2l)T (1)

where (p1, p2, . . . , pl) and (nl+1, nl+2, . . . , n2l) give the
corresponding nucleotide occurrence probabilities at each
location i(i = 1, 2, ..., l) in positive and negative sam-
ples, respectively. Considering the nucleotide C always locat-
ing in the center of the sequence, we remove two features
pl and p2l for the center C (i.e. pl and p2l always keep
1.00 for all samples). Therefore, BPB can induces totally
2(l − 1)-dimensional features.

2) KMER
As one well-known vector model, Kmer is simply expressed
as the k-tuple or k-neighboring nucleotides composition [26],
[28], [35], [49],

VKmer= [f k1 , f
k
2 , f

k
3 , . . . ,f

k
i , . . . ,f

k
4k ]

T
(2)

where f ki indicates the calculated frequencies of i-th k-tuple.
Obviously, Kmer will induce a 4k -dimensional vector. In this
work, we set k = 1 ∼ 4 to generate sequence features.

3) ENHANCED NUCLEIC ACID COMPOSITION (ENAC)
In ENAC method, nucleotide frequencies in a length-fixed
subsequence are calculated to represent RNA instance, which
is usually thought to be an improved version ofNAC approach
(i.e. Kmer with k = 1). Many subsequences will be obtained
when the nucleotide window continuously slides from 5’ to
the 3’ terminus over full RNA segment [50]. If we set the
subsequence length as m, a (l − m + 1) × 4)-dimensional
ENAC feature vector can be obtained. Here we use the default
window length 5 to carry out our research.

4) XXKGAP
Similarly, xxKGAP feature is one variation of Kmer method
implemented in PyFeat package [36], where the composition
of subsequences with k-gaps is used to describe sequences.
In this paper, we adapt monoMonoKGap (mMKGap),
monoDiKGap (mDKGap) and monoTriKGap (mTKGap)
features with k = 1∼3 to model.

5) ELECTRON-ION INTERACTION PSEUDOPOTENTIALS (EIIP)
AND EIIP OF TRINUCLEOTIDE (PseEIIP)
Based on the reported electron-ion interaction pseudopo-
tentials values of four nucleotides (i.e. EIIPA = 0.1260,
EIIPC = 0.1340, EIIPG = 0.0806 and EIIPT = 0.1335) [51],
two effective feature-extraction techniques EIIP and PseEIIP
are introduced for prediction researches [43], [52]–[54].

In EIIP scheme, the RNA sequence is directly replaced as
the related EIIP values [51]. Furthermore, PseEIIP feature can
be expressed using the extended average EIIP value of related
trinucleotides,

VPseEIIP
= [EIIPAAA.fAAA,EIIPAAC .fAAC , . . . ,EIIPUUU .fUUU ]

(3)

Here, EIIPXYZ represents the EIIP value of the i-th trinu-
cleotide XYZ by EIIPXYZ = EIIPX + EIIPY + EIIPZ (i.e.,
the sum of three related nucleotides X, Y and Z), and fXYZ
is the related frequency of XYZ. These two methods EIIP
and PseEIIP form l and 64-dimensional numeric vectors,
respectively.

6) PC-PseDNC-GENERAL
The PC-PseDNC-General method is a frequently used
encoding technique to predict RNA sites [37], [55]–[57],
which successfully incorporates sequential information and
physicochemical properties of dinucleotides. It induces
(16+ λ)-dimensional features,

VPC−PseDNC−General=(d1 · · · d16d16+1 · · · d16+λ)T (4)
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where

dk =


fk∑16

i=1 fi + ω
∑λ

j=1 θj
, (1 ≤ k ≤ 16)

ωθk−16∑16
i=1 fi + ω

∑λ
j=1 θj

, (16+ 1 ≤ k≤ 16+λ)
(5)

here fk is the normalized frequency of the k-th dinucleotide
(k = 1, 2, . . . , 16), and λ is the highest counted rank of
considered RNA sequence correlations. And ω is the asso-
ciated weighting factor in the range of 0 ∼ 1; θj indicates
the j-tier correlation factor, which well demonstrates the
sequence-order correlations of the most contiguous dinu-
cleotides. In this study, we change the λ parameter from 2 to 5
to extract different features.

7) XXKGAP
Similarly, xxKGAP feature is one variation of Kmer method
implemented in PyFeat package [36], where the composition
of subsequences with k-gaps is used to describe sequences.
In this paper, we choose monoMonoKGap (mMKGap),
monoDiKGap (mDKGap) and monoTriKGap (mTKGap)
features with k = 1∼3 to construct.

C. MACHINE LEARNING ALGORITHMS
The powerful and efficient machine learning platform based
on Python language Scikit-learn package [58] was applied to
construct model and analyze features. Here four useful clas-
sifiers NB, RF, AdaBoost and SVM were used for prediction
task with default parameters.

1) NB
NB is a useful supervised classification algorithm based on
Bayes’ theorem under the ‘‘naive’’ assumption [59]–[61],
which can be defined as

fnb (F) =
P(c = +)
P(c = −)

∏n

i

P(fi|c = +)
P(fi|c = −)

(6)

where F =
(
f1, f2, . . . , f n

)
indicates the object and involved

f1, f2, . . . , f n give the associated features. And c labels the
class of samples (positive class: c = +; negative class:
c = −). It has been widely used in bioinformatics researches
with good performances [62]–[64]. Here we use the Gaus-
sianNB algorithm for classification.

2) RF
RF is a widely used tree-based ensemble estimator in bioin-
formatics [65]–[78]. In this method, the voting results of a
number of decision tree classifiers are finally treated as the
output prediction performances [79].

3) SVM
SVM is a useful supervised learning algorithm [80], [81],
which has been extensively deployed in bioinformatics
[82]–[97]. Low-dimensional feature space can be effectively
transformed into high-dimensional Hilbert space to find the

best margin for hyperplane using the radial basis kernel func-
tion (RBF).

4) ADABOOST
AdaBoost is a widely applied ensemble classifier to improve
model performances in bioinformatics [34], [98]–[100].
In this method, various weaker learners are fitted using
bicluster-based classifiers, such as small decision trees.
The good prediction performances can be finally generated
by integrating those classifiers through weighted vote/sum
[101]–[103].

D. FEATURE SELECTION AND VISUALIZATION
In order to analyze importance of different features and sim-
ply the model, three feature-selection methods are used to
rank associated features, namely AdaBoost, F-value and Chi2
implemented in sklearn toolkit [58]. F-value and Chi2 are the
two traditional univariate feature selection approaches, where
the best feature is selected using univariate statistical tests
[104]–[108]. Specifically, first one calculates the F-value for
the all studied samples. And Chi2 selects important features
using the chi-squared stats between each non-negative fea-
ture and class. Meanwhile, t-Distributed Stochastic Neighbor
Embedding (t-SNE) [109] is applied to visualize distribu-
tion by reducing the dimension of original high-dimensional
data. Similarities between data points are firstly converted
into joint probabilities. Then, Kullback-Leibler divergence
between those joint probabilities is optimized to illustrate
data distribution.

E. UNBALANCED STRATEGY
In this paper, several unbalanced strategies are used to solve
the unbalanced problem of training dataset, including resam-
plingmethods and ensemble classifiers [49], [110]–[116]. For
the hybrid-sampling method SMOTEENN [117], Synthetic
Minority Over-sampling Technique (SMOTE) and under-
sampling method Edited Nearest Neighbours (ENN) are
incorporated to balance the dataset. Specifically, SMOTE is
first applied to generate new examples in minority class [118]
followed by ENN to remove the mixed samples. More details
can be found in [119].

F. CRITERIA FOR PERFORMANCES EVALUATION
Although performances of existing tools are finally evaluated
over jackknife test, we firstly used 10-fold cross validation
(10-fold CV) for preliminary experiments. Then, jackknife
and independent tests are used to give objective results. For
the 10-fold CV, the training dataset are randomly split into 10
subsets on average. Later, the model is trained using 9 subsets
and tested using the remaining one. Repeat this process 10
times until each subset is used once as testing set. The average
performance of related 10 folds is used as the final scores of
models. As a special case, jackknife test is a special case of
k-fold CV, where k is equal to the total number of samples.

Based on the 10-fold CV and independent tests, six met-
rics associated with the confusion matrix, namely recall
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or sensitivity (Re, Sn), specificity (Sp), accuracy (ACC ) and
Matthew’s correlation coefficient (MCC), precision (Pre) and
F1 score are used to check performances of classification
models, which are defined as bellow (7), as shown at the
bottom of this page.

Here, TP and TN give the number of predicted true posi-
tive and negative instances, whereas FP and FN indicate the
number of false positive and negative sequences, respectively.
Furthermore, the AUC value (area under ROC curve) is also
applied to represent the prediction results, which is no sensi-
tive to the thresholds of predicted probability [120]–[127].

III. RESULTS AND DISCUSSION
A. ANALYSIS OF NUCLEOTIDE DISTRIBUTION
First of all, the nucleotide distribution characteristics are dis-
played in Figure 2 for the unbalanced dataset Met935 (Left)
and balanced Met240 (Right). The enriched and depleted
nucleotides are calculated by the differences of nucleotide
frequencies between positive and negative samples (i.e.
pi − nl+i at position i, see details in Sec. II). Obviously, there
are big differences existed between two datasets. ForMet935,
corresponding distribution is quietly different in individual
place, which can be clearly seen for the nucleotides near
the center. For the nucleotide at upstream position -1, C and
A are separately enriched in positive and negative samples,
respectively. On the contrary, G and U are obviously located
in downstream positions 1∼4 and 5∼7, respectively (positive
instances), while A, C, U enriched in positions 1∼3 as well as
A, C in 4∼6 (negative instances). As forMet240, the distribu-
tion is basically uniform and simple. Specifically, nucleotides
C and G are widely distributed in positive samples, whereas
A and U in negative sequences, except for upstream position
-20. Generally, there is obvious differences existed between
the unbalanced and balanced datasets, where former is more
complex and weaker.

As a supplement, corresponding visualization of these two
datasets, i.e. Met935 (Left) and Met240 (Right), is also plot-
ted in Figure 3. Here BPB features are finally transferred into
a 2-dimensional vector to conveniently display. For the unbal-
anced dataset Met935, positive samples are basically placed
in the entire feature space, only a few gathers at the bottom
right. However, it is simpler and clearer for balancedMet240,

where almost positive samples are clustered in the upper
right. Considering the fact that m5C and non-m5C sequences
are unbalanced, we can demonstrate that the unbalanced-
dataset-based predictor is more reasonable and accurate, but
also more difficult than the model using balanced dataset to
diagnose m5C sites.

B. PRELIMINARY RESULTS OF DIFFERENT UNBALANCED
STRATEGIES WITH SEVERAL ALGORITHMS
There are many unbalanced strategies overcoming the unbal-
anced problems and various algorithms constructing mod-
els. Using BPB features, we perform several preliminary
experiments to investigate different unbalanced approaches
using benchmark dataset Met935, including resampling and
ensemble techniques. At the same time, four kinds of algo-
rithms, namely NB, RF, SVM and AdaBoost, are separately
applied to select the efficient algorithm. There are totally
seven metrics (Re or Sn, Sp,ACC , MCC , AUC , Pre and F1)
are used to evaluate performances. The best algorithm is
mainly decided by combing the recall and specificity scores
of training and testing datasets, especially for the recall over
independent test. Among those experiments, we found that
the combination of SMOTEENN andNB showed best results.
Results of several unbalanced techniques and classifiers are
listed as following to demonstrate the optimizing process.

Table1 summarizes the prediction performances of six
unbalanced strategies using NB method, where the best
results are obtained using SMOTEENN approach labeled
as superscript a. For the training dataset Met935, it can be
seen that all methods show good performances (Re and Sp
achieve about 80.00%), except for the under-sampling tech-
nique ENN with low Re of 52.76%. However, the results
are generally unsatisfactory for the testing dataset. Particu-
larly, five models are almost focused on the prediction of
negative samples, which ignored the prediction of positive
samples with low Re scores, including SMOTE, ADASYN,
ENN, SMOTEENN and SMOTETomek. Setting popular
over-sampling technique SMOTE as an example, 10-fold
CV experiment shows high recall for positive results (Re =
80.69%), however, independent test gives bad score (Re =
45.86%). As for the SMOTEENN, unified and better perfor-
mances can be found (Met935: Re = 88.59%, Sp = 85.83%,



Re, Sn =
TP

TP+ FN

Sp =
TN

TN+ FP

Acc =
TP+ TN

TP+ TN+ FP+ FN

MCC =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN )× (TN + FP)× (TN + FN )

Pre =
TP

TP+ FP

F1 =
2× Pre × Re
Pre + Re

(7)
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FIGURE 2. Nucleotide distribution characteristics between positive and negative sequences for the unbalanced dataset Met935 (Left) and balanced
dataset Met240 (Right).

FIGURE 3. Visualization of unbalanced Met935 (Left) and balanced Met240 (Right) by t-SNE method using 80 BPB features.

TABLE 1. NB-based prediction performances of different unbalanced strategies using BPB features.

AUC = 0.94; Test1157: Re = 65.61%, Sp = 71.60%, AUC
= 0.80). After comprehensive comparison, we finally choose
SMOTEENN to deal with the unbalanced dataset in the next
discussion.

Similarly, Table 2 lists the results of different algorithms
based on SMOTEEENN strategy, including NB, RF, SVM
and AdaBoost. It can be seen that the calculated results for
four classifiers over 10-fold CV are exactly high, while bad
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TABLE 2. BPB results of different algorithms using the unbalanced strategy SMOTEENN.

TABLE 3. NB results of several kinds of features using the unbalanced strategy SMOTEENN.

results over independent tests. For example, SVM model
obtains the high Re of 100.00% on training dataset, however
only score of 59.24% on testing dataset. Combined the per-
formances of Met935 and Test1157, we believe that NB is
the best candidate to construct prediction model labeled as
superscript a. Related Re and Sp achieve 88.59%, 85.83% and
65.61%, 71.60% for two datasets, respectively.

C. EVALUATED RESULTS OF SINGLE FEATURES USING NB
ALGORITHM
Considering the various sequence features, here we fur-
ther investigate five feature extraction techniques (see
Table 3), including Kmer, ENAC, mMGap, EIIP/PseEIIP and
PC-PseDNC-General. The second column ‘‘Fea_num’’ indi-
cates the feature dimension. For Kmer results, it can be found
that associated results for different k values do not differ
much, especially for the values of Re for Test1157, which are
generally in 41.40%∼58.60%. However, 148-dimensional
ENAC features give the exciting results, where Re and Sp
reach 90.41%, 87.10%, 65.61% and 72.10% over 10-fold
CV and independent tests. As for the xxKGap features, due
to the performances are average, here we only list three
mMKGap results with k = 1 ∼ 3, which associated
with the dinucleotides frequencies of X_X, X_ _X and X_
_ _X. It can be seen that the Re and Sp are basically in
high scores (80.91%∼91.42%) for training dataset, where the
independent results often fail, especially for the Re results

(47.77%∼50.32%). Among these three features, mMGap_1
shows the better results. As for the two electron-ion inter-
action associated features EIIP and PseEIIP, simple EIIP
give the relatively better results, where the recall results for
negative samples are up to 84.56% and 76.43% for two
experiments. As for the PC-PseDNC-General features with
parameters λ from 2 to 5, the results of independent test
are still disappointed, where only the results with default
parameters (λ = 2, ω = 0.1) are listed in this table.
In summary, we selected three of listed features combing
with BPB features to construct the comprehensive model,
including ENAC, mMGap_1, EIIP features.

D. MODEL OPTIMIZATION AND COMPARISON WITH
EXISTING TOOLS
We incorporate four well-performance features, including
BPB, ENAC, EIIP and mMGap_1, to build prediction tool.
There are totally 285 features concluded with the prediction
results (Re = 89.10%, Sp = 92.02%; Test1157: Re =
44.59%, Sp = 89.50%). It can be found that the prediction
performances for negative samples in Testing dataset are not
very well. Thus, we applied three useful feature-selection
methods F-value, Chi2 and AdaBoost to analyze the feature
importance and remove redundant features. Finally, we find
that top 57 features based on F-value show the best perfor-
mances. Especially, the evaluated results between training
and testing experiments are relatively unified and higher
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FIGURE 4. ROC curves of training dataset Met935 (black line) and testing dataset Test1157 (red line) using the
efficient top 57 features selected by ANOVA F-value method.

TABLE 4. Comparison of our model and three reported prediction tools, where performances are obtained using efficient top 57 features by feature
selection method ANOVA F-value.

(Met935: Re = 82.81%, Sp = 82.00%, Acc = 82.52%,
MCC = 0.63, AUC = 0.91, Pre = 88.59% and F1 = 0.86;
Test1157: Re = 82.81%, Sp = 81.11%, Acc = 82.20%,
MCC = 0.63, AUC = 0.91, Pre = 88.59% and F1 = 0.86).

In order to conviniently compare performances of differ-
ent models, we further perform jackknife test for taining
dataset Met935. Table 4 lists our results and simultaneously
compare with three proposed models, includingM5C-HPCR,
iRNA-m5C and RNAm5CPred [24], [28], [29]. It is noted
that the results of M5C-HPCR [24] and iRNA-m5C [28] are
excerpted from Fang et al.’s paper, where the unbalanced
dataset Test1157 is apllied to test the related model efficency.
Because these two are both constructed using the balanced

dataset Met240, the performces of independent tests seems
to be low, where Re, Sp, MCC are only 62.42%, 51.10%,
0.09 and 43.95%, 49.20%, -0.05 for two experiments, respec-
tively. As for the lateset model RNAm5CPred, althoughmany
datasets are investigated, the final model is still construted
using Met240, where coresponding independent results for
Test1157 are still needed to be improved (Re = 68.79%,
Sp = 53.70%, Acc = 55.75%, MCC = 0.15, Pre =
18.91%). As for the model based on the Met935 (labelled
as RNAm5CPreda in 4th row), associated Re and Sp are
62.99% and 99.50% for training dataset, 10.83% and 93.00%
for testing dataset. Although our Sp is 18.40% lower than
RNAm5CPreda, there are totally 19.82% improvement for
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Re, which well reflects the high sensetivity of our model for
positive samples. As for the testing dataset Test1157, our Re
and Sp are up to 70.06% and 75.05%. Corresponding ROC
curves are also plotted in Figure 4, where black and red
lines indicate Met935 and Test1157 with the AUC values of
0.91 and 0.83, respectively. Compared to the RNAm5CPreda

results, our testing Re is largely increased by 59.23%, where
MCC is reached from 0.05 to 0.34. It can be concluded
that our model is a more accurate predictor to identify m5C
modifications.

IV. CONSLUSION
As one important epigenetic modification, 5-Methylcytosine
(m5C) plays vital roles in researching various biological
mechanisms and major diseases. In this work, we constructed
an efficient NB-based model iRNA-m5C_NB to distinguish
RNA m5C and non-m5C sites in H. sapiens. Unbalanced
strategy SMOTEENN and classification method NB is firstly
selected during series of preliminary experiments using
BPB features. Then, top 57 features are selected from a
285-diemnsional combined feature vector ‘‘BPB + ENAC
+ EIIP + mMGap_1’’ using ANOVA F-value and applied
to construct the prediction model. Jackknife test on training
dataset Met935 shows well results (Re = 82.81%, Sp =
81.11%, Acc = 82.20%, MCC = 0.63, AUC = 0.91,
Pre = 88.59% and F1 = 0.86), as well as independent test
on Test1157 (Re = 82.81%, Sp = 81.11%, Acc = 82.20%,
MCC = 0.63, AUC = 0.91, Pre = 88.59% and F1 = 0.86).
Although the specificity is about 18.39% and 17.40% lower
than RNAm5CPred for two datasets, the recall/sensitivity are
surprisingly increased by 19.82% and 59.24%, respectively.
Our new model reportsMCC of 0.34 compared with original
value of 0.05 for RNAm5CPred tool. It can be obviously
demonstrated that this model outperforms other predictors.
We believe that iRNA-m5C_NB model has great potential in
predicting m5C modification sites in RNA sequences.
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