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ABSTRACT With the widespread usage of cloud computing to benefit from its services, cloud service
providers have invested in constructing large scale data centers. Consequently, a tremendous increase in
energy consumption has arisen in conjunction with its results, including a remarkable rise in costs of
operating and cooling servers. Besides, increasing energy consumption has a significant impact on the
environment due to emissions of carbon dioxide. Dynamic consolidation of Virtual Machines (VMs) into the
minimal number of Physical Machines (PMs) is considered as one of the magic solutions to manage power
consumption. The virtual machine placement problem is a critical issue for good VM consolidation. This
paper proposes a Power-Aware technique depending on Particle Swarm Optimization (PAPSO) to determine
the near-optimal placement for the migrated VMs. A discrete version of Particle Swarm Optimization (PSO)
is adopted based on a decimal encoding to map the migrated VMs to the best appropriate PMs. Furthermore,
an effective minimization fitness function is employed to reduce power consumption without violating the
Service Level Agreement (SLA). Specifically, PAPSO consolidates the migrated VMs into the minimum
number of PMs with a major constraint to decrease the number of overloaded hosts as much as possible.
Therefore, the number of VM migrations can be reduced drastically by taking into consideration the main
sources for VM migrations; overloaded hosts and underloaded ones. PAPSO is implemented in CloudSim
and the experimental results on random workloads with different sizes of VMs and PMs show that PAPSO
does not violate SLA and outperforms the Power-Aware Best Fit Decreasing algorithm (PABFD). It can
reduce about 8.01%, 39.65%, 66.33%, and 11.87% on average in terms of consumed energy, number
of VM migrations, number of host shutdowns and the combined metric Energy SLA Violation (ESV),
respectively.

INDEX TERMS Cloud computing, live VM migration, dynamic VM consolidation, virtual machine
placement, energy consumption, service level agreement, particle swarm optimization, CloudSim.

I. INTRODUCTION
Virtualization enables cloud computing to prevail as a pio-
neer trend. It paved the way to achieve the best utiliza-
tion from computing and storage resources. A Physical
Machine (PM) can host multiple operating systems (OSs),
where they can run effectively, independently and securely.
Virtual Machines (VMs) can share the available resources,
with an illusion of controlling their owned hardware. A VM
provides a suitable environment for the OS to run efficiently.

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Shamim Hossain .

Cloud computing allows delivering services on-demand over
the Internet based on the pay-as-you-go model. These ser-
vices can be Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) or Software as a Service (SaaS) [1].

With the steady increase in cloud computing usage to ben-
efit from the enormous services introduced by data centers,
a tremendous increase in the consumed power by these data
centers has appeared as a critical problem. For example,
an average data center consumes an amount of energy that is
equivalent to 25000 households [2]. The electricity consump-
tion by data centers in 2010 was ranged from 1.1% to 1.5%
of the overall electricity usage [3]. Besides, it is estimated
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that the amount of power consumption by data centers in
the United States will be 73 billion kilowatt-hours (kWh)
in 2020 [4]. Moreover, there is a prediction that there will be a
massive increase, with about 66%, in electricity consumption
due to data centers over the interval from 2011 to 2035 [5].
This tremendous amount in the energy consumption leads to
a remarkable rise in costs for operating and cooling data cen-
ters, in addition to, the bad effect on the environment due to
emissions of carbon dioxide (CO2). According to [2], emis-
sions of carbon by data centers exceeded both Netherlands
and Argentina. The Environmental Protection Agency (EPA)
showed that about 0.72 tons of CO2 can be emitted from each
1000 kWh of the consumed power [6].

Inefficient utilization of server resources is considered as
the main reason for leveraging the consumed energy in data
centers. For example, a study for six months showed that
the CPU utilization for about 5000 servers is almost ranged
only between 10% and 50% of the maximum level of utiliza-
tion [7]. Also, studies showed that idle servers can consume
an amount of energy which is equivalent to 70% of the power
consumed by those ones that operate with their maximum
power [8]. With the enormous amount of consumed energy,
industry and academia have introduced many techniques to
reduce the consumed power in data centers. Dynamic Voltage
and Frequency Scaling (DVFS) is a major technique that has
been adopted to reduce the consumed power in data centers
[9], [10]. DVFS is based on adjusting the voltage and clock
frequency of CPU to decrease the power consumption. On the
other hand, reallocating VMs between hosts has arisen as
a pioneering approach to minimize the power consumed by
data centers. It is referred to this approach as dynamic con-
solidation of VMs, where live VMmigration can be exploited
to increase the resource utilization.

Live VM migration [11]–[13] is one of the leading tech-
nologies for managing data centers, where VMs continue to
run during the migration process. In other words, it allows
transferring a VM from one PM to another without disrupt-
ing the services. Thereby, the previous technology can be
exploited in many situations to fulfill many benefits such as
power management by consolidating VMs into a minimum
number of servers. Also, it can achieve load balancing by alle-
viating loads from overloaded servers. Due to the importance
of live VM migration as a powerful tool in managing data
centers, many optimization techniques have been proposed to
enhance the live migration process [14]. The total time from
starting the migration until VM becomes no longer available
at its original server is denoted as the total migration time,
which should be reduced as much as possible to benefit from
the advantages of migration. Moreover, the total transferred
data should be decreased to minimize the migration time,
which in turn achieves the best utilization of the network
bandwidth. Downtime is also another critical time that should
not be neglected. This time refers to the interval during
which the service becomes unavailable due to the migration
process.

For accomplishing the live migration process, VM should
be migrated with all its contents including (memory pages,
storage, and processor state). However, migrating the mem-
ory pages in data centers is almost the main challenge [15].
This is due to the nature of the storage data in data centers,
which are almost shared between the source and the des-
tination. Another reason is the small size of the processor
state in comparison to the huge size of memory pages. The
software layer which is responsible for managing VMs is the
Virtual Machine Monitor (VMM) or hypervisor. Nowadays,
live VM migration is supported by most current hypervisors
such as Xen [16], KVM [17] and VMware [18].

Dynamic VM consolidation has become a magic solution
to increase the resource utilization and reduce the energy
consumption in data centers. Specifically, it is depends on live
VM migration to reallocate VMs from underutilized servers
to other ones. It can consolidate VMs into a fewer number
of hosts as depicted in Figure 1. Consequently, it allows
to switch off their original hosts or change their state to a
low power mode. In other words, it can save a portion of
the energy consumption in data centers by minimizing the
number of active hosts. Nevertheless, an aggressive VM con-
solidation may degrade the performance of the introduced
services to clients, thereby leads to violating the Service Level
Agreement (SLA). Thus, a trade-off should be taken into
account to minimize the power consumption in data centers
without violating the SLA. Therefore, many techniques have
been proposed in the context of VM consolidation to decide
overloaded hosts, underloaded hosts, VMs that need to be
migrated from the overloaded hosts and finally which servers
will receive the migrated VMs.

In this paper, a Power-Aware VM placement technique is
proposed based on Particle Swarm Optimization algorithm
(PAPSO). It aims tominimize the amount of energy consump-
tion in data centers by consolidating VMs into the minimum
number of servers, but also takes into consideration the Qual-
ity of Service (QoS) that is introduced to clients. As a meta-
heuristic algorithm, Particle Swarm Optimization (PSO) is
adopted in the proposed technique. It can provide the abil-
ity of both local search and global search, thereby helping
to reach the near-optimal VM placement solution. PAPSO
relies on a minimization fitness function to decide the near-
optimal VM placement solution. The proposed technique is
implemented in CloudSim and evaluated in comparison to
Power-Aware Best Fit Decreasing algorithm (PABFD) [20]
with random workloads under different sizes of VMs and
PMs. The main contributions of this paper are organized as
follows:

1) A power-aware VM placement technique, PAPSO,
is proposed to reduce the power consumption in data
centers without violating SLA.

2) PAPSO achieves the near-optimal VM placement using
a discrete version of the Particle Swarm Optimiza-
tion (PSO) algorithm. It adopts PSO to benefit from
its ability to search for the optimal solution locally
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FIGURE 1. An example for dynamic VM consolidation into a minimum
number of servers [19].

and globally. As PSO deals with continuous problems,
the proposed technique introduces an effective decimal
encoding to the VM placement problem to convert PSO
into a discrete version.

3) PAPSO uses a feasible minimization fitness function
to find the near-optimal solution. It depends on the
weighted sum method to merge the number of active
hosts and the number of overloaded hosts.

4) Experimental results demonstrate the worthiness of
PAPSO in decreasing the consumed energy, the number
of VM migrations and the number of host shutdowns
with about 8.01%, 39.65%, and 66.33% on average,
respectively.

5) Energy SLA Violation (ESV), as a combined per-
formance metric related to the trade-off between
energy consumption and SLA, proves the superiority
of PAPSO over PABFD by achieving about 11.87%
reduction on average.

6) An aggressive scenario for VM consolidation is intro-
duced to prove the importance of PAPSO. This aggres-
sive scenario, Aggressive Consolidation based on PSO
(ACPSO), can achieve more reduction in the consumed
power, but at the expense of SLA.

The rest of the paper is organized as follows: Section II
overviews a background of the proposed technique.
Section III refers to the related works and provides a detailed
comparison between VM placement techniques. Section IV
states the VM placement problem. Section V describes
the system architecture. The proposed technique, experi-
ment results with analysis, and discussion, are presented in
sections VI, VII, and VIII. Finally, conclusion and future
work are explored in section IX.

II. BACKGROUND
As the proposed work relies on the PSO algorithm,
an overview of this algorithm should be provided to under-
stand how it works. Although PSO treats with the continu-
ous search domains, our problem search domain is discrete.
Therefore, the discrete PSO has to be explored before intro-
ducing the proposed technique.

A. PARTICLE SWARM OPTIMIZATION
PSO is a prevalent meta-heuristic population-based optimiza-
tion algorithm to find the near-optimal solution in many
problems. Kennedy and Eberhart [21] have developed PSO
in 1995. As based on Swarm Intelligence (SI), it simulates
the social behavior of living creatures like bird flocks and
fish schools. They live in groups, where they can collaborate
and interact with themselves or their environment. Thus, they
can broaden the knowledge that helps them to achieve their
sophisticated tasks.

When studying a group of animals or a flock of birds that
search for its food, it will be noticed that they interact as a
group. Firstly, all group members are scattered randomly to
find the food. Then, they can update their directions according
to the nearest one to the food. Similarly, PSO is initialized
with several particles, where each one has a position and a
velocity. These particles can update their velocities based on
both previous knowledge and interactions with other swarm
members. Therefore, positions of particles are changed in
each iteration from the current location to a new one accord-
ing to the new speed. This iterative process leads to the near-
optimal solution that has the best fitness function. If the
goal is to find the minimum value according to the proposed
fitness function which evaluates each solution, it is called
a minimization fitness function and vice versa. During its
search for the best solution, each particle has a pBestPosition
and a pBestValue represent the position of a particle that
achieves the best value in the fitness function and this best
value, respectively. On the swarm scale, a gBestPosition and
a gBestValue refer to the best particle among the swarm and
its fitness function value.

B. DISCRETE PARTICLE SWARM OPTIMIZATION
As a Swarm Intelligence algorithm, PSO searches for the
global best position through an iterative process. The position
of each particle in the swarm is updated during the iterative
process until reaching the near-optimal solution. These posi-
tions are updated based on the speed of particles, which in
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turn is also updated over the iterations of PSO according to
eq. 1. This update from the current speed Vt to the new one
Vt+1 is affected by the current particle position Xt compared
to both the best particle position pBestPosition and the global
best position among the whole swarm gBestPosition. There-
fore, the current position of the particle Xt can be updated
to Xt+1 based on Vt+1 as depicted in eq. 2. These previous
calculations lead to real numbers that are appropriate for
continuous search space problems.

On the other hand, some problems have discrete search
domains, thus a discrete binary version of PSO has been
introduced [22]. In the VM placement problem, the pro-
posed technique searches for the near-optimal solution to
map the migrated VMs to the available PMs. Consequently,
an approximation will be applied in the proposed work to
convert the real numbers into integer ones that refer to indexes
of the available PMs. In other words, calculations of Vt+1
will be rounded to the nearest integer, thereby it is added to
the current position to get a new one. Additionally, a strict
constraint is adopted to ensure that the new position will
represent a valid PM index as shown in eq. 3, where i0 and
in are the indexes of the first available PM and the last one,
respectively.

Vt+1 = (w× Vt )

+ (r1 × c1 × (pBestPosition− Xt ))

+ (r2 × c2 × (gBestPosition− Xt )) (1)

Xt+1 = Xt + Vt+1 (2)

i0 ≤ Xt ≤ in (3)

III. RELATED WORKS
Recently, consolidation of VMs has attracted many
researchers to introduce effective algorithms [5], [23] that
can enhance power management in data centers. These algo-
rithms dynamically reallocate VMs among servers, where
VMs can be consolidated into a fewer number of hosts.
To the best of our knowledge, Nathuji and Schwan [24]
introduced one of the first contributions for an effective
powermanagement architecture for virtual data centers. Their
architecture, Virtual Power Management (VPM), can con-
solidate VMs based on global policy. In general, dynamic
consolidation of VMs into a fewer number of servers can be
divided into four sub-problems [20] to decide the following:
overloaded servers, underloaded servers, VM selection, and
VM placement.

A. DETECTION OF OVERLOADED AND
UNDERLOADED SERVERS
To minimize amount of the consumed power in data cen-
ters without violating SLA, Beloglazov et al. [25] pro-
posed a technique based on a static threshold to ensure
that the total CPU utilization of hosts will remain always
between two thresholds. Thus, they migrate the whole VMs
from underloaded servers, if the server’s CPU utilization is
under the lower threshold. Thereby, they can reduce power

consumption by switching these hosts to the sleep mode.
On the other hand, they avoid the violation of SLA by keeping
suitable free resources throughmigrating someVMs from the
overloaded hosts that have a CPU utilization greater than the
upper threshold.
It is noticed that static thresholds are not suitable enough to

manage servers with dynamic workloads. Therefore, adaptive
thresholds have been used based on a statistical analysis of
the historical data, which have been collected during the VMs
lifetime [20]. Farahnakian et al. [26] proposed another tech-
nique for predicting the future utilization of CPU according to
the linear regression approach. Gray-Markov model has been
employed to predict the future CPU utilization [27]. Gradi-
ent descent-based regression (Gd) [28] has been proposed
to detect overloaded servers based on a machine learning
technique. M estimator regression (MeReg) [29] has been
introduced to calculate the upper threshold for hosts based on
the historical data about CPU utilization. In contrast, other
techniques do not rely on thresholds to identify overloaded
or underloaded hosts such as [30], [31]. Although several
kinds of research take CPU utilization of servers as the only
parameter in their algorithms, some studies take additional
resources into their consideration such as memory, band-
width, and disk [30], [32]–[35].

B. VM SELECTION
Different algorithms have been proposed to decide the set of
VMs which have to be reallocated from overloaded servers
[20], [25]. Random choice is based on selecting some VMs
randomly to be migrated. Minimization of Migrations (MM)
depends on choosing for migration the minimum number of
VMs to lower the CPU utilization among overloaded hosts
under an upper threshold. Highest Potential Growth (HPG) is
proposed to avoid SLAviolation by selecting the ones that use
CPU minimally compared to the needed CPU in these VMs.
MinimumMigration Time (MMT) chooses VMs that require
the least time to finish themigration, thereby it is related to the
utilized portion of RAM by VMs and the available network
bandwidth. Additionally, a similar selection technique [36] is
applied to choose VMs that have the least RAM demand, and
thus least MMT.

Maximum Correlation (MC) has been proposed to migrate
the most correlated VMs of CPU utilization with other VMs.
Maximum Requested Bandwidth (MBW) [37] chooses VMs
for migration from overloaded hosts taking into consider-
ation the maximum requested bandwidth for VMs. Also,
Minimized Square Root (MISR) [38] adopts a technique
that selects VMs according to their minimal impact on the
load. Maximum Utilization Minimum Size (MuMs) [39]
selects those VMs with the high CPU utilization and the
minimum size. Minimum Utilization Prediction (MuP) [40]
collects the CPU utilization, in the overloaded hosts, for each
VM at different time frames. The Median Absolute Devia-
tion (MAD) can be applied to predict those VMs with the
least workloads. On the other hand, fuzzy logic [41] has been
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FIGURE 2. A taxonomy of VM placement techniques.

proposed for VM selection to have the advantage of taking
an intelligent decision.

C. VM PLACEMENT
Deciding appropriate places to receive the migrated VMs is
a significant issue for a good VM consolidation. However,
VM placement problem is not related only to the VM con-
solidation scenarios, where the most appropriate server is
selected to receive the migrated VM. There is another sce-
nario for VM placement by finding a suitable host to receive
the VM as an initial placement. As our proposed technique
is related to VM placement from the VM consolidation point
of view, our focus is to highlight the previous works that are
related to VM consolidation.

Many studies have been proposed to introduce effec-
tive techniques based on different methodologies aiming to
achieve various goals. Figure 2 provides a general taxon-
omy for VM placement techniques according to the adopted
methodologies, objectives, and number of these objectives.
According to the number of objectives, some techniques try
to find the best mapping that achieves only one goal, while
others have more than one objective. These objectives may
be related to increasing the QoS that is provided to users,
reducing costs for service providers or both. According to
the adopted methodology, many techniques have employed
heuristic and meta-heuristic algorithms to decide which PM
will receive the migrated VM.

Different greedy heuristic algorithms can be exploited such
as First Fit (FF), where each VM is mapped to the first
host that fits it. Best Fit (BF) which maps VMs to the best
PMs that can fit them. Best Fit Decreasing (BFD) and First
Fit Decreasing (FFD) are similar to BF and FF, but they
are preceded by VMs sorting in a decreasing order. On the
other hand, there are also some meta-heuristic methods that

have been proposed to find the near-optimal places for
VMs such as Ant Colony Optimization (ACO) [42], [43],
Genetic Algorithm (GA) [44], [45], Simulated Annealing
(SA) [46], Improved Lévy based on Whale Optimization
Algorithm (ILWOA) [47], Glowworm Swarm Optimisation
[48], Harmony Search (HS) [49], Krill Herd (KH) algo-
rithm [50], and hybridized algorithm [51]. A recent detailed
work has been introduced to review the state-of-the-art multi-
objective techniques based onmeta-heuristic algorithms [52].
Moreover, another recent extensive survey has been devoted
to study the VM placement with a wide exploration of single
and multi-objective techniques [19].

Anton Beloglazov and Rajkumar Buyya [20] relied on a
modified version of the heuristic algorithm BFD to decide
the appropriate VM placement, which is named as Power-
Aware Best Fit Decreasing (PABFD). They sort the migrated
VMs in a decreasing order according to the CPU utilization.
After that, they allocate each VM to the PM that will con-
sume the minimum amount of power due to the allocation.
Another VM placement policy [53] has been proposed based
on BFD, which is called Space Aware Best Fit Decreasing
(SABFD). It depends also on the decreasing sorting for the
migrated VMs according to CPU utilization, where the PM
which has enough computing resources will receive the first
VM. After placing the first VM, PM with the least available
computing resources will be selected as a destination host for
the second VM and so on until completing the placement of
all VMs. Modified Multi-weights Best fit (MW-BF) [35] has
been applied based on a modification of the BF algorithm,
where they consider multi-weights for VMs which need a
placement.

Malekloo et al. [43] proposed a multi-objective approach
based on ACO for VM placement and consolidation.
They relied on two complementary algorithms to achieve
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a trade-off between energy consumption and Quality of
Service (QoS). Their VM placement algorithm aimed to
reduce energy consumption, communication energy cost and
resource wastage. Their algorithm depends on the Pareto
front method to find the non-dominated solutions that reduce
their objectives. The algorithm was tested in CloudSim and
compared to three single objective algorithms (FFD, DVFS,
and LR) and one multi-objective algorithm (MGA). They
claimed that their algorithm can achieve energy saving with
about 39.19 % on average. However, increasing the number
of objectives may come at the expense of time complexity and
system performance.

Mohammadhosseini et al. [54] proposed an energy-aware
VM placement procedure based on the Cultural Algo-
rithm (CA). They called their proposed algorithm Balance-
based Cultural Algorithm for Virtual Machine Placement
(BCAVMP). The authors defined a parameter known as the
server balance vector for VM placement solutions related
to each server. Their fitness function relied on two param-
eters, which are the sum of balance vector lengths for each
feasible solution and the total amount of consumed energy.
Therefore, they canminimize the resource wastage and power
consumption in data centers. The authors evaluated their pro-
posed method using CloudSim simulator, they compared it
with the well-knownVMplacement algorithm (PABFD). The
obtained results for their experiments showed that BCAVMP
can achieve an acceptable reduction in the consumed energy,
the number of active servers and the number of VM migra-
tions. However, this reduction came at the expense of SLA.

Fatima et. al [55] introduced a hybrid algorithm of
Levy flight and Multi-Objective Grey Wolf Optimiza-
tion (LMOGWO) to solve the VM placement problem.
The proposed algorithm was inspired by grey wolves and
mimicked their natural behaviors in hunting and leadership.
It attached an archive to save the non-dominant solutions. The
best three solutions are considered leader wolves that guide
other wolves to attack the prey. Those leaders are known
as alpha, beta, and delta, while the remaining solutions are
denoted as omega wolves. The proposed algorithm uses the
levy flight to calculate the step size for the wolves. Nine stan-
dard benchmark functions are used for testing the proposed
algorithm.

Due to its ability to benefit from exploration and exploita-
tion by applying the local and global searches, PSO has
been adopted in more than a situation to find the optimal
VM placement. Aiming to minimize the consumed power,
Wang et al. [56] redefined parameters of PSO, in addi-
tion to, proposing a local fitness first strategy. Furthermore,
they designed an encoding scheme for particles based on
two dimensions. Dashti and Rahmani [57] reallocated the
migrated VMs from the overloaded hosts, in addition to,
consolidating the underloaded hosts to save power. Also, they
embedded the consumed power and the migration cost in the
fitness function. According to their mapping, the host and its
VMs representing a particle and its dimensions, respectively.
In contrast, dimensions of each particle in our proposed

mapping represent VMs that need to be migrated. A multi-
objective VM placement based on PSO was proposed in
[58] to increase the resource utilization and minimize the
power consumption. To improve the global search ability and
increase the convergence efficiency, an enhanced PSO [59]
is applied by updating particle velocities using Lévy flight
which is known as Particle Swarm Optimization with Lévy
Flight (PSOLF). Table 1 highlights some of the related works
and refers to their optimizations and limitations.

VM placement is an important issue for an efficient
VM consolidation. Therefore, a power-aware VM placement
technique will be introduced to reduce the consumed power
in the data center. Although many VM placement techniques
have been devoted to finding the most appropriate servers
for hosting the migrated VMs, some techniques focused on
reducing the consumed power at the expense of SLA. More-
over, some previous works have adopted heuristic techniques
that can not always produce the optimal placement solution.
Despite being a leading factor in the amount of consumed
energy, some techniques neglected CPU utilization and took
other resources in their consideration. Consequently, we pro-
pose a VM placement technique based on the particle swarm
optimization algorithm to reduce power consumption in the
data center without violating SLA. In its search for the near-
optimal placement for VMs, the proposed technique focuses
on CPU utilization in servers. It uses a discrete version of
the Particle Swarm Optimization (PSO) algorithm, where
PSO in its ordinary form is suitable for continuous problems.
Specifically, an appropriate decimal encoding is adopted to
allow PSO to deal with the VM placement problem.

IV. PROBLEM STATEMENT
Virtual Machine Placement (VMP) is a major issue to have
an efficient consolidation of VMs. It deals with deciding the
most appropriate PMs to receive the migrated VMs. This
issue is considered as a bin packing optimization problem,
where VMs can be considered as objects that should be
consolidated into the minimum number of PMswhich viewed
as bins [64]. However, deciding the most appropriate man-
ner to map the migrated VMs to the most suitable PMs is
not a trivial mission [65]. Specifically, it is assumed that
a set of migrated VMs V = {VM1,VM2,VM3, . . . .,VMm}

should be mapped to the set of available PMs P =

{PM1,PM2,PM3, . . . .,PMn}, where m and n are the number
of migrated VMs and the number of available servers, respec-
tively. It is also assumed that amigratedVMdenoted asVMmg
requires the following amounts of resourcesCPUmg, RAMmg,
Bwmg for CPU, memory, and bandwidth. On the other hand,
a PMj has the following capacities of resources CPUj, RAMj,
Bwj for CPU, memory and bandwidth. A PMj can receive a
VMmg if and only if the free resources of PMj exceeds that
needed by VMmg as shown in equations 4, 5, and 6, where k
is the number of currently allocated VMs to PMj.

k∑
i=1

CPUi + CPUmg < CPUj (4)
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TABLE 1. Comparison of different VM placement techniques.

k∑
i=1

RAMi + RAMmg < RAMj (5)

k∑
i=1

Bwi + Bwmg < Bwj (6)

Furthermore, a VM can not be hosted by more than one
PM at the same time, thus a VMi can be mapped to only one
server. The mapping of migrated VMs is represented in the
proposed technique by a particle Pi = [7, 3, 3, 4, . . . , 1].
This particle is simply just a vector contains a number of
elements that refers to the number of migrated VMs. Each
element in the vector has a value represents the index of the
PM that will host the VM. According to the values of Pi,
the first migrated VM will be placed in the seventh available
PM and the last one will be hosted by the first server. Simi-
larly, the second and the third migrated VMs will be hosted
by the third PM, where a PM can host several VMs but the
opposite is not true.

With the growing in the number of active servers,
the amount of consumed energy increases [8]. Consequently,
the objective is to place the migrated VMs into the minimal
number of servers, but also with a major constraint to avoid
increasing the number of overloaded servers as much as
possible. Therefore, the proposed technique has mainly two
objectives to reduce both the number of active servers and

the number of overloaded servers as declared in equations 7
and 8, where x and y are the number of running hosts and
the number of overloaded hosts, respectively. In other words,
the best solution for mapping the migrated VMs is the one
that decreases both the number of running PMs and the
number of overloaded PMs asmuch as possible. Reducing the
power consumption in hosts is guaranteed through increasing
the CPU utilization and thereby consolidating VMs into a
minimum number of servers, which allows switching the
unused PMs to a sleep mode. On the other hand, reducing
the number of overloaded hosts ensures to provide VMs with
the required resources, thus the QoS that is provided to users
can be increased by avoiding SLA violation.

min
x∑
i=1

PMi (7)

min
y∑
i=1

PMi (8)

V. SYSTEM ARCHITECTURE
Cloud computing usage has expanded, based on the pay-as-
you-go model. Our study focuses on the IaaS environment,
where large-scale data centers consist of many heteroge-
neous servers. Multiple users can benefit from these servers,
which can provide independent VMs to run their applications
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FIGURE 3. System architecture.

securely. The major server characteristics are as follows:
CPU performance which declared as Million Instructions Per
Second (MIPS), RAM, network bandwidth and storagewhich
is shared between servers.

Virtualization technology has allowed each PM to host
multiple VMs and provide them with the required resources.
Each PM has a software layer to manage VMs, known as
a hypervisor. For power management purposes, VMs are
consolidated into the minimal number of active hosts without
violating SLA by applying live VM migration. The resource
utilization in each server is monitored continuously by amod-
ule called the local manager. Also, there is a global manager
located in the master node to communicate with the local
managers to have a complete view of the resource utilization.
Therefore, it can decide the necessary migrations for VMs to
decrease the overall power consumption in the data center as
shown in Figure 3. The system architecture of our proposed
technique can be organized as follows:

1) The local manager in each server monitors the resource
utilization of VMs periodically.

2) The local manager decides overloaded and underloaded
servers. Then, it selects the most appropriate VMs to be
migrated from the overloaded hosts.

3) The global manager receives information about the
resource utilization from the local managers.

4) The global manager uses the power-aware VM place-
ment technique based on particle swarm optimization
to decide the optimal placement for the migrated VMs.

5) The global manager sends migration commands to
hypervisors, thereby VM migrations can be accom-
plished and idle servers are kept in a low power mode.

VI. PROPOSED TECHNIQUE
After detecting overloaded and underloaded servers, and
selecting some VMs to be migrated from the overloaded
servers, there is a critical mission to find appropriate places
for the migrated VMs. Thus, this study proposes a VM place-
ment technique based on PSO with a purpose to find a
near-optimal solution as shown in Figure 4. This technique
receives a list of migrated VMs that need an appropriate
placement, in addition to, another list of available hosts that
can host the migrated VMs. Although PSO is considered
as one of the most effective population-based algorithms,
it deals with continuous problems. Therefore, an appropriate
encoding has to be applied to convert the problem into a
discrete one.

The pseudo-code of our proposed technique is explained
in Algorithm 1, where its notations are described in Table 2.
The algorithm starts with initializing the proposed technique
parameters (line 1). These parameters are number of particles,
number of dimensions, number of iterations, cognitive and
social parameters, the minimum and maximum limits of iner-
tia weight. Then, VMs that search for the optimal placement
will be sorted in a descending order according to the CPU
utilization (line 2). The initialization phase will be declared
through subsection VI-A. The third step excludes overloaded
servers from the list of available hosts for receiving the
migrated VMs (line 3). As PSO relies on assigning positions
to each particle, the minimum and maximum available values
for positions and velocities are defined according to the lower
and upper indexes in the list of available hosts (line 4).

The algorithm searches for the best particle among the
swarm, where particles are evaluated through a function
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FIGURE 4. The proposed technique to find the near-optimal VM placement.

called the fitness function as declared in subsection VI-C.
In the studied case, the technique searches for the minimum
value of the fitness function. Therefore, the best value of
the swarm is initialized with the maximum value (line 5).
The algorithm initializes all particles (lines 6-10), where each
particle is initialized with a random position and a random
speed. The best value for each particle is initialized also
with the maximum value. The proposed technique mapping
is discussed through subsection VI-B.

After initializing the swarm, it moves through a number
of iterations until reaching the optimal solution as shown in
subsection VI-D (lines 12-36). Before moving to the iterative
stage, the iteration number is initialized with zero (line 11).
The algorithm ensures that each VM is assigned to a valid
server through the server index (lines 13-19). If the particle
position exceeds the upper available position, VM will be
assigned to that server with the highest index. In a similar
fashion, VM will be assigned to that server with the lowest
index if the particle position is lower than the minimum
available index.

After ensuring the validity of positions for all particles,
each solution is evaluated (line 19). If the new fitness function
value of a particle is better than its best value, the particle’s
best value and best position will be replaced (lines 21-24).
The previous process is repeated to determine the best fitness
function value among the swarm and the position that leads to
this best value (lines 25-28). The next step is to update particle
positions (lines 29-35). The inertia weight is calculated which
relies on the current iteration number (line 30). A new speed
and thus a new position are calculated for each particle using
the particle swarm optimization equations (lines 34-35). The
iteration number is incremented before moving to the next
iteration (line 36). At the end of the iterations, the best particle
is determined. Thus, dimensions of the best particle can be
used to decide the optimal mapping for each VM (line 37-39).

The time complexity analysis of the proposed algorithm
will be introduced in subsection VI-E.

A. INITIALIZATION PHASE
Like any algorithm based on PSO, the proposed technique
should be started by initializing the parameters. The pop-
ulation size and number of iterations have to be defined,
where the population size refers to the number of particles and
each particle indicates a mapping solution. Also, each particle
contains a number of dimensions representing the number
of migrated VMs that have to be placed. Besides, values of
PSO parameters should be determined before applying the
algorithm. These parameters include the following, an inertia
weight coefficient, a cognitive parameter, and a social param-
eter. As CPU utilization is the major factor in the context of
power consumption, the migrated VMs are sorted according
to CPU utilization. Furthermore, the value of the best position
for each particle and the global best value among the swarm
are initialized with the maximum values.

B. PAPSO MAPPING
The proposed technique takes three lists as inputs repre-
senting migrated VMs, total servers, and overloaded servers.
Therefore, migrated VMs can be mapped to any PM from
the available PMs, where a list of the available hosts is gen-
erated by excluding overloaded servers from the list of total
hosts. PAPSO produces an initial mapping solution which is
denoted as a particle, where this particle consists of several
dimensions equivalent to the number of migrated VMs. Each
dimension keeps a decimal value that refers to the index of
a PM in the list of available hosts. Therefore, it can be said
that these values of the indexes represent the particle position.
Additionally, an index can be repeated in more than one
dimension in the particle, where a PM can host several VMs.
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FIGURE 5. The Mapping of migrated VMs according to PAPSO.

For controlling the movement of particles, each particle
has a speed which can be updated. Thus, an initial value is
set for each dimension represents the particle speed, thereby
applying the particle speed on its position must lead to a
new position representing an index in the available host list.
This initial mapping is evaluated according to our placement
objective, thus a newmapping can be generated and evaluated
and so on until reaching the final mapping. Figure 5 explains
the mapping of migrated VMs from the PAPSO point of view.
According to the illustrated example, four PMs denoted as
PM3, PM6, PM7 and PM10 are overloaded servers. There-
fore, PAPSO excludes these servers from the list of available
servers. Consequently, particles can be generated periodically
to map the migrated VMs to appropriate PMs from the list of
available hosts.

C. FITNESS FUNCTION
To evaluate the quality of solutions, swarm relies on a fit-
ness function. Based on the values of this function, parti-
cles can update their positions repeatedly until reaching the
best value. This significant function can be called a fitness
function or an objective function, interchangeably. Its equa-
tion changes from one problem to another with a goal to
get the optimum solution. Also, it can be a minimization
function or a maximization one according to our goal. Here,
a minimization function is proposed that seeks to decrease
the number of active hosts as much as possible to increase
the CPU utilization of servers, thereby minimize the total
power consumption. Meanwhile, another factor is taken into
consideration that represents the number of overloaded hosts
after placement which should be also minimized.

Due to its simplicity and efficiency in the context of multi-
objective problems, the weighted sum method is adopted to
solvemanymulti-objective problems. It depends on assigning
a weight to each objective, which in turn is multiplied by the
cost value of this objective. Thereby, applying a cumulative
addition to the multiplication processes produces the total
cost of the solution as shown in eq. 9. Its goal is to find the
total cost of a problem that has n objectives, where wi and
ci refers to the weight and the cost value of the ith objective,
respectively. Generally, the summation of all weights has to
be 1 and each weight falls in this range [0, 1]. Therefore,
choosing appropriate values for weights has a significant
effect on the overall cost value. By adopting the weighted
sum method, fitness function can produce total cost values
for solutions in a simple fashion as if it deals with a single-
objective problem. In the proposed technique, the weighted
sum is applied in the fitness function Fn to merge two
objectives based on two weight factors w1 and w2 as shown
in eq. 10.
The proposed technique tries to reduce the consumed

power bymapping themigratedVMs to theminimumnumber
of PMs, but also it avoids as possible to produce overloaded
servers to keep the SLA. These goals can be achieved through
the introduced fitness function that benefits from the capabil-
ity of the weighted sum method to consider the problem as a
composite objective function. Specifically, the proposed fit-
ness function searches globally for the near-optimal mapping
that consolidates VMs into the minimal number of PMs to
reduce the power consumption without increasing the num-
ber of overloaded servers. Therefore, it can reduce both the
number of underloaded servers and the number of overloaded
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Algorithm 1 Proposed PAPSO Technique
Input : HL, Ex − HL and VML
Output:MP

1 Initializing parameters: Np, Nd , Nt , Wmin, Wmax , c1, c2
2 Descending sorting for the migrated VMs according to
CPU utilization

3 Producing a list of the available hosts for receiving the
migrated VMs

4 Initializing Xmin, Xmax , Vmin, and Vmax based on indexes
of the available hosts list

5 gBestValue← MaxValue
6 foreach p ∈ P do
7 pBestValue← MaxValue
8 foreach vm ∈ VML do
9 X0←rand(Xmin,Xmax)
10 V0←rand(Vmin,Vmax)

11 t ← 0
12 while t < Nt do
13 foreach p ∈ P do
14 foreach vm ∈ VML do
15 if Xt > Xmax then
16 Xt ← Xmax

17 else if Xt < Xmin then
18 Xt ← Xmin

19 Calculate Fn for p based on eq. 10

20 foreach p ∈ P do
21 if Fn < pBestValue then
22 pBestValue← Fn
23 foreach vm ∈ VML do
24 pBestPosition← Xt

25 if Fn < gBestValue then
26 gBestValue← Fn
27 foreach vm ∈ VML do
28 gBestPosition← Xt

29 foreach p ∈ P do
30 W ←Wmax − (Wmax −Wmin)× t

Nt
31 foreach vm ∈ VML do
32 r1←random(0, 1)
33 r2←random(0, 1)
34 Vt+1←

b(w× Vt )+ (r1 × c1 × (pBestPosition−
Xt ))+ (r2 × c2 × (gBestPosition− Xt ))e

35 Xt+1← Xt + Vt+1

36 t ← t+ 1

37 foreach vm ∈ VML do
38 MP← map(vm, gBestPosition)

39 returnMP

ones. Consequently, the proposed technique can decrease the
number of migrations drastically through avoiding its two

TABLE 2. Notations of PAPSO.

reasons, overloaded servers and underloaded ones.

TotalCost =
n∑
i=1

wi × ci (9)

Fn = min{w1 ×
Number Of Active Hosts
Total Number of Hosts

+w2 ×
Number Of Overloaded Hosts

Total Number Of Hosts
} (10)

D. ITERATIVE PROCESS OF PAPSO
To reach a near-optimal VM placement, PAPSO passes
through several iterations. Each particle updates its speed
in each iteration, thus it can update its position. The speed
modification for particles takes into consideration the current
position compared to both the best particle position and the
best position among the whole swarm. Calculation results for
the new position and the new speed are rounded to the nearest
integer to be translated to an index in the list of available
hosts. According to the new positions, the fitness function
is calculated for each particle. Produced values from these
calculations help particles in their exploration process for the
best solutions. Therefore, the swarm can exploit this situation
to find the optimum solution.

E. TIME COMPLEXITY ANALYSIS
The time complexity of our proposed algorithm will be intro-
duced in this subsection, but let us assume that: n is the total
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TABLE 3. The evaluated test cases.

number of hosts; m is the number of migrated VMs; Np is the
number of particles; Nt is the total number of iterations. The
time complexity of each part in the algorithm is defined as
follows:

• Initializing PAPSO parameters: O (1).
• Producing the list of available hosts: O (n).
• Sorting the VMs: O (m× m).
• Initializing Xmin, Xmax , Vmin, and Vmax : O (1).
• Initializing gBestValue: O (1).
• Initializing X0 and V0: O (Np × m).
• Initializing the iteration number: O (1).
• Ensuring that particle positions within the valid range:
O (Nt × Np × m).

• Calculating the fitness function for each particle:
O (Nt × Np).

• Updating pBestValue for each particle: O (Nt × Np).
• Updating pBestPosition for each particle: O (Nt×
Np × m).

• Updating gBestValue: O (Nt × Np).
• Updating gBestPosition: O (Nt × Np × m).
• Calculating the inertia weight: O (Nt × Np).
• Updating the new speeds and positions:O (Nt×Np×m).
• Incrementing the iteration number: O (Nt ).
• Producing the final mapping: O (m)

Consequently, the total time complexity for the proposed
algorithm is O (Nt × Np × m)

VII. SIMULATION RESULTS AND ANALYSIS
All simulation experiments are performed on a PC that has
the following characteristics, Intel Core i7-2670QM CPU @
2.20 GHz processor and 6 GB of RAM based on Ubuntu
18.04 LTS with Eclipse IDE. Experiments are performed
based on three test cases that include different sizes of both
VMs and PMs using random workloads as shown in Table 3.
To ensure the trustiness of results, each experiment is exe-
cuted 10 times. Thus, an accurate result can be provided based
on the average of these results, then compared to the well-
known VM placement algorithm PABFD. The parameter
values, that were applied in the experiments, are tabulated
in Table 4. As our experiments are based on a large number of
PMs and VMs, it is not applicable or cost-effective to apply
our repeated experiments, to test the proposed technique, on a
large-scale real environment. Instead, a simulation environ-
ment for testing the proposed VM placement technique is
used. Specifically, our choice was the simulation platform
CloudSim toolkit, the commonly used simulator in these
similar scenarios.

CloudSim [66] is an open-source toolkit, developed by
CLOUDS Laboratory in the University of Melbourne, that
written in Java. It provides a suitable environment that

TABLE 4. Parameter values for PAPSO technique.

TABLE 5. Characteristics of servers.

TABLE 6. Characteristics of VMs.

includes all required entities of cloud computing IaaS to
apply our repeatable experiments. Therefore, a method
called getNewVmPlacement , located in a class known as
PowerVmAllocationPolicyMigrationAbstract , is extended to
implement our proposed technique. Two types of servers and
four types of VMs are simulated in the experiments, whose
characteristics are described in Table 5 and 6, respectively.
According to [20], the combination of Local Regression (LR)
and MMT has proved its superiority to decide the overloaded
hosts and select VMs for migration form these overloaded
hosts, respectively. Consequently, the LrMMTcombination is
adopted in our experiments. Performancemetrics have shown
that PAPSO outperforms PABFD as follows.

A. ENERGY CONSUMPTION
Although CPU, memory, disk storage, network interfaces,
and cooling system of servers consume power, CPU is consid-
ered the leading component in consuming power in data cen-
ters. According to [8], [67], the power consumption in servers
can be computed based on a linear relationship between CPU
utilization of servers and the consumed power.

Our simulation experiments relied on two types of servers,
where the power consumption of these two hosts can be
calculated based on data of the power model provided by
the SPECpower benchmark for HP ProLiant ML110 G4 [68]
and HP ProLiant ML110 G5 [69] as declared in Table 7.
Therefore, the total consumed energy by a typical server can
be calculated based on the integral relationship of the power
consumed over a time interval as shown in eq. 11. According
to the objective function of PAPSO which decreases the
number of active hosts, it consolidates the migrated VMs
into the minimal number of hosts. As a result, it increases
the CPU utilization in the running servers, where other hosts
can be switched to a sleep mode. Thus, the total energy
consumption can beminimized as shown in Figure 6. It can be
noticed that the proposed technique can reduce the consumed
power with 8.01% on average, in comparison to PABFD.
The proposed technique can achieve an acceptable reduction
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TABLE 7. Power consumption in (Watt) at different levels of utilization.

FIGURE 6. Energy consumption.

in the consumed power, taking into consideration that it is
constrained on the other hand by not violating SLA.

Energy =
∫ t1

t0
P(u(t))dt (11)

B. NUMBER OF VM MIGRATIONS
Live VM migration can degrade the performance of the
system, thereby violate the SLA. In other words, the more
you migrate VMs between hosts, the more you degrade
the performance. PAPSO adopts a technique to decrease
the number of active servers, in addition to, minimize the
number of overloaded hosts. Therefore, reducing the num-
ber of active servers increases CPU utilization of hosts
that leads to a minimum number of underloaded servers.
On the other hand, it reduces the number of overloaded
servers. Thus, the two reasons for migration are taken
into consideration which leads to reducing the number of
VM migrations as noticed in Figure 7. The proposed tech-
nique reduces the number of VM migrations with about
39.65%, compared to PABFD. Although VM consolidation
techniques are based on applying many VM migration pro-
cesses between servers seeking to minimize the total power
consumption in data centers, PAPSO can achieve its aim
with a remarkable reduction in the number of VM migra-
tions. This minimization in the amount of VMmigration pro-
cesses has a great effect on the quality of introduced services
to users.

C. SLA VIOLATION
To ensure an acceptable QoS provided by IaaS environments,
SLA should not be violated. Therefore, an independentmetric
to workloads is introduced to assess SLA that provided to
a VM’s user in an IaaS environment [20]. For measuring
the level of SLA violation, two metrics are defined based
on the following reasons: time during which servers are

FIGURE 7. Number of VM migrations.

fully utilized and service degradation due to migrations.
The first metric is defined as SLA violation Time per Active
Host (SLATAH) and can be calculated through eq.12, where
N is the total number of servers, Tsi is the time during which
a server is fully utilized, and Tai is the overall time during
which the server state is active. The other metric is defined as
Performance Degradation due toMigrations (PDM). It can be
measured through eq.13, where M is the number of VMs, Cdj
is an estimation of the performance degradation of VMj due
to migration which is estimated by 10% of CPU utilization
during all migrations of that VM, and Crj is the total requested
CPU capacity of VMj during its operation. Consequently,
a combined metric called SLA Violation (SLAV) is provided
based on these two previous independent metrics and can be
calculated through eq.14.

SLATAH =
1
N

N∑
i=1

Tsi
Tai

(12)

PDM =
1
M

M∑
j=1

Cdj

Crj
(13)

SLAV = SLATAH . PDM (14)

Experimental results proved that the proposed work does
not violate SLA, compared to PABFD as declared in Figure 8.
It can be noticed that PAPSO does not only avoid increas-
ing SLA violation, but it can reduce SLA violation with
the increase in the number of VMs and PMs (Such as
C3). Although the main goal for this work is to consoli-
date the migrated VMs into the least number of hosts to
save power consumption, it can avoid SLA violation by
avoiding its two main sources. Specifically, it makes PMs
not overloaded as much as possible and decreases also the
number of VM migrations. Therefore, QoS for users can
be protected from the side effects of the VM consolidation
process.
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FIGURE 8. SLA violation.

FIGURE 9. Number of host shutdowns.

D. NUMBER OF HOST SHUTDOWNS
Another effective factor on QoS is the number of host shut-
downs. When CPU utilization in a server becomes under a
specific limit, VMs have to be migrated from this server
to other servers. Therefore, this underloaded server can be
switched off or put in a low power mode. The server can host
migrated VMs in the future, and it can be expected to migrate
those VMs again if the server is underloaded. Therefore, its
state can be change again to the low power mode, to reduce
the power consumption. This scenario not only degrades the
performance for users by repetitive VM migrations, but also
has a bad effect on the power consumption. It is not cost-
effective to operate a host with light loads in a repeated
fashion. According to avoidance both overloaded and under-
loaded scenarios in PAPSO, it can decrease the number of
host shutdowns as depicted in Figure 9. The proposed tech-
nique minimizes the number of host shutdowns with 66.33%
on average, in comparison to PABFD.

E. ENERGY SLA VIOLATION (ESV)
When studying the VM placement problem, it will be noticed
that it is a trade-off problem. Specifically, cloud service
providers consolidate VMs into the minimal number of
servers, as they care about costs of operation and cool-
ing for the servers. On the other hand, customers focus
on the service performance, that should not be affected
by the consolidation process. Thus, cloud service providers
seek to reduce energy consumption without violating SLA.

FIGURE 10. The combined metric Energy-SLA violation (ESV).

Therefore, a combined trade-off metric [20], which merges
energy consumption and SLA violation, has been introduced
to evaluate the VM placement. In our proposed technique,
PAPSO can reduce energy consumption without violating
SLA. Consequently, PAPSO outperforms PABFD by reduc-
ing ESV as declared in Figure 10. The amount of reduction is
estimated with 11.87% on average due to taking into consid-
eration the consumed energy in data centers, in addition to,
the SLA violation.

VIII. DISCUSSION
The proposed technique, PAPSO, has been evaluated through
three test cases under random workloads as declared in the
previous section. It exploits the capabilities of PSO to search
for the best VM placement solution locally and globally. Its
objective is to manage power consumption in data centers by
introducing an effective power-aware technique to map the
migrated VMs to the most appropriate servers. Specifically,
it tries to keep servers in the normal mode by reducing the
number of overloaded servers and underloaded ones. Over-
loaded servers have bad effects on the introduced services to
users. On the other hand, underloaded servers waste resources
and leverage the overall power consumption in data centers,
which necessitate to perform a number of VMmigrations that
in turn violate the SLA. Experimental results, compared to
PABFD, have proved that PAPSO can avoid violating SLA
by keeping servers away from the overload or underload
state. PAPSO can also reduce the consumed power in servers
by consolidating VMs into a minimal number of servers.
Simulation results have shown that PAPSO can reduce on
average about 8.01% of power consumption, 39.65% of the
number of VM migrations, and 66.33% of the number of
host shutdowns. Finally, the efficiency of PAPSO is clarified
through the combined metric Energy SLA Violation (ESV),
where it can achieve a reduction of about 11.87% on average.

Although the main objective of PAPSO is to reduce
the power consumption, it preserves SLA against viola-
tion. To illustrate the efficiency of PAPSO, another sce-
nario is applied using Aggressive Consolidation based on
PSO (ACPSO). This scenario adopts the same technique, but
without considering the number of overloaded hosts in the
fitness function. It focuses only on increasing the utilization
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FIGURE 11. Comparison between ACPSO and PABFD; (a) Energy consumption, (b) SLA violation, (c) Number of VM migrations, (d) Number of host
shutdowns, (e) ESV.

and reducing the number of active hosts. Therefore, it can
achieve a better reduction in the consumed power, compared
to PAPSO. However, this reduction comes at expense of the
performance, thereby violates the SLA completely. Figure 11
shows that ACPSO outperforms PABFD in decreasing energy
consumption drastically, but with a heavy cost in the context
of SLA violation. Additionally, it shows that ACPSO per-
forms a large number of VM migrations. This is due to the
growing number of the overloaded servers that necessitates

to migrate VMs from the overloaded hosts continuously,
which in turn violates the SLA. On the other hand, ACPSO
reduces the number of host shutdowns dramatically, where
this performance metric is related to the number of under-
loaded servers which disappears almost in ACPSO. As a
conclusion to this scenario, results of the trade-off perfor-
mance metric ESV show that decreasing the power con-
sumption should not be the only objective to have a good
VM placement.
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IX. CONCLUSION
Cloud computing and its services have become widespread
all over the world, therefore the construction of large-scale
data centers has been doubled. Consequently, there was a
need to manage power consumption in data centers. Dynamic
consolidation of VMs into the minimum number of servers
is a significant issue in the context of reducing the power
consumption. It deals with migrating VMs from underloaded
servers to other hosts, where their original hosts can be
switched to a sleep mode for the sake of energy saving.
It focuses also on migrating VMs from the overloaded
servers to avoid SLA violation. Thus, finding appropriate
hosts to receive the migrated VMs is a vital mission. There-
fore, we introduced in this paper, PAPSO, a power-aware
VM placement technique based on PSO to reduce power
consumption without violating SLA. A decimal encoding
for PSO was introduced to suit the VM placement problem,
where PSO deals with the continuous problems. Moreover,
an effective fitness function was employed to reduce the
number of active servers and the number of overloaded ones.
The proposed technique was implemented in CloudSim and
simulation results, compared to PABFD, showed its effi-
ciency in terms of consumed energy, number of host shut-
downs, number of VM migrations, and ESV. As future work,
PAPSO efficiency can be tested through implementation in
a real environment. Additionally, more optimization can be
achieved by taking more resources into consideration such as
memory, bandwidth, and the network factors.
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