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ABSTRACT Accurate protein contact map prediction is essential for de novo protein structure prediction.
Over the past few years, deep learning has brought a significant breakthrough in protein contact map
prediction and optimized deep learning architectures are highly desired for performance improvement. As an
emerging deep learning architecture, the generative adversarial network (GAN) has shown the powerful
capability of learning intrinsic patterns, which inspires us to comprehensively exploit GAN for predicting
accurate protein contact maps. In this study, we present GANcon, a novel GAN-based deep learning
architecture for protein contact map prediction, which to the best of our knowledge is the first GAN-based
approach in this field. Instead of using a single neural network, GANcon is composed of two competitive
networks that are evolving through adversarial learning. The generator network employs a dedicated encoder-
decoder architecture that can efficiently capture the underlying contact information from versatile protein
features to generate contact maps, while the discriminator network learns the differences between generated
contact maps and real ones and promotes the generator network to produce more accurate contact maps.
Moreover, to deal with the imbalance problem and take into account the symmetry of contact maps, we also
propose a novel symmetrical focal loss, which can further enhance the effectiveness of adversarial learning
for better performance. The experimental results on several datasets demonstrate that GANcon outperforms
many state-of-the-art methods, indicating the effectiveness of our method for predicting protein contact maps.
GANCcon is freely available at https://github.com/melissaya/GANcon.

INDEX TERMS Protein contact map prediction, deep learning, generative adversarial network, adversarial
learning.

I. INTRODUCTION protein residues, i.e., protein residue contacts. For a pro-

Proteins are crucially important macromolecules in an
organism and play a fundamental role in almost all biological
processes. In order to carry out the essential cellular func-
tion, proteins fold into specific three-dimensional structures,
which are driven and stabilized by the interactions between
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tein sequence, all contacts of residue pairs can be encoded
into a binary matrix named ‘contact map’, which has been
regarded as a critical contributor for accurate de novo protein
structure prediction [1], [2]. In recent Critical Assessment
of protein Structure Prediction (CASP) experiments, many
excellent de novo protein structure prediction methods have
benefited much from the incorporation of predicted contact
maps [3], [4].
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Due to the importance of contact map in protein structure
prediction, researches on predicting protein contact maps
have been booming in the past decade. For example, the evo-
lutionary coupling analysis (ECA) methods predict con-
tacts by capturing co-evolved residues from protein multiple
sequence alignments (MSAs), such as CCMpred [5] and
FreeContact [6]. These methods are effective for predicting
contacts in proteins with a large number of high-quality
MSAs, while their predictive performance is limited if the
proteins have few or low-quality MSAs [7], [8]. In contrast,
machine learning methods can learn complex relationships
from all kinds of information, including the co-evolutionary
information estimated by ECA methods, and therefore have
been more successful in contact map prediction [9].

Over the past few years, as a powerful machine learning
technique, deep learning has brought a significant break-
through in protein contact map prediction [8], [10], [11].
A typical deep learning method usually adopts a multi-
layer convolutional neural network (CNN) architecture to
learn inherent patterns in contact maps automatically. For
example, DNCON?2 is composed of six CNN blocks [12],
RaptorX-Contact uses deep residual convolutional network
(ResNet) [11], and SPOT-Contact combines ResNet with
two-dimensional residual bidirectional recurrent long short-
term memory networks [8]. These carefully designed deep
learning architectures have shown remarkable predictive
power in recent CASP experiments, which inspires us to
further explore more optimized deep learning architectures
for performance improvement.

Most recently, as an emerging deep learning architecture,
the generative adversarial network (GAN) [13] has received
considerable attention due to its powerful capability of learn-
ing intrinsic patterns in diverse fields, such as image classi-
fication [14] and gene expression inference [15]. Instead of
using a single deep neural network, GAN is composed of
two competitive networks, namely a generator network and
a discriminator network, which are evolving in an adversarial
learning strategy: the generator network produces fake sam-
ples and tries to fool the discriminator network into believ-
ing the generated samples are real, while the discriminator
network tries to distinguish the generated samples from the
real ones and guides the generator network to produce more
realistic samples. Although it is of great interest to compre-
hensively exploit GAN for predicting protein contact maps,
there are still several issues to address. First, despite that
contact map prediction can be interpreted as image classi-
fication problem at pixel level where each pixel represents
one residue pair [16], the input features adopted in contact
map prediction include versatile protein features such as
the GaussDCA scores [17], Atchley factors [18] and log
number of sequences in the alignment, which are usually
more complex than the input of image classification [11].
Therefore, to produce accurate contact maps, the generator
network of GAN is required to efficiently capture underlying
contact information from these complex features. Second,
the contact map is a binary matrix and the ratio of contact and
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non-contact residue pairs is extremely low (<2%) [19], which
leads to a severe imbalance problem [7], [9] especially for
GAN models optimized by commonly-used binary cross-
entropy (BCE) loss [20]. Third, symmetry is an important
and unique property of contact map [21], which, however,
is absent in almost all other prediction tasks and therefore not
considered in existing GAN models.

In this work, we present a novel GAN-based deep learn-
ing architecture called GANcon for protein contact map
prediction, which to the best of our knowledge is the first
GAN-based approach in this field. The generator network of
GANCcon employs a dedicated encoder-decoder architecture
to efficiently capture the underlying contact information from
versatile protein features. Meanwhile, through adversarial
learning, the discriminator network of GANcon learns the
differences between generated contact maps and real ones
and promotes the generator network to produce more accurate
contact maps. Moreover, to cope with the imbalance problem
and take into account the symmetry of contact maps, we also
propose a novel symmetrical focal (SF) loss in this study,
which can further enhance the effectiveness of adversarial
learning for better prediction results. We assess the predic-
tion performance of GANcon on an independent test dataset
of 360 proteins, and CASP12 and CASP13 datasets. The
experimental results demonstrate that GANcon shows very
promising performance for all length cutoffs and sequence
separations.

Il. METHODS AND MATERIALS

A. THE ARCHITECTURE OF GANcon

The overall architecture of GANcon including a generator
network and a discriminator network is depicted in Figure 1.
The generator network of GANcon takes the given protein
features as input to produce contact maps, while the discrim-
inator network of GANcon works as a classifier to discrim-
inate generated contact maps from real contact maps. With
both the adversarial loss and the SF loss, adversarial learning
promotes the generator network to produce accurate contact
maps that approximate the distribution of real contact maps.
After training, the generator network will then be adopted for
contact map prediction.

To efficiently capture the underlying contact information
from versatile protein features, the generator network of
GANCcon employs a dedicated encoder-decoder architecture.
As shown in Figure 1, the encoder path consists of a series
of residual blocks (ResBlocks) [22], 3 x 3 convolutional
layers with rectified linear unit (ReLU), and 2 x 2 max-
pooling layers with stride of 2. ResBlocks utilize short skip
connections to skip the block input to its output, and therefore
learn a residual representation of the protein features that
is helpful to capture complex relationships between residue
pairs. Max-pooling layers down-sample the output of the
previous layer and two dropout layers are added into the
last two steps of the encoder path to prevent the network
from overfitting. The decoder path consists of a series of
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FIGURE 1. The overall architecture of GANcon. GANcon is composed of a generator network and a discriminator network. The generator
network produces contact maps that are highly similar to real contact maps while the discriminator network tries to distinguish
generated contact maps from real contact maps. With both the adversarial loss and the SF loss, adversarial learning promotes the
generator network to produce accurate contact maps that the discriminator network cannot distinguish from the real ones.

2 x 2 up-convolutional layers, 3 x 3 convolutional layers
with ReLU and ResBlocks. Moreover, long skip connections
are added between the encoder path and the decoder path
to provide more different-level details about contact infor-
mation. Finally, a 1 x 1 convolutional layer with a sigmoid
activation function is used to produce pixel-level contact map
prediction.

The discriminator network of GANcon extensively plays
an adversarial role to promote the generator network to
produce accurate contact maps, which comprises three
3 x 3 convolutional layers with a leaky rectified linear
unit (LeakyReLU) and a 1 x 1 convolutional layer with a sig-
moid activation function. Similar to the previous study [23],
the discriminator network receives the concatenated pair of
the generated or real contact map and the corresponding input
protein features. The outputs are the pixel-level probabili-
ties of real or generated contact residue pairs in a contact
map.

B. ADVERSARIAL LEARNING

We denote the input protein features as X of size L X L X N,
where L is the length of protein sequence and N is the number
of protein features. The corresponding real contact map is
denoted as M of size L x L x 1. The generator network of
GANCcon is denoted as G (-) that outputs a generated contact
map M’ =G (X) of size L x L x 1. The discriminator network
of GANcon is denoted as D (-) that outputs a probability
matrix P = DX, M) or P = D(X,M') of size L x L x 1,
which includes pixel-level probabilities of contact pairs com-
ing from a real contact map M or a generated contact
map M.
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During the adversarial learning process, the adversarial
loss used for the discriminator network is based on BCE loss:

min LY = =y zlogPij+(1—z)log(1—P;j), (1)
-

l

where z = 0 if the input includes generated contact maps
and z = 1 if the input includes real contact maps. P;; and P;
are the values of the i-th row and j-th column in P and P/,
respectively. The first term of (1) is used to classify M as real
at pixel level, while the second term is used to make M’ to be
classified as fake at pixel level.

To train the generator network, GANcon uses a loss func-
tion that is a weighted sum of an adversarial loss based on
P’ and an SF loss between M and M’, which is defined as

follows:
min Lg = ALY + LY )

where A is set to 1.0 to maintain the balance of adversarial
learning. The adversarial loss used for generator network
aims to fool the discriminator network through maximizing
the probability of M’ being considered as real and is defined

as:
LY = =3 "log P} 3)
i

Although BCE loss between M and M’ is commonly used
in existing GAN models for almost all other prediction tasks,
it is not suitable for protein contact map prediction as it
fails to deal with the imbalance problem caused by the low
rate of contact and non-contact residue pairs and ignores the
symmetry of contact maps. In order to solve these problems,

80901



IEEE Access

H. Yang et al.: GANcon: Protein Contact Map Prediction With Deep GAN

we propose a novel SF loss to amend BCE loss by using both
focal loss introduced by Lin et al. [20] and symmetrical loss:

Ly = LG + L, “

where g is set to 1.0 to balance the role of two loss terms. Lg
is the focal loss that is effective for the imbalance problem
and is defined as:

L= =30 e (1 mg) ytog e
i
+ (1 —a)M;” (1 —M;)log (1 - M{;) SC)

where « € [0, 1]is a weighting factor to adjust the importance
of contact and non-contact residue pairs and y is a parameter
that puts the focus on hard and misclassified residue pairs
and reduces the loss contribution of easy-to-classify residue
pairs. In this study, « is set to 0.25 and y is set to 2.0.
In order to keep the symmetry of the generated contact maps
as much as possible, the symmetrical loss Lé is defined as
follows:

L= -3 3 (- mry)" ©
i

C. IMPLEMENTATION DETAILS
GANcon is implemented using the Keras library (https:/

keras.io) along with Tensorflow (https://www.tensorflow.org).

We use the Adam optimization method with the initial learn-
ing rate as 1E-4 in the generator network and 1E-5 in the
discriminator network. In each epoch, a mini-batch size of 1
is used for both networks due to GPU memory limitation and
we train the discriminator network 3 times while training
the generator network once. GANcon takes approximately
15 hours (20-30 epochs) to converge with an Nvidia 1080 Ti
GPU.

D. PROTEIN FEATURES

As shown in Supplementary Table S1, the protein features
used in GAN-con include various two-dimensional, one-
dimensional and scalar features, which are consistent with
those used by many other methods [24], [25]. To derive
these features from MSAs, by following a similar procedure
in previous methods [12], [25], we first run HHblits [26]
with an E-value threshold of 1E-3 to search the Uniclust30
database [27] to generate alignments. If the alignment found
by HHblits has fewer than 2000 homologous sequences,
we then run JackHMMER [28] with E-value thresholds of 1E-
20, 1E-10, 1E-4 and 1 to search the UniRef90 database [29].
After that, we use these alignments to generate other pro-
tein features, e.g., GaussDCA scores [17]. Finally, both one-
dimensional and scalar protein features are duplicated to
form two-dimensional matrixes, which are used together
with the two-dimensional protein features as the inputs of
GANCcon [12].

80902

E. DATASETS

The dataset used in this study consists of SCOPe 2.07 subsets
filtered for sequences with less than 30% sequence identity
(based on PDB SEQRES records) and sequence lengths
between 50 and 500 [30]. Meanwhile, the dataset is divided
into three non-overlapping sets for training, validation and
independent test, which is a commonly-used performance
evaluation strategy in deep learning methods [31], [32].
In this way, 7192 proteins from SCOPe 2.06 are allocated
to the training and validation datasets (90% and 10%,
respectively) [31], while 360 proteins newly released in the
SCOPe 2.07 are allocated to the independent test dataset.
Moreover, we also carry out additional testing on the pub-
licly available targets in recent CASP experiments including
22 CASP12 free modeling (FM) targets and 15 CASP13 FM
targets, for an objective comparison with state-of-the-art
methods.

F. EVALUATION CRITERIA

According to the standard CASP definition [33], protein
residues are defined as in contact when the Euclidean distance
between two Cg atoms (C, for Glycine) falls within 8 A.
All contacts are divided into three groups depending on the
sequence separation, including long-range (sequence separa-
tion > 24), medium-range (12 < sequence separation < 24)
and short-range (6 < sequence separation < 12). Following
the CASP routine, we take the top L /k (k = 5, 2, 1) predicted
contacts, where L is protein sequence length, to calculate
the precision, recall, and F1 score. These three metrics are
defined as:

. TruePositive
Precision = — —, @)
TruePositive + FalsePositive
TruePositive
Recall = ®)

TruePositive + FalseNegative’

and

2 - Precision - Recall
Fl =

Precision + Recall ©)
where True Positive is the number of correctly predicted
contacts, False Positive is the number of contacts falsely
predicted as non-contacts and False Negative is the number
of non-contacts falsely predicted as contacts.

To further analyze all the predictions from GANcon,
we provide Precision-Recall (PR) curves and Receiver Oper-
ator Characteristic (ROC) curves. The corresponding area
under the PR curve (AUPRC) and area under the ROC
curve (AUC) scores for long-, medium- and short-range are
also provided. In consistent with previous studies [16], [34],
we use P-values in the Student’s z-test to compare these
metrics of other methods with those of GANcon, which is a
measure of statistical significance of the difference between
two methods’ results.

IIl. RESULTS

A. THE EFFECTIVENESS OF ADVERSARIAL LEARNING

In order to measure the impact of the adversarial learning in
protein contact map prediction, in Table 1 we first compare
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TABLE 1. Precisions of different models on the validation dataset.

Models L5 (%) LI2(%) L (%)
Long Baseline 7776  67.23  53.74
BaselinetGAN 83.03  72.62 58.03

BaselinetGAN+SF (GANcon)  87.07 77.24  62.06

Medium  Baseline 67.01 47.15 2995
Baseline+tGAN 71.69  50.20 31.54
BaselinetGAN+SF (GANcon) 74.89 52.46 32.17

Short Baseline 64.05 4271 26.30

Baseline+GAN 68.60 45.63 2747
BaselinetGAN+SF (GANcon) 72.67 47.60 27.99

Note: The baseline is the model without adversarial learning and using
BCE loss.

the prediction precisions of models with or without adver-
sarial learning on the validation dataset for both top-ranking
prediction length cutoffs (L/5, L/2 and L) and sequence sepa-
rations (long-, medium- and short-range). The model without
adversarial learning is treated as the baseline, which only uses
the generator network of GANcon and is trained with the
commonly used BCE loss. And the model with adversarial
learning (i.e., GAN) uses both the generator network and
the discriminator network of GANcon and is trained with
both adversarial loss and BCE loss. As shown in Table 1,
the prediction performance is greatly improved for all levels
of contact precisions with the help of adversarial learning.
For example, for top L/5 long-, medium- and short-range
contacts, the model with adversarial learning has a preci-
sion of 83.03%, 71.69% and 68.60%, respectively, which is
5.27%, 4.68% and 4.55% higher than that without adversarial
learning (77.76%, 67.01% and 64.05%), respectively. The
corresponding P-value in the Student’s 7-test is 2.56E-61,
1.02E-117 and 1.52E-30 (Supplementary Table S2), respec-
tively, indicating that the improvement is statistically signif-
icant. In addition to precisions, we also show the F1 scores,
AUPRC scores and AUC scores of different models in Sup-
plementary Tables S3-S5. From these results, we find that
adversarial learning leads to significant improvements for
all length cutoffs and sequence separations. For example,
the model without adversarial learning obtains an AUPRC
score of 49.66%, 57.94% and 56.57% for long-, medium-
and short-range contacts, respectively, which is 6.18%, 5.65%
and 5.62% lower than the model with adversarial learning
(55.84%, 63.59% and 62.19%), respectively. Taken together,
these results indicate the effectiveness of adversarial learning
in protein contact map prediction.

Furthermore, to explore the optimal loss function yield-
ing better performance during adversarial learning, we train
GANcon model using adversarial learning with the proposed
SF loss. As shown in Table 1, the proposed SF loss con-
sistently brings additional performance improvements for
all length cutoffs and sequence separations. For example,
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the precision for top L/5, L/2 and L long-range contacts
are 87.07%, 77.24% and 62.06% by SF loss, respectively,
compared to 83.03%, 72.62% and 58.03% by BCE loss,
respectively. Also, the corresponding P-values shown in Sup-
plementary Table S2 suggest the performance improvements
obtained by using SF loss are all statistically significant.
Similar results in F1 scores, AUPRC scores and AUC scores
can also be observed in Supplementary Tables S3-S5, which
further demonstrates that the proposed SF loss is indeed effec-
tive for protein contact map prediction. Overall, by jointing
SF loss with adversarial learning, GANcon can successfully
boost the precision by 9.31%, 7.88% and 8.62% for top L/5
long-, medium- and short-range contacts.

B. COMPARISONS OF GANcon WITH EXISTING METHODS
We compare GANcon on the independent test dataset
with four state-of-the-art deep learning methods, including
DNCON?2 [12], DeepContact [7], PconsC4 [24] and Deep-
Cov [34], and two well-known ECA methods including
CCMpred [5] and FreeContact [6]. All of these compared
methods are downloaded and implemented in our local com-
puters with default settings. Among these methods, DeepCov,
PconsC4, CCMpred and FreeContact are fed with the same
MSAs used in GANcon since they do not have a built-in
pipeline to generate MSAs, while other methods are fed with
protein sequences directly, which is consistent with previous
studies [12], [16].

The comparison results in Table 2 for the precisions clearly
show that the deep learning methods significantly outperform
the ECA methods, which is also corroborated by previous
studies [16], [35]. For example, DeepContact achieves a pre-
cision of 86.66%, 75.52% and 60.20% for top L/5, L/2 and L
long-range contacts, respectively (Table 2), which is 24.85%,
25.88% and 22.92% higher than FreeContact, respectively.
At the same time, GANcon performs consistently better than
other deep learning methods and the corresponding precision
reaches 89.93%, 80.84% and 65.87%, respectively. And the
P-values shown in Supplementary Table S6 suggest that the
improvement is significant. We also train GANcon with other
training-validation dataset ratio (80%-20% and 70%-30%),
and the precision results in Supplementary Tables S7 show
that there is no obvious difference in the performance. More-
over, as shown in Supplementary Table S8, the F1 score of
GANCcon is 45.91% for top L/5 long-range contacts, while the
next-best deep learning method has the F1 score of 43.01%.
All these results indicate that with the novel deep learning
architecture, GANcon has a very competitive performance
for contact map prediction. In addition, we also provide the
PR and ROC curves with the corresponding AUPRC and
AUC scores of different methods for long-range contacts in
Figure 2 and Figure 3. As shown in Figure 2, the PR curve for
long-range contacts confirms GANcon has a better precision
under a given level of recall than other methods and the corre-
sponding AUPRC score is 63.57%, which is at least 7% better
than other methods investigated in this study. Meanwhile,
the PR curves in Supplementary Figure S1 demonstrate the
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TABLE 2. Comparison of precision with state-of-the-art methods on the independent test dataset.

Long Medium Short

Method

L/5 (%) L2 (%) L (%) L/5 (%) L2 (%) L (%) L/5 (%) L2 (%) L (%)
DeepContact 86.66 75.52 60.20 74.11 51.30 31.67 69.02 44.61 26.95
DeepCov 81.73 67.20 50.30 67.79 45.95 28.92 67.86 44.29 27.02
DNCON2 85.81 74.94 59.67 74.32 51.04 31.42 72.99 47.92 28.38
PconsC4 85.67 74.88 59.41 74.60 51.04 31.15 73.10 46.90 27.90
FreeContact 61.81 49.64 37.28 46.40 29.25 18.95 34.83 22.95 15.79
CCMpred 66.15 55.43 42.20 54.48 33.31 20.47 46.54 27.42 17.32
GANcon 89.93 80.84 65.87 77.89 54.13 32.83 74.06 48.46 28.46

FreeContact=0.2697

CCMpred=0.3148

DeepCov=0.4391

PconsC4=0.5466

Precision

DNCON2=0.5475

DeepContact=0.5646

GANcon=0.6357

00 01 02 03 04 05 06 07 08 09 10
Recall

FIGURE 2. PR curves of different methods for long-range contacts on the
independent test dataset.

FreeContact=0.7996

CCMpred=0.8178

DeepCov=0.9023

PconsC4=0.9210

Sensitivity

DNCON2=0.9253

DeepContact=0.9439

GANcon=0.9569

00 01 02 03 04 05 06 07 08 09 10
1-Specificity

FIGURE 3. ROC curves of different methods for long-range contacts on
the independent test dataset.

advantage of GANcon for medium- and short-range contacts.
Also, the ROC curves with the corresponding AUC scores
in Figure 3 and Supplementary Figure S2 show similar results
when long-, medium- and short-range contacts are evaluated.

To explore the effect of the number of homologous
sequences on the performance of computational methods,
we present the precisions of the top L/5 long-range contacts as
a function of the maximum log Neff scores in Figure 4, where
Neff is defined as the number of effective sequences in MSAs
and a higher score implies more homologous sequences in
the reference database. As shown in Figure 4, in general, all
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FIGURE 4. Precisions of top L/5 long-range contacts from proteins from
the independent test dataset grouped by a maximum log Neff score.

methods have the lower performance for lower Neff score and
the precisions of all methods are increasing as the Neff score
increases, indicating the significance of a large number of
homologous sequences in MSAs for contact map prediction.
Across all Neff scores, GANcon achieves comparable or
better precisions than other methods.

C. BENCHMARK RESULTS ON CASP DATASETS

Finally, the performance of GANcon is evaluated on
22 CASP12 FM targets and 15 CASP13 FM targets.
To compare with well-performing methods in recent CASP
experiments, we evaluate the prediction results of RaptorX-
Contact [11] from CASP website (http://predictioncenter.org/)
and the prediction results of SPOT-Contact [8] (http://sparks-
lab.org/jack/server/SPOT-Contact/) from its webserver. The
comparison results with respect to precisions can be found
in Table 3 and Supplementary Tables S9-S10. The baseline
model of GANcon has in general comparable performance
to most of the investigated methods except the state-of-the-
art RaptorX-Contact and SPOT-Contact. Meanwhile, we also
observe that using adversarial learning and SF loss brings
significant performance improvements for all length cutoffs
and sequence separations. For example, there are more than
23%, 15% and 8% improvements in precision for top L/5,
L/2 and L long-range contacts on 15 CASP13 FM targets
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TABLE 3. Comparison of precision for long-range contacts with state-of-the-art methods on CASP12 and CASP13 datasets.

CASP12 dataset CASP13 dataset

Method

L/5 (%) L2 (%) L (%) L/5 (%) L2 (%) L (%)
DeepContact 43.96 36.26 28.91 24.73 21.41 17.46
DeepCov 48.76 40.16 32.29 32.99 28.20 23.15
DNCON2 53.51 42.60 33.78 28.36 19.86 15.41
PconsC4 4471 39.88 32.15 35.81 25.47 20.34
FreeContact 3245 25.02 18.72 17.10 12.44 10.01
CCMpred 35.36 29.66 20.94 12.08 8.79 6.73
RaptorX-Contact 48.59 39.55 31.48 62.14 53.99 41.00
SPOT-Contact 64.30 54.58 44.69 49.22 41.76 31.98
GANCcon (Baseline) 47.67 40.65 33.46 31.33 25.84 22.09
GANCcon (Baseline+tGAN+SF) 57.40 45.37 37.22 54.63 41.05 30.15

Note: The baseline is the model without adversarial learning and using BCE loss.

(Table 3). In addition, similar results in F1, AUPRC and
AUC scores of GANcon and other methods are shown in
Supplementary Tables S11-S14, which further demonstrate
that GANcon can be used as a complementary method for
protein contact map prediction.

IV. CONCLUSION
Accurate prediction of the protein contact map is of great
significance in de novo protein structure prediction. As many
carefully designed deep learning architectures have shown
remarkable prediction power in many areas of bioinformat-
ics [36]—[38], especially in contact map prediction [8], [11],
further exploration of more optimized deep learning architec-
tures for performance improvement is highly desired. In this
study, we propose a novel GAN-based architecture, GANcon,
for contact map prediction. Different from previous deep
learning methods training a single network in protein contact
map prediction, GANcon incorporates a discriminator net-
work to promote the generator network to achieve accurate
contact map prediction. During the adversarial learning pro-
cess, the generator network of GANcon captures the under-
lying contact information from versatile protein features by
employing a dedicated encoder-decoder architecture, while
the discriminator network learns the differences between gen-
erated contact maps and real ones and automatically transfers
them back to the generator network. Meanwhile, to deal
with the imbalance problem and consider the symmetry of
contact maps, a novel SF loss is proposed in this study that
together with the adversarial loss, can further enhance the
adversarial learning of GANcon for better prediction results.
Notably, jointing adversarial learning with SF loss brings
consistent improvements in prediction performance across
all the datasets assessed in this study, indicating adversarial
learning and SF loss might be adopted as a general learning
strategy for the task of protein contact map prediction.
Although GANcon shows a promising performance of
protein contact map prediction, there is still room for
further improvement. The adversarial loss of GANcon is
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based on pixel level probabilities in the output matrix of
discriminator, while the adversarial loss based on the whole
contact map level output is also very useful to training GAN
model, which can be adopted in our future work. Besides, a
well-known problem is that the training of GAN sometimes
suffers from instability [39], which also occurs during the
training process of GANcon in this study. Therefore, some
advanced GAN training methods, such as WGAN [39], can
improve training stability and will be explored in our future
study. Also, it would be interesting to integrate GAN with
other popular deep learning modules, such as long short-
term memory (LSTM) that is confirmed to be effective in
contact map prediction [8], to boost the predictive power
of GAN-based architectures. Moreover, in addition to the
protein features adopted in this study, other important fea-
tures, e.g. predictions of third-party predictors such as CCM-
pred and FreeContact, may also be used by GANcon to
enhance prediction performance. In conclusion, we propose
a novel GAN-based deep learning architecture for contact
map prediction, which can efficiently improve the overall
performance and serves as an alternative tool for contact map
prediction.
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