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ABSTRACT This paper investigates a condition-based maintenance policy for systems subject to a non-
homogeneous degradation process. A nonhomogeneous degradation process occurs as a result of deteriora-
tion nature and the environmental effect. In the first step, it develops twomaintenancemodels, which consider
the constant inspection interval and non-periodic inspection interval. The paper then optimizes amaintenance
policy with monotone preventive replacement thresholds. The optimal maintenance decision is shown as a
control-limit policy, where the optimal preventive replacement threshold is monotonically decreasing with
system age. An illustrative example is presented to show the effectiveness of the proposed maintenance
models. The result indicates that preventive replacement can significantly improve the effectiveness of the
maintenance policy and sustain system operation.

INDEX TERMS Condition-based maintenance, non-homogeneous degradation, control-limit policy, pre-
ventive replacement, time-dependent drift.

I. INTRODUCTION
With the advances of sensing technologies, system states
now can be revealed at a much lower cost, which facilitates
the development of condition-based maintenance (CBM).
To date, CBMhas received considerable attention owing to its
effectiveness in preventing system failure and reducing oper-
ating cost [1]. As CBMutilizes in-situ information to estimate
and predict the state of a system, maintenance actions are
implemented only when necessary. The advantages of CBM
over the traditional age-based preventive maintenance have
been demonstrated in both academic research and industrial
applications [2]–[4].

Research for CBM can be classified into two streams.
One focuses on discrete deterioration processes, whereas
the other on continuous degradation processes. The Markov
chain is commonly used to model the discrete deteri-
oration process [5]. Numerous studies have been con-
ducted on Markov-chain-based degradation processes. For
example, [6] proposed a hidden Markov model to assess
the bearing performance. Reference [7] integrated ran-
dom shocks into a physics-based Markov chain to assess
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system reliability. However, the Markov chain model suf-
fers several drawbacks. The state space of a Markov chain
model is unable to fully describe the continuous degrada-
tion process and the classification of system states may be
arbitrary. In such scenarios, using a continuous stochastic
process to model the degradation process may be more
appropriate. The development of sensing techniques facil-
itates the application of continuous degradation models in
characterizing the physical deterioration [8]–[10]. Another
advantage of using a continuous stochastic process to model
the degradation process is that it provides the flexibility in
describing the failure-generating mechanisms [11]–[13].
Stochastic processes such as Wiener process, Gamma pro-
cess and inverse Gaussian process, are widely used in char-
acterizing degradation processes, thanks to their feasible
mathematical properties and clear physical interpretations.
The property of independent degradation increments makes
these stochastic models extremely attractive. Reference [8]
developed a CBM model for a system subject to an inverse
Gaussian process and unit heterogeneity. Reference [14]
established an imperfect maintenance model for systems with
a Wiener process. Reference [15] investigated the impact of
unit heterogeneity on maintenance decisions with a Gamma
process.
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Despite the popularity in degradationmodeling, an implicit
assumption of the aforementioned stochastic models is
that the degradation process is homogeneous, which,
however, fails to capture the influence of environment
variations [16], [17]. Due to the varying environment,
non-homogeneous degradation processes exist extensively
in reality. Actually, for most systems such as civil infras-
tructures and airplanes, which are designed to operate for
decades, the assumption that a system operates under a sta-
tionary environment is too restrictive and therefore unreal-
istic [18]–[21]. More often than not, the degradation process
may accelerate as a result of cumulative damage/degradation.
Reference [22] reported that the drift coefficient in an
inertial navigation platform and fatigue-crack length in
2017-T4 aluminum alloy clearly show a nonlinear charac-
teristic in the degradation process. Reference [23] observed
a non-homogeneous deterioration process in large format
lithium-ion batteries. Reference [24] observed that the degra-
dation rate of a Micro-Electro Mechanical System (MEMS)
increases rapidly after exposure to large shocks. More
examples of the non-homogeneous degradation phenomenon
can be found extensively in engineered systems, such as
jet engine, machines in manufacturing system and wind
turbines [25], [26].

For systems operating under dynamic environments, it is
more appropriate to adopt a non-homogeneous stochastic
process to model the degradation process. Reference [26]
and [27] reported the use of the non-homogeneous Gamma
process in degradation modeling and maintenance decision
making. Reference [28] investigated the failure time of the
non-stationary Gamma process. Reference [29] proposed
an age-and state-dependent Markov model to describe non-
stationary degradation processes, where the transition rate is
determined by both the system age and system state.

Among the stochastic process-based models, the Wiener
process with linear drift has received considerable attention
in modeling the degradation process in recent years. The
Wiener process has been widely used to model degradation
processes for systems such as LED light, crack growth in
railway track and immune system of human body, to name a
few [30]–[32]. One of the advantages of the Wiener pro-
cess with linear drift is that its first-passage-time (FPT) can
be formulated analytically and follows an inverse Gaussian
distribution [33]. However, for a non-homogeneous Wiener
process with nonlinear drift, to obtain a closed form of the
FPT is somewhat complicated [34]–[36]. From a mathemati-
cal and application point of view, two difficulties impede the
use of the non-homogeneous Wiener process in degradation
modeling. For one thing, the distribution of FPT is achieved
by solving the Fokker-Planck-Kolmogorov (FPK) equation
with absorbing barriers, which, however, is difficult or even
impossible to obtain for a general non-homogeneous Wiener
process [37]. For another, numerically calculating the FPT
requires a massive computation time and memory storage
space, which makes it unappealing for real-time decision
making such as online fault diagnostics and prognostics [38].

With respect to CBMmodels for non-homogeneous degra-
dation processes, the research is quite limited in literature.
There are several studies that investigated CBM for systems
subject to degradation processes and shocks, e.g., [39], [40].
But the degradation processes investigated in their works
are different from ours in nature. We consider a nonho-
mogeneous degradation process that the degradation rate is
varying with time, while the others consider the combina-
tion of a homogeneous degradation and external shocks.
Reference [41] developed a control limit maintenance policy
for a system subject to non-stationary degradation, where the
Markov chain model is employed to characterize the transi-
tion of system states. Reference [42] established a physics-
based model to describe the degradation process of fatigue
crack growth, where the system is subject to varying envi-
ronment and uncertain condition monitor. Reference [43]
developed an optimal replacement policy for a continuously
degrading system subject to partially observed environments.
A partially observable Markov decision process (POMDP) is
formulated to obtain the optimal maintenance decision.

The aforementioned CBM models focus on a discrete
degradation model or a homogeneous degradation model.
Little research, however, has been devoted to CBM models
that model non-homogeneous (non-stationary) degradation
processes, despite its importance and necessity in practice.
In this study, we aim to fulfill this gap by providing a
CBMmodel for a non-homogeneously degraded system. The
system is subject to continuous degradation, modeled by a
Wiener process with time-dependent drift and diffusion. The
system degradation level is revealed by inspection. At the
first step, two CBM policies are developed with respect to
the inspection interval. One is the widely-used inspection-
replacement policy with periodic inspection, where the sys-
tem is replaced when it is found failed at inspection. The
other policy is implemented under decreasing inspection,
where the inspection interval is geometrically decreasing to
diminish the effect of increasing degradation rate. In addition,
we develop a CBMmodel with monotone preventive replace-
ment threshold. Optimal maintenance decisions are achieved
by minimizing the long-run cost rate.

The remainder of this paper is organized as follows.
Section II presents the non-homogeneous Wiener degrada-
tion process. Section III develops an inspection-replacement
CBM policy, where CBM models with constant inspection
intervals and geometrically decreasing inspection intervals
are established respectively. Section IV develops a CBM
model with monotone preventive replacement thresholds,
where the optimal maintenance policy is shown as a control-
limit policy. Section V offers an illustrative example. Finally,
Section VI concludes the paper and proposes further research.

II. NON-HOMOGENEOUS WIENER DEGRADATION
PROCESS
Consider a system subject to a non-homogeneous Wiener
degradation process. The system degradation level X (t)
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evolves according to the stochastic differential equation

dX (t) = µ(t)dt + σ (t)dB(t) (1)

where µ(t) is the time-dependent drift coefficient, σ (t) is the
time-dependent diffusion coefficient, and B(t) is the standard
Brown motion with independent and identical increment,
B(t)−B(s) ∼ N (0, t−s). Taking integral of Eq (1), the degra-
dation level is given by

X (t) = x0 +
∫ t

0
µ(s)ds+

∫ t

0
σ (s)dB(s) (2)

where x0 is the initial degradation level. For the non-
homogeneous Wiener process, the independent increment
property no longer holds, as opposed to the traditionalWiener
process with linear drift. We consider the case that the degra-
dation process is influenced by the operating environment.
According to Nelsonİŕ Cumulative Exposure model, both the
drift coefficient and the diffusion coefficient are impacted by
the current environment but not the history of the degradation
process [44]. Particularly, a proportionality relationship exists
between µ(t) and σ 2(t), µ(t)/σ 2(t) = γ [34], [37], [45],
where γ is a known parameter associated to a specific envi-
ronment. Compared with the homogeneous Wiener process,
the increment of degradation of Eq (1) is dependent on time t .
Nonetheless, it is shown that the degradation process defined
in Eq (1) is a Wiener process with a time-dependent mean
value function and diffusion [45]. Let 1X (t) = X (t +
1t) − X (t). Clearly from Eq (2), 1X (t) follows the normal
distribution. The expectation and the variance of 1X (t) can
be obtained by

E [1X (t)]=
∫ t+1t

0
µ(s)ds−

∫ t

0
µ(s)ds=M (t+1t)−M (t)

and

Var [1X (t)] =
∫ t+1t

t
σ 2(s)ds = Z (t +1t)− Z (t)

respectively, whereM (t) =
∫ t
0 µ(s)ds and Z (t) =

∫ t
0 σ

2(s)ds.
The system fails when the degradation level hits the failure

threshold l for the first time. The FPT of the system is given
as

Tf = inf {t : X (t) ≥ l} (3)

If the system is subject to a stationary Wiener process,
it is well know that the FPT follows an inverse Gaussian
distribution [46]. For systems degrading with time-dependent
drift and diffusion, the cumulative distribution function (cdf)
of FPT is expressed as [45]

FTf (t|x0) =
1
2

{
1+ erf (η1)

+ exp
[
2 (l − x0)M (t)

Z (t)

]
(1+ erf (η2))

}
(4)

where

η1 =
x0 +M (t)− l
√
Z (t)

η2 =
x0 −M (t)− l
√
Z (t)

erf (·) is the error function with

erf (x) =
2
√
π

∫ x

0
e−s

2
ds

If the drift and diffusion coefficients are invariant of time
(homogeneous Wiener process), then Eq (4) can be reduced
to an inverse Gaussian distribution,

FTf (t|x0) = 8
(
µt + x0 − l

σ
√
t

)
+ exp

(
2µ (l − x0)

σ 2

)
8

(
−µt + x0 − l

σ
√
t

)
(5)

where 8(·) is the cdf of the standard normal distribution,
8(x) = 1/2

(
1+ erf (x/

√
2)
)
.

In reality, most systems may experience an accelerated
degradation process, as a result of the external shocks and
environmental effects. In other words, the mean degradation
rate µ(t) increases with time t , dµ(t)/dt > 0. In this paper,
we focus on the accelerated degradation process and develop
maintenance models accordingly.

III. INSPECTION-REPLACEMENT POLICY
Continuous monitoring is often too costly or even impossible
for some systems. Discrete inspection is therefore used here
to reveal the degradation level of the system. We assume that
the inspection is perfect in the sense that the degradation level
can be accurately revealed by inspection. The system is failed
when the degradation level exceeds the failure threshold. The
system failure is not self-announcing and can only be discov-
ered at inspection, which is referred to as a hidden failure
[10], [47]–[49]. Denote {δi : i = 1, 2, . . .} as the inspection
epoch. At each inspection, if the system is failed, corrective
replacement is carried out. The cost items include inspection
cost ci, corrective replacement cost cr and downtime cost.
The downtime cost is incurred during the period of system
inactivity, from failure occurrence till the next replacement
time, at a cost of cd per unit time. Optimal maintenance mod-
els are achieved by minimizing the long-run cost rate. In the
following, two maintenance models are formulated. One is
with a constant inspection interval, where periodic inspection
is implemented over the operation horizon. The other is with a
geometric inspection interval, where the inspection intervals
decrease geometrically.

A. CONSTANT INSPECTION INTERVAL
We first construct a maintenance model with constant inspec-
tion interval since periodic inspection is easy to implement for
engineers and is most widely used in practice. The inspection
epoch is denoted as δi = iδ, where δ is a base inspection
interval. At each inspection, corrective replacement is carried
out if the system is failed; otherwise, the system is left as
it be. The objective is to minimize the long-run cost rate
by searching an optimal inspection interval δ. As corrective
replacement brings the system back to an as-good-as-new

81802 VOLUME 8, 2020



J. Peng et al.: CBM Policy for Systems With a Non-Homogeneous Degradation Process

state, the renewal cycle theorem can be used to calculate
the long-run cost rate [50]. A renewal cycle is defined as
the interval between two consecutive replacements or from
system installation to the first replacement. Let C(t) be the
total cost until time t . Based on the renewal cycle theorem,
the long-run cost rate κ can be formulated as

κ (δ) = lim
t→∞

C(t)
t
=

cc + ciE
[
N (δ)
I

]
+ cdE

[
T (δ)
d

]
E
[
τ (δ)

] (6)

where τ (δ) is the length of a renewal cycle, N (δ)
I is the num-

ber of inspections in a renewal cycle, and T (δ)
d is the sys-

tem downtime, under the maintenance strategy with constant
inspection interval. In the following, we will suppress the
subscript (δ) for notational convenience. Clearly, the number
of inspections in a renewal cycle, NI , depends on the failure
time and the inspection interval δ. The probability of NI = i
is expressed by

P (NI = i) = P
(
(i− 1) δ < Tf < iδ

)
= FTf (iδ)− FTf ((i− 1) δ) (7)

The expected number of inspections in a renewal cycle can
be readily obtained as

E [NI ] =
∞∑
i=1

iP (NI = i)

=

∞∑
i=1

i
(
FTf (iδ)− FTf ((i− 1) δ)

)
=

∞∑
i=1

R (iδ) (8)

The expected system downtime can be achieved as

E [Td ] =
∞∑
i=1

E
[
Td |Tf = t

]
dFTf (t)dt

=

∞∑
i=1

∫ iδ

(i−1)δ
(iδ − t)dFTf (t)dt (9)

As the system failure is not self-announcing, a renewal cycle
always ends at inspection. Thus, the length of a renewal cycle
is given as

E [τ ] = E [NI ] δ = δ
∞∑
i=1

R (iδ) (10)

Integrating Eq (7-10), the long-run cost rate can be readily
obtained as

κ (δ) =
ci
δ
+

cc + cd
∞∑
i=1

∫ iδ
(i−1)δ (iδ − t)dFTf (t)dt

δ
∞∑
i=1

R (iδ)
(11)

The optimal maintenance policy is achieved by minimizing
the long-run cost rate,

δ∗ = arg min
δ

κ (δ) (12)

B. GEOMETRIC INSPECTION INTERVAL
Due to the non-homogeneity of the degradation process,
maintenance policy with a constant inspection interval may
not be so effective to prevent system failure and reduce
operating cost. Instead, we focus on a maintenance model
with varying inspection intervals. In thismodel, to balance the
accelerated degradation process, the system is inspected with
geometrically decreasing inspection intervals. The logic is as
follows: as the system is subject to accelerated degradation,
it is expected to inspect the system more frequently in later
stage. Specifically, the ith inspection interval length is αi−1δ,
where α is a scale parameter, scaling the decreasing rate of
inspection intervals. Within a renewal cycle, for i = 1, 2, . . .,
the inspection epoch is expressed by

δi = δ + αδ + α
2δ . . .+ αi−1δ =

δ
(
1− αi

)
1− α

(13)

Under the maintenance policy with a geometric inspection
interval, the objective is to determine the optimal (α, δ), so as
tominimize the long-run cost rate. Based on the renewal cycle
theorem, the long-run cost rate is given as

κ (δ, α)

=
ci
δ

+

cc + cd
∞∑
i=1

∫ δ(1−αi)/(1−α)
δ(1−αi−1)/(1−α)

(
δ
(
1−αi

)
1−α − t

)
dFTf (t)dt

δ
∞∑
i=1

(1−αi)
1−α

(
FTf

(
δ(1−αi)
1−α

)
− FTf

(
δ(1−αi−1)

1−α

))
(14)

Eq (14) can be obtained by integrating the expected number
of inspection and downtime. Detailed derivation of Eq (14) is
shown in the Appendix. The optimal solution is achieved by
minimizing the long-run cost rate,(

α∗, δ∗
)
= arg min

α,δ

κ (α, δ; 0 < α < 1) (15)

IV. CBM POLICY WITH MONOTONE PREVENTIVE
MAINTENANCE THRESHOLDS
In this section, we formulate the maintenance model into
a Markov decision process framework, where the optimal
maintenance policy is proved as a control-limit policy with
monotone preventive maintenance thresholds.

For systems with an accelerated degradation process, it is
natural to replace the system at a smaller degradation level
with the increase of inspection numbers, so as to counteract
the influence of degradation acceleration. This is because the
mean degradation rate increases with time for an accelerated
degradation process, which indicates an increasing degra-
dation increment with the increase of inspection numbers.
Therefore, with an increase of inspection numbers, the sys-
tem should be replaced at a smaller degradation level to
avoid failure. A maintenance policy with varying preventive
replacement thresholds is proposed in this section. We focus
on the control limit policy as it is most commonly used
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in maintenance practice. The control limit policy works in
such a way that the system is preventively replaced whenever
the inspected degradation level exceeds a preventive replace-
ment threshold [21], [51], [52]. Although both corrective
replacement and preventive replacement restore the system
to the as-good-as-new state, they differ in nature as corrective
replacement is often implemented at an unplanned time and
at a more deteriorated state; as a result, additional cost may
be incurred for the potential damages caused by failure. The
cost items include inspection cost ci, preventive replacement
cost cp, corrective replacement cost cr and downtime cost.
Obviously we have ci < cp < cr . While implementing a
periodic inspection to detect the degradation level, the opti-
mal policy can be formulated into aMarkov decision process.
Denote (k,Xk ) as the system state for maintenance decision,
where k = 0, 1, 2 . . . represents the inspection epoch, and
Xk is the observed degradation level at the kth inspection.
Amaintenance policy is defined as a set of actions a : B→ A,
where B and A are the sets of system state before and after
maintenance actions, respectively, a(k,Xk ) is the action taken
in state (k,Xk) ∈ B. a(k,Xk ) = 1 denotes a preventive
replacement, whereas a(k,Xk ) = 0 denotes that the system
is left as it be. The long-run cost rate κ is expressed as

κ = inf
a,δ

E
[

lim
K→∞

1
Kδ

K∑
k=1

ci + cpI {a (k,Xk) = 1}

+ (cc + cdTd ) I {a (k,Xk) = 0,G (k,Xk) = 1}
]

(16)

where G (k,Xk) = 1 denotes the event that the system fails
between the kth and (k + 1)th inspections, starting with the
state (k,Xk ).
Following the procedure of Markov decision process,

the optimality equation can be formulated as

V (k,Xk)

=


min{cp + V (0, 0) ,

W (k,Xk)+ E [V (k + 1,Xk+1)]}, Xk < l
cc + V (0, 0) , Xk ≥ l

(17)

where V (k,Xk ) is the value function starting with the state
(k,Xk ), W (k,Xk) = E [cdTd | (k,Xk)] is the expected
downtime cost incurred during period (kδ, (k + 1) δ), and
E [V (k + 1,Xk+1)] is the expected cost-to-go after the kth
inspection. For notational simplicity, we suppress the depen-
dence of W (k,Xk ) and E [V (k + 1,Xk+1)] on the current
state (k,Xk ). The rationale behind the optimality equation
is that if the system has failed at inspection (Xk ≥ l), then
corrective replacement is carried out. Otherwise, the system
is either preventively replaced or left as it be, depending on
which is more cost-effective. The value function V (k, xk)
denotes the expected cumulative maintenance cost at the kth
inspection epoch given the system state xk . V (0, 0) denotes
the maintenance cost given the system state 0 at the beginning
the of the operation period. In other word, V (0, 0) stands for
the expected maintenance cost when the initial system state

is 0. Note that the inspection cost is considered separately,
which is not incorporated in Eq (17). Actually, with the
inspection interval , the cost rate due to inspection can be
denoted as ci/δ.
In the following, we will investigate the stochastic property

of the degradation process, which paves the way to obtain the
optimal maintenance policy. The insights are summarized in
Lemma 1 and Lemma 2.
Lemma 1: 〈Xk+1 | Xk 〉 is stochastically non-decreasing in

Xk for all k , i.e., 〈Xk+1 | Xk = x1〉 < 〈Xk+1 | Xk = x2〉, for
x1 < x2.
Lemma 2: 〈Xk+1 | Xk 〉 is stochastically non-decreasing in

k for all Xk , i.e.,
〈
Xk1+1

∣∣ Xk1 = x
〉
<
〈
Xk2+1

∣∣ Xk2 = x
〉
, for

k1 < k2.
Detailed proofs of lemmas and the theorems of this paper

are provided in the Appendix. Lemma 1 implies that sys-
tem state tends to be larger with a larger observed degrada-
tion level in a stochastic sense. Lemma 2 indicates that for
an accelerated degradation process, the system is likely to
degrade faster at later stage, with larger degradation incre-
ments. On the basis of Lemma 1 and 2, the following result
in terms of the expected downtime cost W (k,Xk ) can be
obtained.
Lemma 3: The expected downtime cost W (k,Xk ) is non-

decreasing in k and Xk .
Lemma 3 is intuitive. The expected downtime cost is

determined by the conditional failure probability at current
system state. If the system has a larger observed degradation
level, it is likely to fail at an earlier time before the next
inspection. In addition, given the system state at inspection,
the system tends to fail earlier at later stage, due to the accel-
eration of the degradation process. The monotone property of
Lemma 3 directly leads to the following theorem.
Theorem 1: The value function, V (k,Xk ), is a non-

decreasing function in inspection time k and degradation level
Xk .
Theorem 1 establishes the foundation to explore the struc-

tural property of the optimal maintenance policy. In the fol-
lowing, we will show that for an accelerated degradation
process, the optimal maintenance policy is a non-increasing
monotone control limit policy.
Theorem 2: At any inspection epoch k , the optimal main-

tenance policy is to replace the system when the degradation
level exceeds the control limit ζ ∗k . Equivalently, a (k,Xk) = 1
if Xk > ζ ∗k ; otherwise a (k,Xk) = 0. In addition, ζ ∗k is non-
increasing in k .
Theorem 2 shows that for an accelerated degradation pro-

cess, the preventive maintenance threshold is monotonically
decreasing (non-increasing) with the inspection number k ,
and vice versa for a decelerated degradation process. The
monotone non-increasing control limit policy is intuitive.
Since the degradation process accelerates with the elapsed
time, maintenance policy should be more conservative so as
to reduce the failure risk. The optimal maintenance strategy
can be achieved via existing algorithms such as policy iter-
ation or value iteration policy [53]. The structural property
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of the monotone control limit can be employed to reduce
the computational burden for systems with large state space.
In this paper policy iteration is adopted to compute the
value function and determine the optimal maintenance policy.
In addition, the continuous degradation process is discretized
before performing the algorithm.

Now that we are able to obtain the optimal maintenance
decisions for any given inspection interval δ, we proceed to
minimize the long-run cost rate for varying δ. From Eq (17),
the optimal inspection interval δ∗ can be achieved as

δ∗ = arg min
δ

ci
δ
+ E

[
lim
K→∞

1
Kδ

K∑
k=1

cpI {a (k,Xk) = 1}

+ (cc + cdTd ) I {a (k,Xk) = 0,G (k,Xk) = 1}
]

(18)

which turns out to be a one-dimensional optimization prob-
lem. A simple algorithm such as exhaustive search can be
adopted to obtain the δ∗. Denote

H (δ) = Ea

[
lim
K→∞

1
Kδ

K∑
k=1

cpI {a (k,Xk) = 1}

+ (cc + cdTd ) I {a (k,Xk) = 0,G (k,Xk) = 1}
]

If δ approaches infinity, then no maintenance action is imple-
mented, which implies that the long-run cost rate κ

δ→∞
= cd .

On the other hand, if δ approaches 0, then the system turns
out to be under continuous monitoring, where unexpected
failures can always be prevented. The long-run cost rate is
computedwithin a horizon that is long enough to approximate
the infinite horizon. It may not be easy to explicitly determine
the horizon that is long enough. That depends on the param-
eters of the degradation process and maintenance actions.
We believe that a horizon is long enough when enlarging the
horizon has little influence on the maintenance cost.
Remark 1: Generally, we cannot have the monotone

thresholds under geometric inspection. The monotone thresh-
old derives from the monotonicity of the value function
at inspections, which is due to the acceleration or decel-
eration of the degradation process. However, when the
inspection interval is varying, we fail to guarantee a mono-
tone value function. We can have the geometric inspection
and the monotone thresholds under the cases (1) acceler-
ated degradation process and increasing inspection interval;
(2) decelerated degradation process and decreasing inspec-
tion interval. A decelerated process may not be so com-
mon as an accelerated degradation process for real systems.
However, some systems have been reported to present a
decelerated degradation process, e.g., a surfactant-extracted
MCM-41-type mesoporous silica [54].

V. AN ILLUSTRATIVE EXAMPLE
This section illustrates the performance of the proposedmain-
tenance models. The degradation process of the system is

FIGURE 1. cdf of FPT for accelerated and homogeneous degradation
process.

assumed to follow the Wiener process with power-law time-
dependent drift and diffusion coefficient. Let µ(t) = bµtβ

and σ 2(t) = bσ tβ , where β is a known constant, depending
on the operating environment. The parameters are bµ = 0.1,
bσ = 0.1 and β, so that we haveµ(t) = 0.1tβ , σ 2(t) = 0.5tβ ,
the ratio γ = 0.2, the mean of the degradation process
M (t) =

∫ t
0 µ(s)ds = 1/12t1.2 and Z (t) =

∫ t
0 σ

2(s)ds =
5/12t1.2. The initial degradation level is x0 = 0. The system
fails when its degradation level reaches the failure threshold
l = 5. According to Eq (4), the cdf of FPT is given as

FTf (t|x0) = 8

(
1/12t1.2 − 5√

5/12t1.2

)
+ e2 ·8

(
−1/12t1.2 − 5√

5/12t1.2

)
(19)

By differentiating Eq (19), the probability density function
(pdf) of FPT can be obtained as

fTf (t|x0) =
5× 1.23/2
√
π t1.6

exp

[
−

(
−1/12t1.2 + 5

)2
5/6t1.2

]
(20)

To investigate how the failure probability varies with the
operating time, we plot the cdf and pdf of FTP, as is shown
in Fig. 1 and Fig. 2. In addition, the cdf of the homogeneous
degradation process is shown in Fig. 1 for comparison, with
the parametersµ(t) = 0.1 and σ 2(t) = 0.5. It appears that the
system with an accelerated degradation process always has a
higher cdf, which implies that the system with accelerated
degradation is more likely to fail.

A sensitivity analysis is conducted to investigate the impact
of parameters on FTf (t|x0) and fTf (t|x0). We are interested in
the effect of β as it dominates the nonlinearity of the degrada-
tion process. Fig. 3 and Fig.4 show the results of the sensitiv-
ity analysis. Obviously, β has a significant impact on the cdf
and pdf of FPT. When β increases from 0.1 to 1, the time for
FTf to reach 1 decreases from 200 to 20 approximately. The
results indicate that an increased β will significantly accel-
erate the degradation process and reduce system lifetime.
As such, reliability engineers and managers are suggested to
pay more effort to determine an accurate value of β.
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FIGURE 2. pdf of FPT for accelerated and homogeneous degradation
process.

FIGURE 3. Sensitivity analysis of cdf on β.

FIGURE 4. Sensitivity analysis of pdf on β.

A. INSPECTION-REPLACEMENT CBM POLICY
With the replacement model, the system is subject to dis-
crete inspection, either periodically or non-periodically. The
inspection cost is ci = 0.3. Corrective replacement is car-
ried out when the system is found failed at inspection; the
corrective replacement cost is cr = 10. During system
inactivity, the system is charged with downtime cost per unit
time, cd = 5. For the case where periodic inspection is
implemented, the long-run cost rate is plotted in Fig. 5. The
optimal maintenance policy is achieved as κ∗ = 2.3852,
at the inspection interval δ∗ = 1.2.

FIGURE 5. Long-run cost rate with respect to inspection interval.

In terms of the maintenance model with geometric inspec-
tion, Table 1 shows how the long-run cost rate varies with
the base inspection interval δ and the scale parameter α.
The optimal long-run cost rate is obtained as κ∗ = 2.3852
at δ = 6 and α = 0.25. The optimal long-run cost rate
achieved with geometric inspection is smaller that of constant
inspection interval, which implies the advantage of geometric
inspection. On the other hand, as can be observed, the base
inspection is much larger than the constant inspection inter-
val, which indicates that inspection is unnecessary in the early
state of system degradation. Actually, the constant inspection
policy can be viewed as a special case of the geometric
inspection policy, which can be easily achieved by letting
α = 0.25.
It can be found out that under geometric inspection,

the inspection interval diminishes quickly to zero, while
for periodic inspection the inspection interval remains
at α = 1.2. This is due to the nature of accelerated degrada-
tion. At the early stage of the degradation process, the system
will not fail (or fail with an extremely small probability).
Therefore, it is unnecessary to inspect the system at the
early stage. However, with the increase of the operating time,
the system will degrade fast (due to the acceleration effect),
and more frequent inspections are expected to detect the fail-
ure. With the two parameters, α and α, geometric inspection
is able to capture the degradation characteristics at the early
and later stage. A large α indicates that no inspection is
implemented upon the system at the early stage, and a small
α implies that the system is frequently inspected at the later
stage. By contrast, the periodic inspection fails to distinguish
the difference of degradation, since it only has one parameter,
the inspection interval δ, which leads to amoderate inspection
interval (δ = 1.2 in this example) to balance the degradation
process at the early and later stage.

In addition, for illustration purpose, in Fig. 6 and Fig. 7,
we plot the optimal long-run cost rate κ and the optimal scale
parameter α, with respect to different inspection intervals δ.
As shown in Fig. 6, the optimal long-run cost rate exhibits
a unimodal trend with δ. Fig 7 shows that the optimal scale
parameter α is decreasing with the inspection interval, which
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TABLE 1. Long-run cost rate with geometric inspection.

FIGURE 6. Optimal long-run cost rate with different δ.

FIGURE 7. Optimal scale parameter α with different δ.

is due to the fact that the optimal decision is achieved by
balancing the failure probability and the inspection frequency.
A large inspection interval increases the probability of system
failure and the downtime cost, while a small inspection inter-
val increases the inspection cost.

B. MAINTENANCE POLICY WITH MONOTONE
PREVENTIVE MAINTENANCE THRESHOLDS
For the maintenance policy with monotone preventive main-
tenance thresholds, the system is preventively replaced if the
degradation level at inspection exceeds specific thresholds;
the preventive replacement cost is cp = 4. The optimal
long-run cost rate is obtained as κ∗ = 1.21, at the optimal
inspection interval δ∗ = 2. Fig 8 presents the optimal preven-
tive maintenance threshold with system age.

FIGURE 8. Optimal preventive maintenance threshold with system age.

We are interested to find out, compared with constant
preventive replacement threshold, how much improvement
can be achieved with the monotone preventive replacement
thresholds. In Table 2, we show how the long-run cost
rate varies with the inspection interval δ and the preven-
tive replacement threshold ζ . It can be observed that, for
CBM policy with constant preventive replacement threshold,
the optimal maintenance decision is achieved at δ∗ = 1.7 and
ζ ∗ = 1.6, with the long-run cost rate as κ∗ = 1.35.
As can be observed, for CBM with constant preventive

maintenance threshold, under the periodic inspection policy
δ∗ = 1.7, the optimal preventive replacement threshold is a
constant ζ ∗ = 1.6, which is much smaller than the failure
threshold l = 5. Part of the reason is due to the acceleration
of the degradation process. In the presence of accelerated
degradation, the degradation level will increase fast and may
lead to system failure between two inspections. Therefore,
a small preventive maintenance threshold is expected to pre-
vent the system from failure. Another reason is that the cost
of preventive replacement is much small than the corrective
replacement cost and the downtime cost. For a small preven-
tive replacement cost, it is economic beneficial to carry out
preventive replacement frequently to avoid system failure,
which lead to a small preventive maintenance threshold.

From the previous discussions, we can conclude that,
among the three proposed maintenance polies, the preventive
maintenance policy with monotone thresholds is the optimal
one. In addition, the long-run cost rate is significantly reduced
in presence of preventive maintenance, which implies the
necessity of preventive maintenance for a system with a
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TABLE 2. Variation of long-run cost rate with δ and ζ .

non-homogeneous degradation process. However, it is time
consuming to obtain the optimal decision of the CBM pol-
icy with monotone preventive replacement thresholds. In the
case where computational time is the major concern, a CBM
policy with constant preventive replacement thresholds is a
suitable option.

VI. CONCLUSION
In this paper, we investigate the CBM policies for systems
with a non-homogeneous degradation process. In particu-
lar, three maintenance polices are proposed to minimize the
long-run cost rate, among which the preventive maintenance
policy with monotone thresholds provides the optimal deci-
sion. The results indicate that preventive replacement is of
vital importance in reducing maintenance cost and sustaining
system operation. Maintenance engineers and managers are
suggested to paymore attention to the preventive replacement
threshold and the inspection interval.

In future study, we can extend the geometric inspection
policy to a condition-based inspection policy, where the next
inspection time is scheduled by the observed degradation
level and system age. In addition, a more sophisticated degra-
dation process can be addressed, which relaxes the propor-
tional relationship between the mean and the variance of the
degradation process.

APPENDIX
A. DERIVATION OF EQ (14)
The probability that there are i inspections in a renewal cycle
is given by

P (NI = i) = FTf (δi)− FTf (δi−1)

= FTf

(
δ
(
1− αi

)
1− α

)
− FTf

(
δ
(
1− αi−1

)
1− α

)
The expected number of inspections in a renewal cycle can
be obtained as

E [NI ] =
∞∑
i=1

iP (NI = i)

=

∞∑
i=1

i

(
FTf

(
δ
(
1− αi

)
1− α

)
− FTf

(
δ
(
1− αi−1

)
1− α

))

The expected downtime is given by

E [Td ] =
∞∑
i=1

E
[
Td |Tf = t

]
dFTf (t)dt

=

∞∑
i=1

∫ δ
(
1−αi

)
/(1−α)

δ(1−αi−1)/(1−α)

(
δ
(
1− αi

)
1− α

− t

)
dFTf (t)dt

The length of a renewal cycle is determined by the number of
inspections, with the expectation

E [τ ] =
∞∑
i=1

E [τ |NI = i]P (NI = i)

=

∞∑
i=1

δ
(
1− αi

)
1− α(

FTf

(
δ
(
1− αi

)
1− α

)
− FTf

(
δ
(
1− αi−1

)
1− α

))
Integrating the above equations completes the proof.

B. PROOF OF LEMMA 1
The proof is intuitive. Let 1Xk = Xk+1 − Xk . It is obvious
that1Xk ∼ N (1Mk , 1Zk), where1Mk = Mk+1−Mk and
1Zk = Zk+1 − Zk . The probability

P {Xk+1 ≤ θ |Xk = x} = 8
(
θ − x −1Mk

1Zk

)
= 8

(
γ (θ − x)
1Mk

− γ

)
increases for any θ . Thus, for x1 < x2, we have

P {Xk+1 ≤ θ |Xk = x1} > P {Xk+1 ≤ θ |Xk = x2}

According to the definition of stochastic order, it can be
readily obtained that 〈Xk+1 | Xk = x1〉 < 〈Xk+1 | Xk = x2〉,
which completes the proof.

C. PROOF OF LEMMA 2
As we consider the accelerated degradation process, we have
M ′′(t) = µ′(t) > 0, which implies that is a convex function of
time t . Following the Jensenİŕs inequality [55], which states
that

ηf (x1)+ (1− η)f (x2) > f (ηx1 + (1− η)x2)

81808 VOLUME 8, 2020



J. Peng et al.: CBM Policy for Systems With a Non-Homogeneous Degradation Process

for any convex function f (·) and η ∈ (0, 1), we have

(Mk+2 +Mk) /2 > Mk+1

which implies that

Mk+2 −Mk+1 > Mk+1 −Mk ⇔ 1Mk+1 −1Mk > 0

It can be concluded that 1Mk increases with the inspection
epoch k . Similarly we can conclude that 1Zk increases with
the inspection epoch k . Recall that

P {Xk+1 ≤ θ |Xk = x} = P {Xk+1 = Xk ≤ θ − x}

= 8
(
θ−x−1Mk+1√

1Zk+1

)
Denote

y =
θ − x −1Mk+1
√
1Zk+1

Since 8(y) increases with y and y decreases with 1Mk and
1Zk , it can be concluded that for any k1 < k2,

P
{
Xk1+1 ≤ θ |Xk1 = x

}
> P

{
Xk2+1 ≤ θ |Xk2 = x

}
leading to 〈

Xk1+1
∣∣ Xk1 = x

〉
<
〈
Xk2+1

∣∣ Xk2 = x
〉

which concludes the proof.

D. PROOF OF LEMMA 3
Given that the system fails after kth inspection,
i.e., Tf ∈ (kδ, (k + 1) δ), the expected downtime cost
W (k,Xk ) can be denoted asW (k,Xk) = cdE

[
(k + 1) δ − Tf

]
.

Obviously, W (k,Xk ) deceases with the failure time Tf . Con-
ditioning on the state (k,Xk ), cdf of the failure time Tf can be
expressed by

P
(
Tf < t| (k,Xk)

)
= P (Xt > l| (k,Xk))

Following Lemma 1 and Lemma 2, we can conclude that Xt
is stochastically non-decreasing in k and Xk , for t > kδ. Then
we have

P
(
Tf < t|k1,Xk

)
< P

(
Tf < t|k2,Xk

)
for k1 < k2

and

P
(
Tf < t|k,Xk1

)
< P

(
Tf < t|k,Xk2

)
for Xk1 < Xk2

which implies that Tf is stochastically non-increasing in in
k and Xk . As W (k,Xk ) is decreasing with Tf , it can be
concluded that is non-decreasing in k and Xk .

E. PROOF OF THEOREM 1
We will prove this theorem via mathematical induction. Let
V n(k,Xk ) be the value function at the nth iteration of value
iteration algorithm. We set V 0(k,Xk ) = 0 at n = 0,
which obviously satisfies the property that V 0(k,Xk ) is non-
decreasing in k and Xk . Suppose that at the nth iteration, this
property holds, i.e., V n(k,Xk ) is a non-decreasing function in

k and Xk . According to the optimality equation of Eq (20),
we have

V n+1 (k,Xk)

=


min {cp + V n (0, 0) ,
W (k,Xk)+ E [V n (k + 1,Xk+1)] }, Xk < l
cc + V n (0, 0) , Xk ≥ l

Since V n(k,Xk ) is non-decreasing function in k and
Xk , and 〈Xk+1 | Xk 〉 is stochastically non-decreasing in
k and Xk , we can conclude that E [V n (k + 1,Xk+1)] is
non-decreasing in k and Xk . Since the right-hand terms of
Eq (21) are all non-decreasing in k and Xk , we can conclude
that V n+1 (k,Xk) is a non-decreasing function in k and Xk ,
which completes the proof.

F. PROOF OF THEOREM 2
If the system has not failed at the kth inspection, Xk < l,
the optimal maintenance decision can be expressed by

a (k,Xk) =


1, cp + V (0, 0) < W (k,Xk)

+E [V (k + 1,Xk+1)]
0, Otherwise

Since the term W (k,Xk) + E [V (k + 1,Xk+1)] is
non-decreasing in k and Xk (from Theorem 1), if there exists
a ζ ∗k such that

cp + V (0, 0) < W
(
k, ζ ∗k

)
+ E

[
V
(
k + 1,Xk+1|

(
k, ζ ∗k

))]
then the inequality always holds for any Xk > ζ ∗k , which
establishes the control limit policy, that the optimal main-
tenance decision is replacement when the degradation level
exceeds the control limit ζ ∗k . Similarly, if there exists j such
that

cp + V (0, 0) < W
(
j,Xj

)
+ E

[
V
(
j+ 1,Xj+1

)]
then the inequality holds for any k > j, as W (k,Xk) +
E [V (k + 1,Xk+1)] is non-decreasing in k . Hence, we should
have ζ ∗k < ζ ∗j , for any k > j, which concludes that ζ ∗k is
non-increasing in k .
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