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ABSTRACT Understanding the user’s intention is an essential task for the spoken language understand-
ing (SLU) module in the dialogue system, which further illustrates vital information for managing and
generating future action and response. In this paper, we propose a triplet training framework based on the
multiclass classification approach to conduct the training for the intention detection task. Precisely, we utilize
a Siamese neural network architecture with metric learning to construct a robust and discriminative utterance
feature embedding model. We modified the RMCNN model and fine-tuned BERT model as Siamese
encoders to train utterance triplets from different semantic aspects. The triplet loss can effectively distinguish
the details of two input data by learning a mapping from sequence utterances to a compact Euclidean
space. After generating the mapping, the intention detection task can be easily implemented using standard
techniques with pre-trained embeddings as feature vectors. Besides, we use the fusion strategy to enhance
utterance feature representation in the downstream of intention detection task. We conduct experiments on
several benchmark datasets of intention detection task: Snips dataset, ATIS dataset, Facebook multilingual
task-oriented datasets, Daily Dialogue dataset, and MRDA dataset. The results illustrate that the proposed
method can effectively improve the recognition performance of these datasets and achieves new state-of-the-
art results on single-turn task-oriented datasets (Snips dataset, Facebook dataset), and a multi-turn dataset
(Daily Dialogue dataset).

INDEX TERMS Intention detection, BERT, RMCNN, triplet loss, fusion strategy.

I. INTRODUCTION
The dialogue systems are being integrated into various
devices and allow users to speak to the system directly to
perform the specific task efficiently, such as Google Home [1]
and Amazon Echo [2]. The spoken language understand-
ing (SLU) module is an indispensable component in the dia-
logue system. A typical SLUmodule is designed to transform
the spoken language into a specific semantic template that
human language can be well-understood by the dialogue sys-
tem. After that, the dialogue management module can facil-
itate future actions according to detection results in the SLU
module. The role of the intention detection task in SLU is to
discriminate the implicit intention by recognizing the intents
of received utterances. The intent tag is a semantic label
attached with each utterance in dialogue, which represents
the user’s intention and concise utterance interpretation [3].
Therefore, intention detection task is crucial to enhance the
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spoken language understanding performance in the dialogue
system.

In our research, we study spoken language as described in
written format. According to the real situation, it is challeng-
ing to study the spoken language because of some attributes
of natural language. Firstly, the sparsity of semantic informa-
tion and obscure slang in spoken language make the model
difficult to interpret thoroughly [4]. For instance, the aver-
age length of some utterances is no more than 20 words.
Secondly, the same underlying utterances have different tags
or multiple tags, which give rise to ambiguity in classifying
intention labels. We use the utterance ‘Yeah’ as an example
showed in Table 1 that the ‘Yeah’ has three tags, which are
‘Backchannel,’ ‘Agree,’ and ‘Yes/No Answer,’ respectively.
The prior works of multi-class classification of intention
detection exploit Softmax to train an encoder on labeled train-
ing data. The learned features are optimized under the super-
vision of Softmax, which cannot be sufficiently distinguished
because it does not consider the intra-class compactness of
features. The categories prediction was only focusing on
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TABLE 1. A snippet of a dialogue sample. Each utterance corresponding
to an intent label and a speaker label.

finding a decision boundary, which results in poor generaliza-
tion capabilities. Inspired by these observations, we assume
that the intention recognition performance can benefit from
constructing the robust and discriminative feature representa-
tions of the short-length utterances. To this end, we improve
the conventional method by proposing a novel triplet training
framework based on multi-class classification learning.

Pre-trained language models have recently proved to be
very useful and efficient in learning general language rep-
resentations. For instance, the BERT model is conceptually
simple and empirically powerful in enormous natural lan-
guage processing tasks [5]. Inspired by the pre-trained lan-
guage model learning approach and transfer learning tech-
niques, we refer to the concept of unsupervised pre-training
method with triplet loss to learn a structured space of inter-
pretable utterance representations.

Specifically, we design a two-stage process for intent
classification, which includes feature embedding learning
and intention prediction. In the first stage, we develop the
RMCNN model and BERT model as Siamese encoder with
metric learning to obtain robust and discriminative fea-
ture embeddings by minimizing the intra-class differences.
In the second stage, we fuse the features from pre-trained
feature embedding models and add additional relevant infor-
mation as completed feature sets to predict intention labels in
the downstream task.

We summarize the contributions of this paper as follows:

(1) The proposed triplet training framework learns dis-
criminative utterance feature by using the same
weights on different inputs. The triplet loss function
infers a non-linear mapping in the resulting latent
space, and the inter-class sample distances are max-
imized based on a certain margin [6].

(2) We utilize CNN, RMCNN (Bi-GRU-MCNN), and
BERT as Siamese encoders to train the utterance
triplets. Precisely, the RMCNN model can gener-
ate structural information, in which the RNN model
can extract the global context, and a wide range of
kernels of CNN can capture the fine-grained local
components of utterance. Besides, we facilitate bidi-
rectional encoder representation from transformers

on enormous unlabeled data to obtain powerful
context-dependent utterance features.

(3) The triplet selection turns out to be crucial for model
convergency. By considering the strong correlations
between dialogue context, we propose a sequential
sampling strategy to keep the intention transition traits
into the triplet sampling process.

(4) In the downstream task, we predict the probability
distribution of each intent label based on multi-class
classification learning. We obtain utterance features
by fusing the features from different pre-trained fea-
ture embedding models. Besides, we extent features
with relevant information as external knowledge, such
as speaker information.

The rest of the paper is organized as follows: the
related research methods are introduced in Section II;
Section III introduces the model framework and method-
ology; Section IV conducts experiments on benchmark
dataset; Section V analysis the result from different aspects;
Section VI concludes the whole article and outlines the future
work.

II. RELATED WORK
A. INTENTION DETECTION TASK
The learning methods for the intention detection task are
divided into two categories: multi-class classification and
sequence labeling. The multi-class classification models are
SVM [7], Naive Bayes [8], and Maximum entropy [9] in
experiments. The sequence labeling methods are HMM [7]
and SVM-HMM [10]. Plenty of features had been exploited
in traditional models, including lexical, syntactic features,
prosodic cues, and dialogue structure. For example, the key-
words [11] and vocabulary pairs as lexical features [12] can
highlight the particularity of a sentence. Besides, the syntac-
tic features like utterance length [10] and word order [13]
had shown its utility for identifying intention tags. However,
the traditional approaches for intention detection relied on
hand-crafted features that were time-consuming and labor-
intensive.

The emergence of deep learningmethods effectively allevi-
ated the constraints of the traditional approaches and achieved
state-of-the-art results from natural language processing to
computer vision [14]. For example, Khanpour et al. [15] uti-
lized the pre-trained word embedding matrix and a modified
RNNmodel to represent the utterance features. Kim [16] used
CNN as an utterance encoder with pre-trained embedding that
performed well on this task. Lee and Dernoncourt [17] got
the cutting edge by investigating standard RNN and CNN
that incorporated preceding short texts as context to predict
dialogue act tags. Besides, some researches utilized the joint
learning approach to conduct the intention detection and slot
filling [48], [49]. In addition, some researchers considered the
contextual structure of the multi-turn dialogue, so the inten-
tion detection task also can be regarded as a sequence labeling
task. Kumar et al. [18] utilized hierarchical Bi-LSTM to
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FIGURE 1. The whole intention detection framework with pre-trained feature embedding models (RMCNN, BERT).

capture utterance granularity and inherent properties from
multi-levels of conversation and predicted sequential dia-
logue act with the CRF model. Tu et al. [19] build a hybrid
neural network-based ensemble model for Chinese hierar-
chy dialogue. Notably, this paper incorporated the speaker
changing as a feature to illustrate utterance peculiarity. Fur-
thermore, some other features were useful to generate more
discriminative predictions in detecting user’s intention. For
examples, the location of the comment in web forum [20],
speaking preference of users [20], dialogue topic context of
same user [21], emotion transition trait of user’s blog[22],
the rating and comments of products in shopping website
were treated as the weak label to learn the sentence repre-
sentation [34].

B. LANGUAGE REPRESENTATION MODEL
Recently, the language representationmodel improved signif-
icantly in manyNLP tasks, such as textual entailment, seman-
tic similarity, reading comprehension, and question answer-
ing [23]. The language representation models can provide
powerful context-dependent representations by pre-training
on a large scale unlabeled data, such as Contextualized
Word Representations (ELMo) [24], Generative Pre-trained
Transformer (GPT) [25] and Bidirectional Encoder Repre-
sentations from Transformers (BERT) [5]. Besides, these
models can be easily applied to different downstream tasks
with minimum parameters. Therefore, we exploit the concept
of pre-trained language model representation to construct a
novel utterance feature embedding model in this paper.

C. METRIC LEARNING
Utilizing the deep neural network with a distance metric to
learn the feature embedding had been successfully applied
to many tasks, such as face recognition [26], speech recog-
nition [27], [28] and speaker identification. For example,
FaceNet [26] of Google utilized a random semi-head triplet
mining approach to make up facial picture triplets, which
obtained excellent performance. He et al. [29] achieved out-
standing performance on 3D object retrieval by proposing
triplet loss and center loss. Huang et al. [30] applied triplet
loss in training to automatically recognize emotion state in
spoken language. To deal with the spoken language, Cam-
bria [31] presented a system that directly learned mapping
from speech features to a compact fixed-length speaker dis-
criminative embedding. The triplet loss function focuses on
fine-grained identification and adds the measurement of the
latent state, which can help model distinguish the details.

D. MULTI-SOURCE FUSION
Generally, the exceptional performance of the classifica-
tion model depended on sufficiently large training cor-
pora to a great extent. To comprehensively understand sen-
tences, the fusion strategy can aggregate multiple sources to
enriching the features and boost learning performance [31].
Majumder et al. [32] fused the multimodal resources like
audio, video, and text for sentiment analysis. Tay et al. [33]
generated sentence representations by using a gating mech-
anism to combine the sentence token features and sentiment
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lexicon features. Sun et al. [35] detected emotional elements
by using a mixed model to extract sentimental objects and
their tendencies from product reviews. Specifically, themulti-
stream architecture is prevalent in data fusion. For exam-
ple, Simonyan and Zisserman [36] designed a model with
two-stream ConvNet architecture to illustrate spatial feature
and temporal features, which can achieve significant perfor-
mance under the condition of limited training data by the
two-stream model. Inspired by these experiments, we use
the fusion strategy in the downstream task to enhance the
utterance feature representation.

III. PROPOSED METHOD
Before describing the proposed method in detail, we illus-
trate the mathematical notation for the intention detection
task. In this experiment, we deal with the intention detec-
tion task based on multi-class classification learning. Sup-
pose, we have the number of n utterance sequences X =
{x1, x2, . . . ,xn} with corresponding the sequences of intents
label Y = {y1, y2, . . . ,yn} . Each utterance xi of dialogue is
composed of a sequence of words xi = {w1,w2, . . . ,wj}. The
purpose of this paper is that given an unseen utterance xi,
we construct a model to learn the valid feature representation
better and accurately predict the corresponding intent label
yi. Besides, we evaluate the proposed model on single-turn
task-oriented dialogue and multi-turn conversation. It’s worth
noting that the multi-turn conversation contains the speaker’s
role information, so we supplement the role information as a
feature in the downstream task. Each utterance correspond
to a speaker tag C = {c1, c2, . . . , cn}.

A. THE WHOLE FRAMEWORK
This section mainly introduces the whole framework of the
proposed model. The entire structure consists of three parts,
which are triplet sample selection, triplet training section,
and the downstream task of intention classification. Firstly,
the system needs a sampling strategy to generate valid triplet
data (xai , x

p
i , x

n
i ) as training objects. One triplet sample con-

sists of an anchor sample xai , a positive sample xpi , and a
negative sample xni . Then, we input all the triplet samples into
the Siamese encoder and train the model with a triplet loss
function. The triplet training model uses the same weights
on different inputs to compute variables and accomplish a
better separation between two positive related samples of the
same class (xai , x

p
i ) and one negative sample

(
xni
)
. To avoid

meaningless calculation in the training process, we need
to verify whether triplet samples are valid by setting up a
particular margin parameter to observe Euclidean distance
between embedding triplets in the test section. After the train-
ing, we can obtain a robust pre-trained feature embedding
features, which can better reflect the specific characteristics
of utterance. Secondly, given the well-defined feature embed-
dingmodel with parameters, we exploit it mapping utterances
in the downstream task. The critical components for triplet
training are the Siamese model selection and triplet data
composition. Therefore, the related information of essential

components and modifications are illustrated in the following
subsections.

B. THE TRIPLET SIAMESE NEURAL NETWORK
1) TRIPLET LOSS TRAINING
Triplet loss function is calculated on the triplet data(
xai , x

p
i , x

n
i

)
, where the

(
xai , x

p
i

)
are extracted from the same

intention category. We obtain the negative sample
(
xni
)
in

different intention category from the
(
xai , x

p
i

)
. We exploit

the feature embedding model fθ (x) ∈ Rd to map utterance
triplets to d-dimension Euclidean space, and the distances are
measured in resulting latent space.

Dap = ‖ fθ
(
xai
)
− fθ

(
xpi
)
‖
2
2 (1)

Dan = ‖ fθ
(
xai
)
− fθ

(
xni
)
‖
2
2 (2)

∀
(
fθ
(
xai
)
, fθ

(
xpi
)
, fθ

(
xni
))
∈ T (3)

The fθ (·) refers to the Siamese encoder. The
fθ
(
xai
)
, fθ

(
xpi
)
, fθ

(
xni
)

are outputs from the Siamese
encoder. T is the set of all possible triplets in the training set.
The triplet loss optimizes model by minimizing the distance
between fθ

(
xai
)
and fθ

(
xpi
)
andmaximizing distance between

fθ
(
xai
)
and fθ

(
xni
)
by at least amargin parameterα ∈ R+. The

triplet loss Ltriplet is illustrated as follow:

N∑
i

[
‖ fθ

(
xai
)
− fθ

(
xpi
)
‖
2
2 − ‖ fθ

(
xai
)
− fθ

(
xni
)
‖
2
2 + α

]
+

(4)

where N stands for the number of triplets in the training
set, and i denotes the i-th triplet sample. During the triplet
training, generating all possible triplets can easily be satisfied
but results in slower convergence. Therefore, it is vital to
select valid triplet samples to improve training efficiency. The
following section is about triplet sampling strategies.

2) TRIPLET SAMPLING STRATEGY
It is crucial to comply with the triplet constraint to ensure fast
convergence. The constraint of triplet selection is illustrated
as follow:

‖ fθ
(
xai
)
− fθ

(
xpi
)
‖
2
2 + α < ‖ fθ

(
xai
)
− fθ

(
xni
)
‖
2
2 (5)

Based on the constraint, we adopt two sampling strategies
to extract triplets, which are random sampling strategy and
sequential sampling strategy. The random sampling strategy
randomly composes triplets as a training object without order.
Initially, we design a generator to random sampling two
different intention categories from all intention candidates
N , which generates a total of N (N − 1)/2 anchor-positive
utterance pairs. For each selected anchor-positive utterance
pairs, we randomly choose one of it as a negative label and
another one as a positive label. Then, we randomly select an
utterance from the negative label and select two utterances
from the selected positive label. We combine three selected
utterances as one triplet data for training. After each epoch,
we repeat sampling the triplets based on batch size.
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Different from the random sampling strategy, we can find
that there are specific correlations among two adjacent utter-
ances and adjacent intents in the multi-turn dialogue dataset.
For example, the ‘Question’ tag followed by the ‘Affirmative’
tag is frequently appearing together, and the ‘Request’ tag
always connects with the ‘Repeat Response’ tag. However,
the disadvantage of the random sampling strategy is that it
composes triplets without order, so it cannot take the con-
text into triplet selection. Therefore, the encoder might learn
useless context information from random order utterances.
From this point of view, we keep the intention transition
traits into triplet selection. To this end, we keep the original
intent sequence order as anchor samples. Then we randomly
select other utterances the same as the intention category
of anchor samples as positive samples. We form negative
utterance sequences with intention category that are differ-
ent from the anchor utterances’ intention category. Then,
we input the triplets into Siamese encoders to train the feature
embedding models. Through the sequential sampling strat-
egy, the Siamese encoder can learn the valid context infor-
mation in training. The following sections are to illustrate the
Siamese neural network.

3) SIAMESE RMCNN NEURAL NETWORK
We modify the RMCNN model as a Siamese encoder to
train the utterance triplets and generate a fixed-dimension
representation. Firstly, we have the number of n utterances
X = {x1, x2, . . . ,xn} in the dialogue. Each utterance contains
variable-length word tokens xi =

{
w1,w2, . . . ,wj

}
. After

triplet sampling, we obtain utterance triplet samples. For
each utterance sample in triplet, we embed word tokens into
vector E = {e1, e2, . . . ,en} through a trainable embedding
matrix pre-trained on enormous unlabeled data. The bidi-
rectional GRU model encodes sequence token embedding to
produce sequences of corresponding hidden vectors H =
h1, h2, . . . , hi, which extracts the context information by
concatenating the hidden states from forward and backward
directions. The operation of bidirectional GRU is formulated
as follows:

h→t = fGRU (ht+1, et) (6)

h←t = fGRU (ht−1, et) (7)

ht =
[
h→t , h

←
t
]

(8)

in which ht maintains the sequence information of the utter-
ance. Then, we feed the output from Bi-GRU layer into the
CNN layer. The CNN model can capture fine-grained local
features inside a multi-dimensional filed. The convolutional
operation includes a filter Wc ∈ R, which is utilized to a
window of l continuousword vectors to produce a new feature
map. A scalar feature ci is generated from a window of words
hi:i+l by:

ci = f (Wc ◦ hi:i+l + bc) (9)

where the symbol ◦ indicates the dot product operation,
l refers to the width of the convolutional kernel, f is a

non-linear function (ReLU), Wc is the convolutional matrix,
and bc is a bias term. Each kernel corresponds to an utterance
detector to extract specific n-gram patterns at various granu-
larities. The kernel applied to each possible region matrix to
produce a valuable feature map:

C = [c1, c2, . . . , cm] (10)

in which m is the number of the channels. The pooling layer
can extract local dependencies in different regions to preserve
the most useful information. Then, we apply the pooling
layers to capture the most valuable feature from each feature
map, which includes the global maximum pooling layer and
global average pooling layer. The outputs from two pooling
layers are concatenated together as the local phrase feature of
dialogue:

ĉ = [gmp {ci} ,gap {ci}] (11)

where the ‘gmp’ indicates the global maximum pooling
layer and the ‘gap’ indicates the global average pooling
layer. Then, the outputs of the pooling layers with differ-
ent widths are concatenated. Finally, three fully connected
layers with ‘tanh’ activation are stacked together, and an
L2-normalization layer is followed behind to form final utter-
ance embedding. The Siamese RMCNN neural network opti-
mized by minimizing the triplet loss and Adam optimizer is
used during training.

4) SIAMESE BERT NEURAL NETWORK
Here is the process that we train utterance triplet samples
with the Siamese BERT model. In this section, we fine-tune
the pre-trained BERT model as Siamese encoder to train
utterance triplet samples. Given sequence utterances X =
{x1, x2, . . . ,xn}, and we sample valid triplets for training. For
each utterance sample in a triplet, BERT model construct
token embeddings of this utterance E = {e1, e2, . . . ,en}
by concatenating the word piece embeddings, the positional
embeddings, and the segment embeddings. Then, the token
vectors are feed into encoder block and are encoded by stack
layers. The encoder block includes multi-attention sublayers
and the position-wise fully connected sublayers. The input
data of the encoder block is a sequence hidden states H =
{h1, h2, . . . , hi} , so the output of encoder S = {s1, s2, . . . , si}
is illustrated as follows:

a(k)ij = Softmax

((
1
√
d s

(
W (k)
Q hi

)T (
W (k)
K hj

)))
(12)

s(k)i =
∑N

ν=1
a(k)i

(
w(k)v hj̇

)
(13)

si = WO

[
s(1)i , s(2)i , . . . , s(k)i

]
(14)

in which k is the number of attention heads, h is the dimen-
sion of hidden states, and ds is the parameter of scale dot-
production. The WQ,WK ,Wv and WO indicate the model
parameters. The output of the residual connection and the nor-
malization module S̃ = {s̃1, s̃2, . . . ,s̃N} are denoted below:

S̃ = LayerNorm(H + S) (15)
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The output of the position-wise fully connected sublayer
O = {o1, o2, . . . , oN } is calculated as follows:

oi = W2ReLU (W1s̃i + b1)+ b2 (16)

in which W1,W2, b1 and b2 are the model parameters. The
residual connection layer and the normalization layer are fol-
lowed the encoder block. The final contextual representation
Õ = {õ1, õ2, . . . ,õN} is illustrated below.

Õ = LayerNorm(O+ S̃) (17)

We feed the final contextual representation into three
fully connected layers with ‘tanh’ activation and an
L2-normalization layer to get final utterance token embed-
ding. The Siamese BERT encoder is optimized by triplet loss
function by end-to-end propagation, and Adam optimizer is
utilized during training.

C. FEATURE FUSION IN DOWNSTREAM TASK
1) FEATURE-BASED STRATEGY
Fine-tuning the pre-trained language model can save expen-
sive pre-computing. The pre-trained feature representation
can be easily testified on many experiments with cheaper
models on top of this representation [37]. Therefore, there
is no need to train complex afterward. In this paper, we ver-
ify our pre-trained feature embedding model by utiliz-
ing the feature-based strategy for the downstream task.
Feature-based strategy collects utterance features from the
well-defined pre-trained language model to different down-
stream tasks.

The intention detection task in our experiment is based on
the multi-class classification learning method, which can be
seen in Fig. 2. The pre-trained feature embedding models
(fRMCNN , fBERT ) can form two robust utterance representa-
tions from different semantic aspects, which are denoted
below.

URMCNN = fRMCNN (xi) (18)

UBERT = fBERT (xi) (19)

Then, we feed the utterance feature UBERT and URMCNN
into the fully-connect layers, respectively. We use the Soft-
max classifier to predict the probability distribution of inten-
tion labels, which is defined as follows:

Q = tanh (WUU + bU ) (20)

ŷ = Softmax
(
WQQ+bQ

)
(21)

where WU , bU ,WQ, and bQ are model parameters. We take
cross-entropy as the loss function and Adam as an optimizer
during training. The end-to-end backpropagation is employed
in the training process.

2) MULTI-FEATURE FUSION STRATEGY
The multi-source fusion strategy can effectively improve the
performance of natural language learning by various rele-
vant resources [38]. Inspired by this conception, we employ
a fusion strategy to accumulate semantic information of

FIGURE 2. The feature-based strategy of downstream task.

FIGURE 3. The model of fusion strategy for downstream task.

utterance from several aspects, such as utterance granular-
ity, dialogue structure, and speaker information, which can
be seen in Fig. 3. The same sentence may express dif-
ferent aspects concerning different aspects. To be specific,
the RMCNN model can capture the global structural fea-
tures of the input sentence. The BERT model remedies the
limitation of the insufficient training corpora and provides
more external knowledge about common utterance words.
Otherwise, the participants have different roles and speaking
preferences in various domains in multi-turn conversation,
which also can be regarded as a distinctive feature to enhance
utterance differences. We indicate speaker information in
the model as ‘C ′. Specifically, we use numerical values to
represent different speakers.

We unified a two-stream fusion model to integrate the
utterance features from different models to show its different
aspects. Firstly, we set two pre-trained feature embedding
models as two streams to encode utterance from different
aspects. We feed the sequence word tokens into the models
independently and obtain the optimal parameters of each
model. In this section, we compose the utterance encoder
using two models with optimal settings. After the optimal
parameters are trained in each stream, the outputs from each
stream are concatenated together and then input to the classi-
fier. Then, we extend the utterance representation to Uall =[
URMCNN ,UBERT ,USpeaker

]
. Precisely,URMCNN refers to the

structural feature learned from the Siamese RMCNN model,
UBERT refers to the fine-grained contextual feature learned
from the BERT triplet model and theUSpeaker as an additional
feature refers to the speaker’s role aligned with each utter-
ance. Then, all the features are concatenated together to be a
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comprehensive utterance representation. The Softmax func-
tion is connected to the encoders to calculate the probability
distribution, and the output is P = {p1, p2, . . . ,pn}, in which
n is the number of the intention labels, and pi is the predicted
probability that utterance belongs to the corresponding intent
tag i, and the final predicted tag: ŷ = argmax (P). The model
optimization is to minimize the cross-entropy loss, and Adam
optimizer is used during training.

IV. EXPERIMENT
A. DATASETS
We evaluate the proposed model on several benchmark
datasets. We find that the evaluation object of intention detec-
tion task includes not only task-oriented dialogues but also
multi-turn dialogues. In the previous studies [6], the intention
detection task of multi-turn conversation is regarded as a
multi-class classification. Therefore, we transfer the multi-
turn conversation from the nested dialogue structure into a flat
structure, so that the utterance triplets can be properly sam-
pled. Besides, we also performed a series of pre-processing
steps by utilizing Stanford’s CoreNLP tool [39] to avoid
text noise, such as utterance tokenization and word
lemmatization.

We introduce three single-turn task-oriented dialogue
dataset and two multi-turn dialogue datasets, which are listed
below:

The SNIPS dataset [40] is collected from the Snips per-
sonal voice assistant and contains 7 intent types. The number
of samples for each intention label is approximately the same.

The ATIS dataset [41] is the audio recording of making
the flight reservation. The training set includes utterances,
and the test set contains 893 utterances. We follow the previ-
ous experiment and set the validation set with 500 utterances
from the training set. There are 21 intention labels in the
dataset.

The Facebook’s multilingual dataset [42] contains anno-
tated utterances with the English version, Spanish version,
and the Thai version. It covers the weather, alarm, and
reminder domains in English, Spanish, and Thai language.
There are 12 intention labels in the training set.

The Daily Dialogue dataset[43] is a high-quality multi-
turn dialogue dataset, which mainly records dialogue in terms
of people’s everyday life. Each utterance of the Daily Dia-
logue dataset is manually labeled with the topic tag, intention
tag, and emotion tag.

The ICSI Meeting Recording Dialogue Act (MRDA)
dataset [44] contains 72 hours of multi-party meeting speech
dialogue from 75 naturally happened meetings. The original
tag sets of MRDA included 11 general tags and 39 specific
tags. Based on the previous experiments, we utilize the most
widely used class-map to cluster all tags into 5 groups of
intention categories.

B. HYPER-PARAMETERS TUNING
In this section, we illustrate the related parameters in model
training, which is associated with the triplet training process

and downstream task. All the work is implemented under the
TensorFlow framework.

In terms of the triplet training with the Siamese
RMCNN model, we pad each utterance to the maximum
length for training. We initialized word vectors with the
300-dimensional word2vec word vectors. We set the dropout
as 0.3 after the embedding layer to avoid over-fitting. The
hidden size of Bi-GRU is 512 in one direction. We use
multiple kernel size (1, 2, 3) in the CNN layer to encode
different utterance granularity, and the filter size is 256. The
three fully-connect layers and an L2-normalization layer are
followed behind. We set the Adam optimizer with a learning
rate of 2e-4 and a weight decay of 1e-6.
In terms of the Siamese BERT model, we fine-tuned

the BERT model with metric learning to obtain utterance
features. The pre-trained BERT encoder is trained on the
unlabeled data, which are Books corpus (800M words) and
English Wikipedia (2500M words). The maximum length
of an utterance is 50. The BERT-base model has 12-layers,
768- hidden states, and 12-heads. The hidden dim of the token
embedding is 50. We set the Adam optimizer with a learning
rate of 3e-5 and a weight decay of 1e-6. The other parameters
we follow the original BERT paper [5].

Furthermore, we utilize the feature-based strategy in down-
stream intention detection tasks. The pre-trained RMCNN
and BERT feature embedding model is employed as different
encoders in single-stream, respectively. In this section, we set
the hidden size as 64, Adam optimizer is used with learning
rate is 2e-4, and the batch size is 256.

C. BASELINES
We compare the proposed model with several state-of-the-
art baseline models. For the single-turn task-oriented dataset,
it includes the following:

• Attention-BiRNN [45] utilizes the encoder and decoder
model for joint learning the intention detection task
and slot-filling task. An attention weighted sum of all
encoded hidden states is used to recognize intention.

• Slot-Gated Attention [46] uses slot-gated LSTM to
learn context vector, which improves the performance
of intention classification.

• Capsule-NLU [47] accomplishes the intention detec-
tion by exploiting the hierarchical semantic information.
They propose a re-routing schema to synergize further
the slot filling performance using the inferred intention
representation.

• Joint BERT [48] uses joint intention classification and
slot filling based on the pre-trained BERT model.

• BERT-SLU [49] provides a novel encoder-decoder
framework based on a multi-class classification method
to joint learn intention detection and slot-filling. The
model uses BERT as an encoder to train utterance and
then design a decoder to detect intention label.

• Cross-Lingual transfer [42] uses a novel method of using
a multilingual machine translation encoder as contextual
word representations to predict intents.
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TABLE 2. The Dataset overviews. The number of the classes of each corpus is tag Intention, the vocabulary size of each corpus is tag Vocabulary. For the
train data, validation data, and test data, we indicate the number of utterances in the table.

TABLE 3. The recognition results on the Snips, ATIS and Facebook (EN)
datasets. The evaluation criteria in this table is accuracy value of test
dataset.

According to previous studies, there are several multi-
turn dialogue datasets contain the intention detection task.
In particular, we also verify the model on the multi-turn dia-
logue dataset to evaluate the model generalization capability.
Therefore, we compare our model with the existing baselines,
which includes:
• SVM [8] is a simple baseline model, which applies the
text feature and multi-classification algorithm on the
dialogue act classification.

• LSTM-SoftMax [15] method applies a deep LSTM
model to classify dialogue acts via the SoftMax classi-
fier.

• CNN [17] method utilizes the CNNmodel to encode the
utterance with the Softmax classifier. The encoder con-
siders two preceding utterances as context information
in the experiment.

• Bi-LSTM-CRF [18] method constructs a hierarchical
bidirectional LSTM as an encoder to learn the conver-
sation representation and the conditional random field
as the top layer to predict intention label.

• CRF-ASN [49] incorporates hierarchical semantic infer-
ence with memory mechanism on utterance modeling at

multiple levels and uses a structured attention network
on the linear-chain CRF to dynamically separate the
utterance into cliques.

• Dual-Attention [50] utilizes a novel dual task-specific
attention mechanism to capture interaction information
between intents and conversation topics for utterances.

• SelfAttn-CRF [51] proposes a hierarchical deep neural
network to model different levels of utterance and dia-
logue act and use CRF to predict dialogue acts.

V. DISCUSSION
A. THE RESULT ANALYSIS
Table 3 and Table 4 show the intention detection accuracy on
different datasets. Precisely, the prefix RAN means random
triplet sampling strategy, and SEQ refers to the sequential
triplet sampling strategy. The RAN-BERT means the random
sampling strategy with the BERT model as Siamese encoder,
and the SEQ-BERT means the sequential sampling strategy
with the BERT model as a Siamese encoder. The rest model
name is the same meaning.

As we can see the results shown in Table 3 and Table 4,
the proposed model significantly outperforms baseline mod-
els and achieve state-of-the-art performance on Snips, Face-
book (EN), and DYDA datasets. Although the proposed
model does not obtain the-state-of-the-art results on ATIS and
MRDAdatasets, it still can show that the feature learning abil-
ity of the proposed model is useful. For the task-oriented dia-
logue dataset, the proposed feature learning model achieves
the recognition accuracy of 99.29% (from 98.96%) on the
Snips dataset, 99.22% (from 99.11%) on Facebook(EN)
dataset. The fusion features also improve the performance
slightly that obtain 99.31% on the Snips dataset, 99.56%
on the ATIS dataset, 99.28% on Facebook(EN) dataset. For
the multi-turn dialogue dataset, the model SEQ-CNN, SEQ-
RCNN, and SEQ-BERT of the DYDA dataset improve the
accuracy over the-state-of-the-art model by 0.6%, 2.9%, and
1.5%, respectively. Themulti-source data fusion compensates
for the lack of data-sparse to a certain extent. It boosts the
performance than other methods because it integrates a wide
range of available features, which achieves 91.3% on the
DYDA dataset and 91.0% on MRDA.

However, the gains on the ATIS dataset andMRDA dataset
are slight. One of the reasons for this phenomenon is that the
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TABLE 4. The recognition results on the DYDA and MRDA datasets. The
evaluation criteria in the table is accuracy value of test dataset.

data distributions in these two datasets are both imbalanced.
In the MRDA dataset, the class ‘Statement’ is occupied more
than 50% of the intention category. In the ATIS dataset,
the intention label ‘‘flight’’ also accounts for almost half
of the total training data. Based on the sampling strategy,
the sampled utterances can be affected by the proportion of
intent categories in the database. It is difficult for the model to
learn the exact features for very few classes. Another reason
is that the ambiguity of label correlation and label annotation
is harmful to triplet feature learning. Besides, the MRDA
dataset was found to have a high negative correlation between
previous label entropy and accuracy, indicates the impact of
label noise. Some utterances in ATIS dataset contains more
than one label. In this experiment, we only study the single
intent of utterance, which affects the results to some extent.
The last reason is that the triplet training method adopts
the flat dialogue structure to compose utterance triplets and
predict the intents based on the multi-class classification
approach in the downstream task. The model only focuses on
the current utterance ignoring the hierarchical context struc-
ture information that damages the recognition performance
of multi-turn conversation. In the future, we also need to
consider how to be more effectively integrated triplet training
with the nested structured dialogue.

B. ABLATION STUDIES
Wecan observe the improvement of the proposedmodel in the
last section, and then we explore the contribution of each part
in this section. We first perform ablation studies to verify the
proposed feature embedding models, whether to contribute to
the intention classification task. Then, we explore the details
about the effect of BERT model selection. Next, we study the
impact of the sampling strategy selection. Besides, the mar-
gin parameter selection also is vital for model optimization.
We test the wide-range margin parameters in the experi-
ment. Finally, we exploit the T-SNE visualization method

to verify the performance of the pre-trained feature learning
models.

1) THE EFFECT OF THE ENCODER SELECTION
Table 5 shows the comparison between the basic models
and proposed triplet training model of different dialogue
datasets. To validate the generation ability of the proposed
model, we also add the other multilingual Facebook data
(Spain version and Thai version) in the experiment. The
CNN and RCNNmodels require particular text preprocessing
for different languages, so there is no comparability in this
experiment. Hence, we fine-tune the pre-trained multilingual
BERT model to evaluate the two datasets. We implement
comparative experiments under fixed hyperparameters and
parameters.

The results shown in Table 5 can prove that the pre-trained
feature learning models are sufficient to learn more discrim-
inative features representation for the intention classification
task. Precisely, the fine-tuned BERT model performed bet-
ter than RMCNN model in basic models. However, we can
see the triplet training can significantly improve the lean-
ing ability of RMCNN. From Tabel 5, the SEQ-RMCNN
model performs better than the BERT and CNN encoder on
Snips datasets, ATIS dataset, Facebook dataset, and DYDA
dataset. We attribute this to the fact that the combination of
Wikipedia embedding and RMCNN model can effectively
capture granular semantic details locally. Also, the Siamese
BERT encoder improves the results of the intention clas-
sification because the pre-trained BERT model can pro-
vide rich semantic information by unsupervised trained with
enormous external knowledge. The results demonstrate that
the pre-trained feature embedding model can effectively
improve conventional multi-class classification by supple-
menting utterance triplet training.

2) THE EFFECT OF THE SAMPLING STRATEGY
In this section, we discuss the effect of sampling strategy
on classification results. Based on the results of Table 5,
it can illustrate that both two sampling strategies can effec-
tively improve the results of the basic models (without triplet
training). To be specific, the sequential method is slightly
better than the random method. Besides, the multilingual
dataset also shows the sequential strategy is better than the
random strategy. The SEQ-BERT improved by 0.76% over
RAN-BERT in the Facebook dataset (Spain) and 2% in the
Facebook dataset (Thai). The reason for these results is that
the feature learning model might learn the useless context
information because of random selection.

Furthermore, we make a comparison between each inten-
tion label of the DYDA dataset to show the effect of different
strategies on context-sensitive data in detail. As we can see
in Fig. 4, the DYDA dataset has four intention labels, which
are Inform, Commissive, Question, and Directive. The pro-
posed models generally perform great on label ‘‘Inform’’ and
‘‘Question’’ because these two intent often appears in spoken
language. Although it performs poorly in tag ‘‘Commissive’’
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TABLE 5. The results comparison of basic model and proposed model for different dataset.

FIGURE 4. The effect of different encoders and sampling strategies on
each intent in the DYDA dataset.

because of the lack of data, we still can find the sequen-
tial strategy can improve feature representation to be more
distinguished. Specifically, the result of SEQ-CNN grew by
0.25 over RAN-CNN, the result of SEQ-RMCNN improved
by 0.26 over RAN-RMCNN. The ‘‘Directive’’ label promotes
0.24 on CNN, 0.28 in RMCNN, only 0.08 in BERT. There-
fore, the sequential sampling strategy can effectively select
valid utterance triplets for spoken language objects.

3) THE EFFECT OF THE BERT MODEL SELECTION
In this section, we study the influence of the choice of the
pre-trained BERT models based on the single-turn dialogue
datasets. The pre-trained BERT models are publicly released
on Google’s GitHub website.1 The BERT model includes a
monolingual version and a multilingual version. According
to the results, we find the monolingual BERT model benefits
the English dataset, but it improves less on Facebook (Spain)
and Facebook (Thai) datasets. The multilingual model can
effectively improve the performance of the cross-language
datasets. Therefore, we use monolingual models to deal with
English datasets and use multilingual models to train other
language datasets. Besides, the BERT models contain two
uncased versions and two cased versions. Therefore, we con-
duct a comparison of basic BERT and BERT triplet training
on the English version dataset. To keep the parameters to a
minimum in the interaction system, we only verify the model
on the basemodel. From Table 6, we can see the performance

1https://github.com/google-research/bert

FIGURE 5. The results comparison of different margin parameter based
on different dataset.

of uncased model is better than the cased model for utterance
representation. The random sampling strategy might inferior
the performance of the cased model on Snips and Facebook
datasets. In the following experiments, we finally adopt the
result of the Bert uncased base model as Siamese BERT
encoder to train utterance triplets.

Moreover, we verified the effect of token embedding on the
task-oriented dialogue dataset. We assume the token embed-
ding might provide finer-grained semantic information of
utterances compared with sentence embedding. Therefore,
we facilitate the comparison between sentence embedding
and token embedding on all task-oriented dialogue dataset.
We indicate the T as the token embedding in Table 7 and
Table 8. As we can see in Table 7 and Table 8, the token
embedding can enhance the semantic information of utter-
ance and improve the performance of intention detection.
Therefore, we choose token embedding as utterance feature
representation in this experiment.

4) THE EFFECT OF THE MARGIN PARAMETER
As we mentioned in (16), the margin parameter controls
the relative distance between the feature embeddings to its
positive samples and negative samples. Therefore, the margin
parameter selection is essential for model convergency and
optimization. From Fig. 5, we can observe that the triplet
loss optimization is sensitive to the margin parameters. The
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FIGURE 6. The T-SNE 2D visualization between original data distribution and pre-learned feature embeddings.

TABLE 6. The comparison of basic pre-trained BERT models and
pre-trained BERT models with triplet training on ATIS, Snips, and
Facebook dataset.

TABLE 7. The comparison of BERT token embedding on ATIS, Snips, and
Facebook dataset.

margin parameter is too large or too small, both results in
inferior performance. The large margin parameter may cause
over-fitting, and the small margin parameter may impair the
strength of the triplet loss because the small value not enough
to distinguish between details. Therefore, we conduct differ-
ent margin parameters under fixed hyperparameters in the
experiment to observe the impact of margin parameters for
recognition performance. We evaluate the margin parameters
onwide-ranged values from 0.1 to 20.We list the final choices
of the margin parameter for each dataset. To be specific,
we use 5 for the Snips dataset, 1 for the ATIS dataset, 1.5 for
the Facebook dataset, and 15 for DYDA and MRDA dataset.
Therefore, we set the fixed margin parameter in the following
experiments.

TABLE 8. The comparison of RMCNN token embedding on ATIS, Snips,
and Facebook dataset.

5) VISUALIZATION OF LEARNED REPRESENTATION
In this section, we apply the T-SNE [52] method to visual-
ize 2D feature embedding of test data learned from triplet
learning models. Based on the T-SNE visualization method,
we can intuitively observe the impacts of feature learning
models on different datasets in Fig. 6. The first column is
the original data distribution of each dataset, and the second
column is the utterance feature embeddings of the pre-trained
SEQ-BERT model. As we can see in Fig. 6, the feature
embedding of the same intention category is visibly getting
closer to each other and gain distinct clusters at the same time.
Hence, the proposed models are benefits for extracting more
discriminative features through utterance triplet training. The
triplet loss training results in a better feature embedding since
the margin parameter is considered appropriately.

However, the feature embedding of the MRDA corpus is
not as explicit as the DYDAdataset cause the data distribution
of the MRDA dataset is imbalanced. The ‘‘Statement’’ tags
are occupied approximately 50% in test data, so the rest of
the four intents are not clear enough to visualize. Therefore,
this visualization reveals the intuition that better underlying
feature embedding for short utterance can be obtained by
Siamese neural network architecture with metric learning.

VI. CONCLUSION AND FUTURE WORK
In conclusion, we formulated the intention detection task
from the perspective of enriching semantic information of
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utterances. In the first stage, we proposed a novel feature
embedding model by utilizing the fine-tune BERT model
and RMCNN model as Siamese encoders with a triplet loss
function. The RMCNN and BERT as Siamese encoders were
employed to train utterance triplets, and the triplet loss func-
tion can optimize the embedding model end-to-end. Then,
we can obtain two well-trained feature embedding models
to illustrate discriminative utterance features from differ-
ent aspects. Moreover, we introduced the sequential sam-
pling strategy in triplet selection to capture context within
the dialogue. In the second stage, we used a multi-source
fusion strategy to boost the recognition performance of the
downstream intention detection task. Given the pre-trained
models, we predict intention labels by fusing discriminative
pre-trained and other relevant features within the dialogue.
The extensive experiments demonstrated the effectiveness of
the proposed model for intention detection on several bench-
mark datasets. The results illustrate that the proposed method
can effectively improve the recognition accuracy of these
datasets. For single-turn task-oriented dialogue, the model
achieves 99.31% in the Snips dataset, 99.56% in the ATIS
dataset, 99.28% in Facebook (English) dataset, 97.67% in the
Facebook (Spain) and 96.39% in the Facebook (Thai). For
multi-turn conversation, the recognition accuracy achieves
91.3% in the DYDA dataset and 91.0% in the MRDA dataset.

There is still much space for improvements in our system.
Firstly, we can verify different neural network architectures,
loss functions, and distance metrics based on the pre-training
framework. Secondly, the multi-class classification learning
approach may inferior the results because the model pre-
dicts intents only consider the current time step. Except for
the single-turn dialogue and multi-turn dialogue, there are
more complicated dialogue structures, such as multi-party
and multi-modal dialogue. Therefore, the combination of
intricate dialogue structures and metric learning could be a
new direction. Furthermore, the triplet loss training also can
be employed in other NLP tasks like emotion detection and
topic adaptation in the dialogue system filed, which are also
promising for future research.
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