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ABSTRACT In this paper, we propose a dynamical power allocation (PA) procedure for elastic optical
networks (EONs) based on the evolutionary hurricane search optimization (HSO) algorithm with a chaotic
logisticmap diversification strategywith the purpose of improving the capability to escape from local optima,
namely PA-CHSO. The aiming is the dynamical control of the transmitted optical powers according to the
variations of each link state due to traffic fluctuations, channel impairments, as well as other channel-power
coupling effects. Such realistic EON scenarios are affected mainly by the channel estimation inaccuracy,
channel ageing and power fluctuations. The link state is based on the channel estimation and quality of
transmission (QoT) parameters obtained from the optical performance monitors (OPMs). Numerical results
have demonstrated the effectiveness of the PA-CHSO to dynamically mitigate the power penalty under real
measurement conditions with uncertainties and noise, as well as when perturbations in the optical transmit
powers are considered.

INDEX TERMS Adaptive power control algorithm, optical networks, hurricane algorithm, chaotic map,
elastic optical networks.

I. INTRODUCTION
The growth of the traffic demand with heterogeneous charac-
teristics associated to the increment of the SNR rate require-
ments has pressing the development of dynamical optical
networks. Currently, the technological maturity of devices,
equipment and protocols provides the use of dynamical flex-
ible grid-rate elastic optical network (EON). In the EONs,
the lightpaths with adjustable bandwidth, modulation level
and spectrum assignment can be established according to
actual traffic demands and quality of service (QoS) require-
ments [1], [2]. In addition, the quality of transmission (QoT)
of each lightpath is evaluated previously to resources allo-
cation purpose, as well as to obtain reliable optical connec-
tivity [2], [3]. The best knowledge of the QoT is needed
in the design and operation phases, owing to the margin
has to be added in the network when the QoT is not well
established [4]. The QoT prediction can utilizes different
methodologies based on sophisticated analytical models,
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approximated formulas and optical performance monitors
(OPMs) [4], [5]. The QoT estimation with OPMs distributed
in the route or in the coherent receiver can be appropriated
in term of precision and computational complexity (CC)
when integrated in to the active control plane to provide
the link conditions in real time [1], [3]. However, it is
important to consider the limited accuracy of the OPMs
that increase the measurements uncertainty considering the
channel impairments (including linear and nonlinear effects),
receiver architecture and noise, which decrease the perfor-
mance of the channel state estimation [5], [6]. In addition,
the power dynamics related to the channel-power coupling
effects, which are influenced by the network topology, traf-
fic variation, physics of optical amplifiers and the dynamic
addition and removal of lightpaths can cause optical channel
power instability and result in QoT degradation [1]. More-
over, the interactions between lighpaths in some routes of the
network can generate fluctuations to form closed loops and
create disruptions.

The power, routing, modulation level and spectrum assign-
ment (PRMSA) problem is usually determinate in the
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planning stage of the network and margins are included
considering the QoT inaccuracies, equipment ageing,
inter-channel interference, as well as the uncertainties of
the optical power dynamics [7], [8]. However, there are
some investigations to the development of resource allocation
algorithms based on OPMs with reduced margins, which
have considered ageing and inter-channel interference to
configurable transponders with launch powers [5], regen-
erator placement [4] and the optimization of the physical
topology for power minimization [9]. These algorithms can
be based on derivative-free optimization (DFO), constrained
direct-search algorithms [5], and mixed integer linear pro-
gramming (MILP) [9]. Furthermore, in [6] an adaptive
proportional-integral-derivative (PID) with gains auto-tuning
based on particle swarm optimization (PSO) to dynami-
cally control the transmitted power according to the OPMs
measurements for mixed line rate (MLR) was proposed.
Previous investigations for the legacy single rate network
for power control adjustment to the optical-signal-to-noise-
ratio (OSNR) optimization considering the physical impair-
ments were conducted based on a game-theory-based [10]
and (PID) back propagation (BP) neural networks [11].
Moreover, the power allocation (PA) optimization aiming
at obtaining energy-efficient optical CDMA systems using
different programming methods is carried out in [12]. Such
optimization methods, including augmented Lagrangian
method (ALM), sequential quadratic programming method
(SQP), majoration-minimization (MaMi) approach, as well
as Dinkelbach’s method (DK) were compared under the per-
spective of performance-complexity tradeoff. The findings
reported in the previous papers assume that there are no
impact of queuing issues on the optical network convergence
and performance. To highlight this important aspect, in [13]
the authors carried out a review on the role of the queu-
ing theory-based statistical models in wireless and optical
networks.

The PRMSA is an NP-hard problem, which can be
decomposed into several sub-problems with lower complex-
ity, e.g.: PA, routing; spectrum assignment; and others [21],
[25], [36]. Between them, the PA sub-problem is an impor-
tant procedure: to combat the main impairments of the
EONs, including the amplified spontaneous emission (ASE)
and non-linearities interference (NLIs); to guarantee QoT in
dynamic scenarios, minimizing the waste of resources dur-
ing the network’s lifetime; to increase the network capacity;
to limit the power budged in the sense of maximizing the
energy-efficiency (EE); to mitigate the effects caused by fluc-
tuations in the amplifiers. Analytical and heuristic methods
have seen proposed in the sense of the better performance
and complexity trade-off [1]–[6], [10]–[15], [33]. In [18],
the hurricane searches optimization (HSO) was proposed as
a candidate heuristic for the solution of NP-hard problems
with large-scale, but it has not seen investigated in optical
scenarios. Recently, the HSO was considered as a promis-
ing alternative algorithm for solving problems in practical
large-scale power systems [19].

FIGURE 1. Elastic optical network topology highlighting the chaos
heuristic-based power control block composed by a power allocation
based on chaotic hurricane search optimization (PA-CHSO) scheme based
on QoT estimation.

In this context, the contributions of this work include:
a) proposing an effective, efficient PA strategy based on
the HSO and its variation based on the insertion of a
chaotic map, named PA-HSO and -CHSO, respectively;
b) investigating systematically the input parameter optimiza-
tion (IPO) for both PA algorithms, aiming at improving
the performance-complexity tradeoff of the proposed algo-
rithm; c) validating both PA algorithms for different real-
istic EON channel conditions, i.e., non-perfect monitoring
of the OPMs, channel ageing effects, dynamical scenarios,
including power instability, particularly in EONs. More-
over, comparisons have been performed assuming a convex
optimization through the gradient descent (GD) [14], [15].

Channel estimation is evaluated in terms of Qot
parameters, which are obtained from OPMs. OPMs measure
the connection status and update the PA algorithms as illus-
trated in Fig. reffig:1. Thus, PA algorithms perform dynamic
power control. To corroborate the effectiveness and efficiency
of the proposed resource allocation strategy in EONs, it is
evaluated: normalized mean square error (NMSE); conver-
gence; power penalty (PP); probability of success; CC; and
performance-complexity tradeoff.

II. PROPOSED SCHEME
The proposed scheme utilizes the information collected from
the OPMs to control dynamically the level of the launch
power of the lightpaths. The power adjustment considers the
QoT inaccuracies, equipment ageing, inter-channel interfer-
ence, as well as the variation of the optical power dynam-
ics. Differently of the others approaches based on intelligent
systems [14], it is not necessary the training phase and the
proposed scheme can be performed in near-real time. In addi-
tion, the power budget is determinate in the planning stage
of the network and margins are included [2], [4] and the
proposed scheme will act during the regular operation of the
EON. For the proposed scheme it is considered that the light-
paths were previously established from the resource alloca-
tion algorithms associated with route, modulation, bandwidth
and spectrum.

The proposed scheme continuously update the transmit-
ter launch power for each lightpath in response to dynamic
OPMs information, it is considered a communication delay
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between the OPMs in the receiver node, control plane and
transmitter adjustment. This process can encompass the delay
related to the duration of the OSNR estimation in the OPM,
the control message transmission duration, the processing
time, the actuation phase in the transmitter and the round-trip
delay. In this sense, considering the current technology, each
algorithm updating can be estimated in 100 ms or less [4].
Therefore, the time needed to close the loop related to the
signal latency and the other operations needed for controlling
the transmitted power is assured.

The proposed PA algorithm utilizes the chaotic hurricane,
which is a new hybrid algorithm based on the hurricane search
optimization (HSO) associated with probability distribution
from the chaotic maps instead of uniform distribution of
the traditional HSO. The objective is obtain an algorithm
with balance between the exploration (diversification) and
the exploitation (intensification) to improve the algorithm
capability to escaping of the local solutions and the ameliora-
tion of the velocity of the convergence without affecting the
quality of the algorithm solutions [16], [17].

The HSO is a metaheuristic algorithm for global
optimization considering single-objective [18] and multi-
objective [19] optimization problems, inspired by natural
phenomena on the hurricanes behavior, where wind parcels
move in a spiral course moving away from a low-pressure
zone called the eye of the hurricane. These wind parcels
search for possible new eye position, which represents a lower
pressure zone to find out the optimal solution. The perfor-
mance is very competitive compared to others metaheuris-
tics optimization algorithms, such as gravitational search
algorithm (GSA) and PSO. Although there is a variety of opti-
mization algorithms, the development of new optimization
algorithms have been motivated by the no free lunch (NFL)
theorems for optimization, which have proved that an uni-
versally efficient optimization algorithm does not exist.
Moreover, the particularities and characteristics of the
optimization problem strongly affects the capacity of the
optimization algorithm to finding the optimal solution in
global optimization problems [18]. Herein, it is impor-
tant investigate several distinct optimization algorithms
for different optimization problems considering the related
aspects. In addition, the application of chaos theory alone or
jointly with other algorithms such as ant colony algorithm
(ACO) [16], firefly algorithm (FA) [20] and PSO [17] have
improved the optimization algorithms. Chaos presents a
non-repetitive nature that increase the random search char-
acteristics of the optimization methods, as well as increases
the ability to get away from local solutions. In general,
chaotic maps based on the complex behavior of a nonlinear
deterministic system are utilized to optimization goal.

III. SYSTEM MODEL AND PROBLEM FORMULATION
The EON physical layer is composed by transmitters with
adjustable modulation format, SNR rate and level of launch
power, an erbium-doped fiber amplifier (EDFA) per span,
ROADMs and receivers with digital signal processing

capability to compensate the dispersion effects. The
ROADMs present equalization to compensate undesired
spectrum tilting due to EDFAs. In addition, the EDFAs oper-
ate in an automatic gain controlled (AGC) mode according
to each ROADM to achieve spectral tilt correction. A con-
nection between ith and jth node, i.e., N (i, j), is called
communication link. The ith link from ith channel is formed
by N span

i spans, being each span formed by: a fiber length
L in Km; and an EDFA. The lightpaths are represented as
Nyquist wavelength division multiplexing (WDM) super-
channels with bandwidth

1fi =
ξi

ci
, i = 1, . . . ,M , (1)

where ξi is the traffic demand data rate (Gbps) of the ith
channel, M is the number of channels and ci is the spectral
efficiency defined by modulation format of the ith channel,
Table 1. The γ ∗B2B,i is the back-to-back signal-to-noise ratio
target for the ith channel required to achieve error-free con-
sidering forward-error-correction (FEC) codes with bit-error-
rate requirement of b∗ = 4 · 10−3.

TABLE 1. Modulation format, spectral efficiency and SNR.

Hence, to obtain an appropriate QoT, the effective back-to-
back signal-to-noise ratio for the channel i (γB2B,i) must be
γB2B,i ≥ γ

∗

B2B,i. This formulation can be defined as a problem
of residual margin (RM). The RM in the ith channel can be
defined as [14]:

9i =
γB2B,i

γ ∗B2B,i
, (2)

while the RM in vector form is represented as 9 =

[91, 92, · · · , 9M ]1×M . The concept of residual margin9 in
WDMsystems can be formulated as an optimization problem,
which the objective is to minimize the RM of all the M
WDM channels in the sense of 9∗ = [1, · · · , 1]1×M , while
guaranteeing the QoT.

Such RM optimization problem can assume an optical net-
work topology as static in a short-time due to the multi-stage
traffic demand. Therefore, the optimization problem reduces
to the efficient power assignment problem [5]:

minimize
p∈RM

J (p) =
∑M

i=1 pi = 1Tp

s.t. (C.1) γB2B,i ≥ γ
∗

B2B,i i = 1, . . . ,M

(C.2) ξi ≥ ξ
min
i i = 1, . . . ,M

(C.3) pmin ≤ pi ≤ pmax i = 1, . . . ,M (3)
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where p = [p1, p2, · · · , pM ]T is the optical power vector and
pi the transmitted optical power for the ith lightpath, subject
to the constraints related to power budget and SNR required to
achieve QoT [3]; moreover, ξmin

i is the requirement minimum
bit-rate, pmin and pmax is the minimum and maximum value
considered as allowable transmitted power, respectively.

The quality of the RM optimization attained by different
methods can be evaluated via the Euclidean distance between
9 and 9∗. Mathematically, this is expressed as:

minimize
p∈RM

J1(p) = ‖9∗ −9‖2

s.t. (C.1), (C.2), (C.3) of eq. (3). (4)

From eq. (3), the problem in the original form is not
convex. Therefore, it do not guarantee the minimum global
of9 applying nonlinear programming (NLP), because can to
result in a solution that is far from global solution 9∗. In this
sense, heuristic evolutionary optimization methods, such as
the HSO, have the advantage of achieving in a polinomial
processing time an high quality solution, which is not nec-
essary the optimum solution. For comparison purpose, in the
numerical results it will be evaluated descent gradient (GD)
proposed [15] with convex formulation [14]. The first con-
straint (C.1) from eq. (3) is based on a Gaussian noise (GN)
model to establishment the QoT in the lightpath [21], [22].

For the proposed evaluation scenario in Fig. 1, it is consid-
ered that the ith lightpath characteristics such as modulation
formats, routes, and spectral orderings of all the connections
were previously determined, and it includes the design mar-
gin Md (τ ) due to the QoT model inaccuracies and ageing
margin of the transponder Mt (τ ) on its sensitivity, modeled
as a function of time τ . Basically, the design margin Md (τ )
is included to overcome the GN model inaccuracies and
avoid the EON operating at the limit. Md (τ ) decreases along
with the time τ (in years), since a better EON knowledge is
obtained by increasing of τ [4], [7], [9], [25].

Hence, the γB2B,i for the ith channel is modeled as:

γB2B,i(τ ) = γi(τ )−Md (τ )−Mt (τ ) (5)

where each parameter from eq. (5) can be modeled as a linear
or nonlinear function of time τ [4]. Herein, we have adopted
the following linear function of τ :

Mt (τ ) =
Mt (τend)−Mt (τ0)

1τ
· τ (6)

where Mt (τend) and Mt (τ0) are the transponder margin for
End-of-Life (EoL) and Begin-of-Life (BoL) time, respec-
tively, while 1τ = τend − τ0 is the network’s lifetime.
Besides, the first term γi(τ ) assumes GN model, while
includes the linear and nonlinear noise effects for the ith
channel [21]:

γi(τ ) =
pi

pASEi (τ )+ pNLIi (τ )
(7)

where pASEi (τ ) is the power of the amplified spontaneous
noise (ASE) noise and pNLIi (τ ) is the power of the non-linear
interference (NLI) noise.

The power of the ASE noise is given by [4], [21]:

pASEi (τ ) = h · v · F ·1fi·NROADM
i∑
e=1

(AROADMe,i − 1)+
N span
i∑
e=1

(Aspane,i − 1)

 (8)

where h is the Planck’s constant, v is the carrier frequency,
F is the noise figure of the edfa, N span

i and NROADM
i are the

number of span and ROADM of the ith user, respectively.
AROADMe,i (τ ) and Aspane,i (τ ) are the losses of the eth span and eth
ROADM from the ith user, respectively, being the last given
by:

Aspane,i (τ ) = Le,i · α(τ )+ ce,i · closs(τ )+ se,i · sloss(τ ) (9)

where for the eth span of the ith user, the Le,i is span length;
ce,i is connection number, and se,i is the splice number; while
α(τ ), closs(τ ) and sloss(τ ) can bemodeled as functions of time,
representing the fiber attenuation, the connector’s loss and the
splice loss, respectively [4].

The power of the NLI noise results of the self- and
cross-channel interference, SCI and XCI, respectively. It is
given by:

pNLIi (τ ) =
3ζ 2

2πα(τ )|β2|
sinh−1

(
π2
|β2|

2α(τ )
1f 2i

)
N span
i︸ ︷︷ ︸

η′i(τ )

·p3i +

6ζ 2

α2(τ )

∑
j 6=i

α(τ )
4π |β2|

log

∣∣∣∣ |fi − fj| +1fj/2|fi − fj| −1fj/2

∣∣∣∣N span
i︸ ︷︷ ︸

η′′i (τ )

·pi · p2j (10)

where η′i(τ )+η
′′
i (τ ) defines the non-linear factor of the trans-

mitted signal spectrum of the ith channel, denoted as ηi. ζ is
the non-linear parameter, β2 is the group velocity dispersion
and pj is the power of jth interfering channels. Therefore,
it can be obtained a bit error rate (BER) expressed as a
function of the SNR, which takes into account the baud-
rate, FECs limit BER and the modulation format of the ith
channel [23], [24], as follows:

bi = ϑ(γB2B,i(τ )) (11)

where the function ϑ(·) is defined by modulation format [4].
The QoT prediction consists of developing a systematic

procedure for the evolution of the vector p in order to reach
the optimum value p∗, based on the γB2B,i(τ ), γ ∗B2B,i, bi, b

∗
i

values. Theses values are monitored by OPMs at add, through
and drop node by channel estimation and reported to the
control plane to guarantee the QoT. The channel estimation
quality is affected by three main assumptions:

1) non-perfect monitoring of the OPMs considering
their limited accuracy due to channel impairments
(linear and nonlinear effects) and the receiver architec-
ture, as well the noise measurement and peaks occur-
rence caused by polarization mode dispersion (PMD)
effects [2], [4], [6], [25], [26]. Theses uncertainties
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can be modeled as a random variable δi added to
the γB2B,i,which follows a Log-Normal distribution
LN (µ, σ ). Therefore, the estimated γB2B,i can bemod-
eled by [6]:

γ̂B2B,i(τ ) = γB2B,i(τ )(1+ δi) ∀i, δi ∼ LN (µ, σ )

(12)

2) ageing resulting from increases fiber losses due to
splices to repair fiber cut, detuning of the lasers leading
to misalignment with optical filters in the intermediate
and add/drop nodes. These values can be modeled by
eqs. (8)-(9) as function of time τ , assuming the parame-
ter values based on Begin-of-life (BoL) and End-of-life
(EoL) in an elastic optical network.

3) power instability resulting from power variations due
linear and nonlinear effects associated to the optical
fiber and coupling, both influenced by traffic variation,
network topology, physic aspects of the EDFA and
ROADM at add/drop channel, and unpredictability of
fast time-varying penalties, such as polarization effects.
Theses values can be modeled as a power perturbation
in the input power of the ith user:

p◦i [n] = pert[n]+ 10 log10
pi

10−3
[dBm] (13)

where the power perturbation function is modeled as

pert[n] = An · sin(nπ/2), (14)

with An being the peak of the perturbation in [dB], n
is a discrete-time index, and pi the nominal transmitted
power for the ith lightpath. This model assumes power
fluctuations propagation across the network nodes [6].

The full knowledge of the QoT parameters during the
estimation of the ith channel increases reliability and enables
design solutions considering the p∗ for different bit rates
requirement in the lightpath. In this sense, mixed line
rates (MLR) networks have focused on optimum launch
power, obtaining suitable cost minimization [27], combined
to the maximization of the number of established connec-
tions [10], while reducing the transponder cost [28] and
improving the launch power versus regenerator placement
tradeoff [29]. However, when the QoT parameters for the ith
channel is not known perfectly, PP occurs, being modeled as:

p̄i(n) = 10 · log
(
pi(n)
p∗i

)
[dB] (15)

where the p∗i value is defined considering the perfect knowl-
edge of the QoT parameters [5]. Negative values of p̄i, i.e,
p̄(−)i , mean that the measured BER did not reach the p∗; while
positive values of p̄i, i.e, p̄

(+)
i , mean that the b∗ is reached with

energy waste. Therefore, for availability of the ith lightpath,
the margins (mi) should satisfying the condition ofmi ≥ p̄

(−)
i .

In context of margins, in [8] a system margin (SM) is
adjusted by a ML based on the maximum-likelihood prin-
ciples to improve the QoT prediction of new lightpaths.
The predict parameters can provided more accurate QoT of

not-already-established lightpaths compared to the limited
amount of information available at the time of offline system
design. In [11] is proposed a ML-based classifier to predict if
the candidate lightpath presents suitable bit error rate (BER)
considering the traffic volume, modulation format, lightpath
total length, length of its longest link, and number of lightpath
links. To train of the ML classifier is based on the OPMs
or in the BER simulation, which is utilized in the absence
of real field data. In [14] is performed the optimization of
transmitted power to maximize minimummargin and to max-
imize a continuously variable data rate. The Gaussian noise
nonlinearity model is utilized to expresses the SNR in each
channel as a convex function of the channel powers. Convex
optimization is performed with objectives of maximizing the
minimum channel margin.

Therefore, the progress in the network planning, design and
active operation control has become margins an important
resource to be optimized [2], [4]. In this sense, the margin
in each lightpath should be as little as possible to ensure
guarantee reliable optical connectivity. The reducing of the
excess margin can be utilized to increase the maximum trans-
mission distance, reduce the number of regenerators, as well
as postpone the installation of more robust transponders
than are closely necessary in the beginning of the network
operation [25]. Several efforts have been made to become
the margins variable and adjustable to increase the network
capacity and decrease the costs of the network implantation
and operation [1]- [6]. In this sense, the determination of
the level of transmitted power is performed in the planning
stage of the network and a SM is included considering the
uncertainties of the OPMs measurements and optical power
dynamics [7], [21].

IV. PA SCHEMES
In this section, the PA-HSO and -CHSO schemes are
proposed for PA in EONs. Firstly, the recently proposed
heuristic HSO [18] is revisited in the sequel, and modi-
fications are implemented to solve suitably the PA-EONs
optimization problem. Hence, the original HSO is modified
further, with the insertion of a chaotic map [16], [17]. More-
over, the PA-GD in [14], [15] are applied aiming at comparing
the complexity-performance tradeoff with the proposed PA
methodology. Indeed, the PA-GD is assumed as an analytical
method, which result in a global optimum solution in a cost
of high complexity.

A. PA-HSO
In the HSO, the eye (lower pressure zone) is related to the
best solution of the hurricane structure and can be repre-
sented at nth iteration by the matrix P [n] = [p1[n],p2[n],
· · · ,pK [n]] ∈ <M×K , which is composed byK wind parcels,
defined as pK [n] = [pk,1[n], pk,2[n], · · · , pk,M [n]]T ∈
<
M×1, while the hurricane eye is the best candidate

vector solution at nth iteration, written as p̂[n] =

[p̂1[n], p̂2[n], · · · , p̂M [n]]T ∈ <M×1. Besides, K is com-
posed by wind parcels factor Nw and M channels, resulting
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K = M · Nw. The pressure function at the nth iteration
for the hurricane eye pp̂[n], as well as for the candidate
solutions pPk [n] is measured by a fitness function in eq. (4),
i.e., pressure(p̂[n]) = J1(p̂[n]).

The kth wind parcel on the nth iteration moves around the
eye according to:

rk [n](θk [n]) = r0 · exp (zk [n] · θk [n]), (16)

where rk [n] and θk [n] are respectively the radial and angular
coordinate of the power increasing of the kth wind parcel at
the nth iteration. r0 is the initial value of rk . And, zk [n] is
the rate of the increase of the spiral at nth iteration, which
is defined by a random variable with uniform distribution,
i.e., zk [n] ∼ U ∈ U[0, 1]. Indeed, the behavior of the kth
wind parcel in the nth iteration follows a logarithmic spiral
pattern. The system evolves looking for a lower pressure zone
(new eye position) in the search space. Once a new lower
pressure is discovered, its position (Pk ) becomes the eye (p̂)
and the process start over and the process start over again [18].

From eq. (16) and (20), the power updating of two con-
secutive channels associated to the kth wind parcel at the nth
iteration is given by:

pk,i[n] = rk (θk [n]) cos(θk [n])+ p̂i[n]

pk,i+1[n] = rk (θk [n]) sin(θk [n])+ p̂i+1[n] (17)

where i = (k mod h) + 1 corresponds to the ith channel
from the kth parcel updating, that represents K wind parcels.
Each group is denoted by Gi, representing the power updating
of two specific channels from pk , as in eq. (17), resulting
pk ⊂ Gi.
The θk [n] updating from eq. (17) is defined by concept of

velocity variation of the kth wind parcel in the nth iteration,
which is given by:

ωWP
k [n] = ωWP

max ·

(
rk [n]
pmax

)
if rk [n] < pmax

ωWP
k [n] = ωWP

max ·

(
pmax

rk [n]

)zk [n]
if rk [n] > pmax (18)

where ωWP
k [n] is a tangential velocity of the kth wind parcel

at nth iteration, ωWP
max is the maximum tangential velocity

adopted for all the wind parcels, zk [n] performs ωWP
k [n] fit at

nth iteration [18]. Thus, the θk [n] updating at the nth iteration
is given by:

θk [n] = θk [n]+ ωWP
k [n] if rk [n] < pmax,

θk [n] = θk [n]+ωWP
k [n]

(
pmax

rk [n]

)zk [n]
if rk [n] > pmax,

(19)

where ωWP
k is assumed as a fixed value ∀k , because pmax,

rk [n] and zk [n] are sufficient to update the kth wind parcel.
In addition, the initial power vector of the PA-HSO is

defined as p0 while the component pk,i ∈ [ pmin; pmax ].
Therefore, when pk,i /∈ [ pmin; pmax ], the function ϕ(pk,i)
is true; thus, the initial and current angular coordinates of the

kth wind parcel, θk [1] and θk , respectively, must be updated
as:

θk [1] = zk [1] and θk = 0.

The stopping criterion is defined by the number of itera-
tions Nf . A pseudo-code for the PA-HSO is described in
Algorithm 1.

Algorithm 1 PA-HSO or -CHSO – Power Allocation Based
on the Traditional or Chaotic Hurricane Search Optimization

Input: Nf , K , ωWP, r0, rmax, θk [1], pmin, pmax, θk [n] = 0,
p0;
Output: p̂[n];
1: p̂[n] = p0;
2: for n = 1 to Nf
3: pp̂[n] = pressure (p̂[n]);
4: for k = 1 to K
5: (a) rk [n] = r0 · exp(θk [n] · zk [n]);
6: (b) pk [n] = p̂[n];
7: (c) i = (k mod h)+ 1;
8: (d) pk,i[n] = ri · cos(θk [1]+ θk [n])+ p̂i;
9: (e) pk,i+1[n] = ri · sin(θk [1]+ θk [n])+ p̂i+1;
10: (f) pPk [n] = pressure (pk [n]);
11: (g) if ϕ(pk,i) or ϕ(pk,i+1);
12: θk [1] = zk [n] · 2π ;
13: θk = 0;
14: else if ppk [n] < pp̂[n]
15: e = pk ;
16: pp̂[n] = pressure (p̂[n]);
17: else
18: if rk [n] < pmax;

19: θk [n] = θk [n]+ ω;
20: else

21: θk [n] = θk [n]+ ω
(
rmax
rk [n]

)zk [n]
;

22: end
23: end
24: end
25: end

B. PA-CHSO
The PA-CHSO and -HSO algorithm are similars. The
updating of zk [n] is the unique difference between them.
As described in subsection IV-A, the PA-HSO assumes zk [n]
as a random variable with uniform distribution. However,
aiming to escape of local minimum and to diversify the
candidate solutions, the PA-CHSO assumes zk [n] as a random
variable assigned by a chaotic mechanism [16], [17]. Such
chaotic logistic map is related to the dynamics of the biolog-
ical population with the chaotic distribution features and it is
obtained by the recursive equation:

zk [n+ 1] = µ · zk [n](1− zk [n]), (20)

where zk [n] ∈ [0, 1] is the chaotic variable and µ is
the control parameter in the range 0 < µ ≤ 4 [16], [17].
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The assumed zk [n] values brings randomness to the search
step when compared with uniform distribution. There-
fore, the same PA-HSO algorithm can be adopted, i.e.,
Algorithm 1, but zk [n] is updated by the eq. (20).

C. PA-GD
The PA-GD algorithm is based on the outline of a general GD
method [14], [15], which defines a descent direction 1p and
a suitable step size selection using backtracking line search
method (from Algorithm 9.1 and 9.2 in Ref. [15]). Here,
1p is normalized by ||J1(p)||. Summarizing, the main param-
eters are the number of iterations (NGD

f ) from Algorithm 9.1
and the number of iterations from the backtracking search
(NGD

bt ) [15]).

D. INPUT PARAMETERS OPTIMIZATION (IPO)
In this subsection, two input parameter optimization (IPO)
strategies are proposed: IPO based on the golden-section
(GS), which is a numerical method for uni-modal optimiza-
tion, hereafter named IPO-GS [35]; and the IPO based on the
conditional probability of success (CPoS), which is a empir-
ical method based on the combination of the input parame-
ters inside theirs range, hereafter named IPO-CPoS. Firstly,
the IPO-GS and IPO-CPoS optimize the input parameters
that affect dramatically the performance. After, the IPO-CPoS
optimizes the input parameters that affect dramatically the
CC. The IPO-GS is not adopted to optimize the CC, because
it increases a larger CC to minimize the objective, i.e., eq. (3).
More details about them are described below.

1) IPO-GS
The framework of the IPO-GS is similar to the systematic
proceeding proposed in [32], in which only the main input
parameters that affect dramatically the performance of the PA
algorithms are optimized, i.e., for the PA-HSO and -CHSO
are r0 and ωWP. After that, the input parameters directly
related to the algorithm’s complexity are optimized regarding
the performance-complexity tradeoff, i.e.; for the PA-HSO
and -CHSO are K and Nf .

The IPO-GS is presented for the PA-HSO, but it also is
applied on the PA-CHSO. The IPO-GS procedure consists of
two steps: a) keep ωWP fixed and optimizes r0; b) r0 (from
first step) is hold fixed while ωWP value is optimized. The
optimized input parameter values are found by golden-section
search method, which finds the minimum of an objective
function by successively narrowing the range of values inside
feasible range; in other words, it estimates the maximum and
minimum values of the input parameter until the best value
of r0 and ωWP have been found. Both optimization input
parameter procedure adopt the same steps; for this reason
Algorithm 2 details only the r0 optimization.

From Algorithm 2, analogous the golden section search
algorithm [35], the golden-section value is gs = 1+

√
5

2 ,
while rmin and rmax are minimum and maximum value of r0,
respectively; Nlps is the number of loops for reduction of the

Algorithm 2 IPO Procedure: PA-CHSO and -HSO

Input: Nlps, tolr0 , tol
WP
ω , pmin, pmax, ωWP

min, ω
WP
max, gs, Nf ,

K , ωWP, rmax, θk [1], pmin, pmax, θk [n] = 0, p0;
Output: ωWP, r0;
1: for nlps = 1 to Nlps
2: if nlps = 1
3: (a) rl = log(pmin);
4: (b) ru = log(pmax);
5: else
6: (a) Inlps =

min(|r0−rl |,|r0−ru|)

(0.5g
(nlps−2)
s )

7: (b) rl = log(r0)− Inlps/2;
8: (c) ru = log(r0)+ Inlps/2;
9: end
10: keeps ωWP fixed;
11: while |rl − ru| < tolr0
12: if E1 < E2
13: (a) ru = r̂2;
14: (b) r̂2 = ru − gs(ru − rl);
15: else E1 > E2
16: (a) rl = r̂1;
17: (b) r̂1 = ru + gs(ru − rl);
18: end
19: end
20: r0 = (rl + ru)/2;
21: executes ωWP optimization analogous to

lines 2 to 22;
22: end

interval Inlps , r̂1 and r̂2 are the intermediates points; |rmax −

rmin| < tolr0 is the stopping criterion of r0; tolr0 is the
tolerance adopted; ωWP

∈ [ωWP
min;ω

WP
max] is the parameter

keeps fixed; and log operator performs the normalization of r0
range. E1 and E2 are given by the E [J1(p̂[n])], assuming r0 =
10(r̂1) and r0 = 10(r̂2), respectively, while p̂[n] is calculated
via Algorithm 1. Nr realizations are adopted to measure E
[J1(p̂)[n]]. In this context, the ωWP, c1 and c2 optimization
are obtained by replacing the variable r0 by them.

2) IPO-CPoS
The IPO-CPoS re-optimizes the performance input parameter
to corroborate with the IPO-GS. For each PA algorithm,
i.e., PA-HSO or -CHSO, it assumes final values from the
IPO-GS, i.e, ωWP and r0, so it fixes the parameter of lower
impact, i.e., ωWP, and re-optimizes the other, i.e., r0. The
r0 parameter has higher impact than the ωWP, because the
power increasing granularity is given by it. In this context,
the IPO-CPoS measures the probability of M channels to
achieve the b∗ in the n iteration with the lower energy waste
given n and r0, denoted by Ps1.

The Ps1 formulation follows the RM concept discussed
in eq. (2). Then, given r0 and n, it can be defined as the
probability of M -users to satisfy two conditions: i) 9i ≥

9∗−Λ1, whereΛ1 assures the b∗; ii)9i ≤ 9
∗
+Λ2, where
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Λ2 assures the b∗. In this context, Ps1 is given by:

Ps1
1
= Pr[9∗ −Λ1 ≤ 9 ≤ 9

∗
+Λ2 |r0, n]. (21)

Ps1 is evaluated over an average behavior of Nr realizations
and its target value is defined as Ps∗.
After optimizing the performance input parameters, those

that dramatically affect the complexity of the algorithm are
also evaluated, i.e., for the PA-HSO and -CHSO, Nf and K .
Therefore, analogous to the Ps1, the optimization of theses
parameters is modeled as:

Ps2
1
= Pr[9∗−Λ1≤9 ≤ 9

∗
+Λ2 |K ,Nf , r0, ωWP]. (22)

Ps2 is evaluated over an average behavior of Nr realizations
and its target value is defined as Ps∗. There is a set of infinite
number of pair combinations (K ; Nf ) that found the CPoS,
defined as Ps2 ≥ 0.94. Hence, the pareto frontier (PF) can
be obtained. Here, the PF is composed by all success points
(K∗; N ∗f ) assumed as reliable and viable. Mathematically, all
the success points (K ; Nf ) is defined by the set

V = {K ∈ K, and Nf ∈ Nf } | Ps2 ≥ Ps∗,

while the PF subset {(K∗ι ,Nf
∗

ι
)} can be defined as:

∀ (K ; Nf ) ∈ V | ∀Nf i,
K∗ι = min(Nf i · Kj |Kj ≥ K

∗

ι−1) and Nf ∗ι = Nf i (23)

where all (K∗ι ; Nf
∗

ι
) result of the increasing of i =

[1, · · · ,NNf ] and j = [1, · · · ,NK ], that represent the
decreasing of K and Nf , respectively, with NNf = |Nf | and
NK = |K|.
In this context, the performance-complexity tradeoff of the

input parameters also is evaluated, e.g.,ωWP, r0,K andNf for
the PA-CHSO or -HSO. Mathematically, it can be modelled
as:

min
K ,Nf

(
C(Nf ,K )|Ps2 ≥ P∗s , r0, ωWP

)
(24)

where C(·) is the CC for the PA-CHSO or -HSO. The feasible
solutions result in a Pareto front, which is given by the pairs
(K , Nf ).

E. Performance AND COMPLEXITY Analysis
The metrics for performance and CC analysis and tradeoff
between them are presented. These metrics are used to mea-
sure the quality of the PA algorithm solutions during their
operations.

1) Performance Analysis
The quality of the PA algorithms is measured based on the
normalized mean square error (NMSE), and maximum and
minimum PP forM channels. Both are related to the optimal
solution vector p∗. The NMSE in the nth iteration is given by:

NMSE[n] = E
[
‖p̂[n]− p∗‖2

‖p∗‖2

]
(25)

where E is the expectation operator and ‖ · ‖ is the Euclidean
distance to the origin. And, the maximum and minimum

PP assuming M channels in the nth iteration are given by
p̄(+)max[n] = max{p̂[n]} and p̄(−)min[n] = min{p̂[n]}, which are
based on the eq. (15).

2) Complexity Analysis
The computational complexity (CC) is evaluated to measure
the performance of the algorithms. Here, the CC is computed
during the PA of each algorithm based on the floating-points
operations (flop)s count, denoted as C. C is affected by the
number of active channels (M ), by the size and number of
routes, i.e.,NROADM

i andN span
i , which are related tomeasured

SNR, from eq. (8), as well as by the number of iterations from
algorithms Nf . The most relevant metric of CC is C, because
it does not depend on the machine, operating system, and
programming structure and style.

C is evaluated for each PA algorithm as a function of the
number of mathematical operations necessary to run until
convergence. These operations include addition, subtraction,
multiplication, division (or mod operator), natural logarithm,
power or exponential and trigonometric functions, where
each is assumed as one floating-points operation (flop). Log-
ical (i.e., and, or) and comparison (i.e., if, else, else if, ≤,
etc. . . ) operations, and variable assignment were considered
irrelevant time-consuming operations.

In this context, the C of each PA algorithm in the nth itera-
tion is modeled. In case of the PA-HSO, from Algorithm 1 it
is given by

CPA-HSO = 25Nf · K +

+3 ·

(
19M2

+5M+
M∑
i=1

(NROADM
i +N span

i )

)
Nf · K , (26)

in case of the PA-CHSO, from Algorithm 1 and chaotic map
in eq. (20), it is given by

CPA-CHSO = CHSO + 6Nf · K (27)

and, in case of PA-GD, from section IV-C, Cn is given by:

CPA-GD = NGD
f (M2

+ 4M + 3)

+

[
19M2

+ 5M +
M∑
i=1

(NROADM
i + N span

i )

]
·

[
NGD
f (5 · NGD

bt ·M + 5 ·M + 1)
]

(28)

Asymptotically, the C of the PA-HSO, -CHSO and algo-
rithms is of order ofO(M2), while C of the PA-GD is of order
of O(M3).

V. NUMERICAL RESULTS
In this section, the performance of the PA-CHSO
and -HSO are analyzed and systematically compared.
Section V-A presents network’s scenario and parameters,
while section V-B describes the input parameters optimiza-
tion (IPO). SectionsV-C andV-D analyse the PA performance
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FIGURE 2. Adopted EON topology; distance in km.

TABLE 2. Channels features: Routes, distance, bit rate and modulation
format.

for both PA-CHSO and conventional -HSO methods con-
sidering perfect and non-perfect channel estimation, respec-
tively. CC assuming different system loading is discussed in
section V-E. The numerical simulations were performed with
MATLAB (version 7.1) in a computer with 32 GB of RAM
and processor Intel Xeon E5-1650@ 3.5 GHz.

A. NETWORK PARAMETERS
Fig. 2 illustrates a virtual network topology for the trans-
mission routes from source (S) to destination (D). The span
length is 100 Km, channel spacing (1f ) of 50 GHz and guard
band of 6 GHz. This topology was chosen to concentrate the
routesR in some links, thus the effects of interference, as well
as the effects of nonlinearities are more prominent. The EON
transmission capability is in range of 100 to 300 Gbps. The
routes and spectrum assignment procedure is out of the scope
of this work, as these are considered to be stablished by
a routing and spectrum assignment (RSA) algorithm. Bit
rate requirement, routes, distance and modulation format are
listed in Table 2. The physical layer parameters values of
the elastic optical network are illustrated in Table 3, [4],
[21], [22], [26], [36], [37]. Herein, we evaluate only twelve
channels, including the channels with higher and lower power
transmitted power, to avoid burden information.

B. IPO PROCEDURE UNDER PERFECT CHANNEL
CONDITIONS
This step is very important for EON operation under all the
operation conditions, such as uncertainty of SNRmonitoring,

TABLE 3. Physical layer parameters.

effects of ageing and power instability. For this reason,
the IPO-performance and IPO-Complexity are treated in the
next subsections (V-B.1 to V-B.3), assuming the EON oper-
ating under perfect channel conditions, which is given by:
perfect estimation of SNR, operation at the BoL and static
scenario, following the Table 2 and 3, for operation at any
conditions. The round-trip delay are compensated from tradi-
tional Smith predictor [31].

Basically, there are four main input parameters, which
can be divided into two groups: input parameters that affect
directly the performance, given by initial value of the power
increasing r0 and the tangential velocity for the power
increasing ωWP; and input parameters that affect directly the
CC of the PA algorithms, given by wind parcels K and
iterations number Nf . The optimization of both groups is
discussed in the subsections V-B.1 and V-B.2, respectively.
Others input parameters are described in Table 4. Finally,
the IPO under the perspective of complexity-performance
tradeoff is elaborated in subsection V-B.3.

1) IPO-PERFORMANCE UNDER PERFECT CHANNEL
CONDITIONS
In this context, r0 and ωWP affect drastically the algorithm’s
performance. The optimized values are obtained by the
IPO-GS framework previously described in section IV-D.1.
It assumedωWP

= 1.5708 as an initial value for the tangential
velocity, number of wind parcels K = 180 and number of
iterations equal to Nf = 250, all defined empirically.
Fig. 3 illustrates the r0 and ωWP optimization across

the loops, in such a way that all the optimized parameters
reach full convergence. Different ωWP and r0 values were
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TABLE 4. PA-CHSO and -HSO parameters.

FIGURE 3. Input parameters optimization for the PA-HSO and -CHSO.
a) ωWP optimization; b) r0 optimization; c) the best value of cost function
J∗1 (p) in Nr realizations; d) standard deviation for J1(p).

obtained for both algorithms in Fig. 3.a) and 3.b), demon-
strating that the higher parameters values from PA-CHSO
perform more accelerated and exploitive (via map chaotic)
searches. Consequently, the PA-CHSO found a better solu-
tions, measured by the cost function J1(p) during Nr real-
izations and their respective standard deviation, as depicted
in Figs. 3.c) and 3.d). More details are listed in Table 5,
considering three loops that describe the optimization trend,
i.e., nlps ∈ [1; 15; 30]; the finals optimized parameters is
highlighted by bold face, while the parameters kept fixed at
each loop is underlined.

In addition to the proposed optimization by the IPO-GS
framework, we perform a numerical analysis IPO-CPoS for
the performance input parameters, previously described in

TABLE 5. Performance of the IPO procedure for the PA-CHSO and -HSO.

section IV-D.2, specifically in eq (21). In this numerical
analysis, n ∈ [1;Nf ] and r0 ∈ [10−8; 10−4], both from
Table 5. The ωWP parameter is not evaluated, so it assumes
the optimized value from the Table 5.

From eq (21),Ps1 adoptsΛ1 = 4·10−3 andΛ2 = 1·10−3,
implying in a 9max = 10 log 10 (1.001) = 4.341·10−3 dB
and a 9min = 10 log 10 (0.996) = −1.7407 · 10−2 dB for the
EON system of Table 5. Assuming an average behavior over
Nr realizations for the Ps1 , the Fig. 4 depicts the IPO-CPoS
Ps1 as a function of r0 and number of iterations from the
PA-CHSO and PA-HSO.

As can be observed in Fig. 4, both strategies have attained
success, defined as Ps1 ≥ Ps∗. In the case of PA-
CHSO, a wider range of success regarding PA-HSO has been
achieved, defined by r0 ∈ [5 · 10−6; 5 · 10−5], and showing
that the algorithm presents robustness and lower sensibility
during the IPO-CPoS procedure. The best value for the PA-
CHSO input parameter is obtained as r∗0 = 5·10−6, achieving
fast convergence (n = 50) and superior performance, i.e.,
Ps1 = 1. On the other hand, under PA-HSO, the CPoS is
found for a narrow range of power increment, r∗0 ∈ [6±0.5] ·
10−7, because adopting similar values, such as r0 = 6 · 10−7

or r0 = 8 · 10−7 did not allow PA-HSO achieve Ps1 ≥
Ps∗. Hence, PA-HSO presented lower robustness and greater
sensibility in adjusting its input parameter in the IPO step.
Besides, the PA-HSO found slower convergence and worse
performance: Ps1(50) = 0; and Ps1(250) = 0.98, both at r∗0 .
Summarizing, the best r0 and ωWP parameters found are

registered in the last row of Table 5. Varying r0 with fixed
ωWP, Ps1 found a range of r0 that achieved success for both
algorithms. This range defines the ability of updating power,
which is directly related to robustness from both algorithms.
Hereafter, we adopt for any condition of network’s operation:
r0 ∈ [5 · 10−6; 5 · 10−5] and ωWP

= 1.6975 for the
PA-CHSO; and r0 ∈ [6±0.5]·10−7 andωWP

= 2.8386·10−1

for the PA-HSO.

2) IPO-COMPLEXITY UNDER PERFECT CHANNEL
CONDITIONS
K and Nf are the parameters that affect drastically the
algorithm’s complexity. Then, Ps2 optimizes K given Nf ,
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FIGURE 4. IPO-performance: Conditional probability of success (Ps1): a) PA-CHSO; b) PA-HSO.

as described in subsection IV-D.2, specifically in eq. (22).
From previous subsection, it was adopted r0 = 5.8318 · 10−6

andωWP
= 1.6975, for the PA-CHSO; and r0 = 6.1873·10−7

and ωWP
= 2.8386 · 10−1, for the PA-HSO. Assuming,

an average behavior of Nr realizations, the Fig 5 depicts Ps2
from both algorithms.

As can be observed in Fig 5, a set of infinite number of pairs
combinations (K ; Nf ) found the CPoS, defined as Ps2 ≥
0.94. Thus, to highlight the reliable and feasible region,
Fig 5. a) and 5. b) illustrate (green curve) the PF, which is
composed by all success points (K∗; N ∗f ) assumed as reliable
and viable, i.e., eq. (23).

In terms of PF, the PA-CHSO results are better than
PA-HSO, showing a wider region for valid pairs (Nf ;K ),
while providing higher regularity in the plane that corre-
sponds to the reliable and feasible region, combined to lower
pairs values.

3) PERFORMANCE-COMPLEXITY TRADEOFF
Under channel perfect conditions, the group of input
parameters ωWP, r0, K and Nf are evaluated in terms
of performance-complexity tradeoff, in subsection IV-D.2,
specifically in eq. (24). The feasible solutions are given by

TABLE 6. PA-CHSO and -HSO - Optimized Input Parameters and
respective CC (C).

the optimized values of r0 and ωWP, and PF obtained from
the pairs (K , Nf ) in Fig 5. As a result, we have found a
better performance-complexity tradeoff for the PA-CHSO
regarding the PA-HSO, where the best solution for the
PA-CHSO is defined as K = 132 and Nf = 180, i.e.,
CPA-CHSO = 17.3705 M flops. While the best solution for
the PA-HSO is defined by K = 228 and Nf = 150,
i.e., CPA-HSO = 24.986 M flops. This IPO framework is
summarized in Table 6.

C. PA UNDER PERFECT CHANNEL CONDITIONS
Assuming IPO procedure has been performed previously,
the PA per channel across iterations can be obtained, as illus-
trated in Fig. 6. In the simulations, it has been assumed perfect
channel estimation, optical network operating at the BoL
and static scenario, with routes, distances and bit rates given
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FIGURE 5. IPO-complexity: conditional probability of success Ps2.

in Table 2, as well as physical parameters values following
Table 3. The general parameters of the PA algorithms are
adopted from the Table 4, while performance and CC param-
eters are adopted from the Table 6, being r0 = 5.8318 · 10−6

(PA-CHSO) and r0 = 6.1873 · 10−7 (PA-HSO). Indeed,
the PA per channel reaches full convergence for both PA
algorithms. The horizontal dashed lines represent the PA per
channel obtained via GD procedure, which is an analytical
method that has been used to validate convergence of the
PA-CHSO and PA-HSO.

Regarding the results in Fig. 6, the following metrics have
been calculated to the PA-CHSO and -HSO: a) the mean inte-
gral absolute value of the residual margin for theM -channels
during time-window resulted equal to 19.1287 dB and
23.1334 dB, respectively; the maximum PP all the chan-
nels (max(p)) at the last iteration of 3.3811·10−4 dB and
1.4014·10−3 dB, respectively; b) mean settling iteration of
all the users (is), assuming tolerance around 10−4 for the
M channels (i.e., p∗ − p ≤1 · 10−7), results in ≈ 79 and
≈ 129 iterations, respectively. In this sense, the superiority
from the PA-CHSO is evident. Besides, Fig. 6 presents over-
shooting and undershooting during the PA, which is much

FIGURE 6. PA per channel versus the number of iterations: a) PA-CHSO;
b) PA-HSO. Dashed lines in both graphs represent GD solution.

FIGURE 7. Normalized mean square error (nmse) against the number of
iterations for PA-CHSO and -HSO algorithm operating under perfect and
imperfect channel conditions.

more noticiable in the PA-HSO convergence. This behaviour
is called sub-damped, where the transient responses are oscil-
latory and the closed-loop poles are complex conjugates.
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FIGURE 8. Maximum and minimum penalty power, i.e., p̄(+)
max and p̄(−)

max,
and theirs target values, i.e., p̄(+)∗

max and p̄(−)∗
max , against the number of

iterations for PA-CHSO and -HSO.

Fig. 7.a) depicts the quality of the solution by the NMSE
analysis from Fig. 6. In this figure, three main behaviors
are highlighted through the circles c1, c2 and c3. The point
c1(n = 53) represents the ability of the PA-CHSO to
find a better candidate solution in few iterations, i.e.,
it found a NMSE = 1.76 · 10−4, while the PA-HSO was
able to attain NMSE= 0.1965. The intermediate point c2
(n = 93) represents the PA-CHSO around a good can-
didate solution, in consequence of its more exploitative
nature, it is a region which the PA-CHSO can be slower
than PA-HSO. In this region, the NMSE reduction are of
order of 2.0451·10−6 and 9.4385·10−5, for PA-CHSO; and
4.3480·10−3 and = 2.2552·10−2, for PA-HSO. c3 represents
the PA-CHSO ability to achieve a better solution at the last
iteration: the PA-CHSO found a NMSE= 4.87768·10−5; and
PA-HSO found a NMSE= 8.9501·10−5 for the PA-HSO.
Besides, in range of n = 1 to 53 is evident the instability by
PA-HSO, due to its lower exploitative capacity for the power
launch (or initial power of the eye) of 0 dbm. Therefore,
the best PA capacity from PA-CHSO is clear.

Fig 8 depicts the quality of the solution by the PP analysis
from Fig. 6, illustrating p̄(−)max and p̄(+)max of the M channels
across the n. Here, it is adopted that 9min and 9max values
define the minimum target values for p̄(−)max and p̄

(+)
max, denoted

as p̄(−)
∗

max and p̄(+)
∗

max , respectively. The p̄
(−)
max and p̄(+)max results

show that the PA-CHSO outperforms the PA-HSO, i.e., it
guarantees 9min at n ≥ 31 and 9max at n ≥ 53, while
the PA-HSO guarantees 9min at n ≥ 131 and 9max at
n ≥ 141. The final values found for the PA-CHSO are
p̄(+)max[180] = 3.3811 ·10−4 and p̄(−)max[180] = −1.2971 ·10−3,
while for the PA-HSO are p̄(+)max[150] = 1.5164 · 10−3 and
p̄(−)max[150] = −2.4642 · 10−3, respectively. Therefore, it is
evident the energy saving from the PA-CHSO.

D. PA UNDER IMPERFECT CHANNEL CONDITIONS
In order to evaluate the PA-CHSO and -HSO effectiveness
in terms of optimal PA, three analysis for channel conditions

were carried out: a) non-perfect monitoring of the OPMs,
in section V-D.1; b) channel ageing effects, in section V-D.2;
c) power instability, in section V-D.3. The general parameters
values adopted for both algorithms are described Table 4,
while input parameters are depicted in Table 6, with the
choice of r0 = 5.8318 · 10−6 (PA-CHSO) and r0 = 6.1873 ·
10−7 (PA-HSO).

1) NON-PERFECT MONITORING OF THE OPMs
there is an inaccuracy in the monitoring of the OPMs. Here,
it is considered as a random variable εi ∼ LN (µ, σ ), where
µ = 0 dB and σ = 0.16 dB. These monitoring uncertainties
corresponds to a maximum error εimax = 0.6 dB with high
probability (> 0.9995), commonly adopted in the optical
networks considering inaccuracies from the OPMs [38]–[40].
This error is added into ith SNR during the PA procedure.
Moreover, the adopted scenario assumes an operation at the
BoL without power instability.

Fig. 7.b) depicts the velocity and the tendency of
convergence, as well as the quality of the solutions. As can
be observed, there is a decrease in the NMSE with the
increase in the number of iterations. It is noticed that for
early iterations the PA-CHSO achieves better convergence
performance when compared to PA-HSO. In terms of conver-
gence velocity, the PA-CHSO (at n = 42) is able to attain a
NMSE = 3.2 · 10−2 approximately three times faster
than PA-HSO (n = 123). On the other hand, similar
NMSE values are found in the later iterations, i.e, n ≥
125 iteration, where both algorithms achieve an asymp-
totic NMSE ≈ 3.21 · 10−2. Those results are affected by
the OPMs inaccuracies. Indeed, comparing both PA algo-
rithms performance operating under perfect monitoring con-
dition, Fig. 7.a), the same asymptotic NMSE value has
not been observed in both schemes. In this ideal scenario,
the maximum PP resulted in ppa-chsoimax

= 0.26042 dB and

ppa-hsoimax
= 0.26037 dB.

2) CHANNEL AGEING EFFECTS
Under equipment ageing effects, Fig. 9 proposes analyze the
PP trend against a multi-period incremental assuming τ =
[0, 2, 4, · · · , 10] years, representing the effect of ageing from
BoL to EoL network. It illustrates the expected value of the
PP from M -channels (E[p]) across the time, as well as their
respective standard deviation (σp), p̄

(+)
max and p̄

(−)
max. The ageing

from the parameters is assumed as a linear function of time τ .
Elaborate further, it is possible to see in Fig. 9, that

PA-CHSO performs better when compared to the PA-HSO.
E[p] and σp are measured with the objective of evaluating
the lower and upper bound of the PP of M -channels during
EON lifetime. Here, it is assumed that 9min and 9max define
the minimum values of the PP target, i.e., p̄(−)max = −1.7407 ·
10−2 db and p̄(+)max = 4.3427 · 10−4 dB, respectively. Details
about p̄(−)max and p̄(−)max are in section IV-E.1. In case of the
maximum PP, PA-CHSO is better than PA-HSO, achieving
a maximum value of E[p] ≈ 4.3432 · 10−4 dB at τ = 10
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FIGURE 9. (a) Expected value of power PP for M-channels across time at
years (E[p]) and their respective standard deviation (σp), (b) p̄(+)

max and

p̄(−)
max, p̄(+)∗

max and p̄(−)∗
max values, for the PA-CHSO and PA-HSO.

against E[p] ≈ 4.6223 · 10−2 dB at τ = 10. In terms
of minimum PP, the PA-CHSO found BER∗ all the time,
a consequence of E[p] ≈ −5.6462 · 10−4 dB ≤ 9min at τ =
10, while the PA-HSO does not found BER∗, a consequence
of E[p] ≈ −1.6013 · 10−1 dB ≥ 9min at τ = 10. Therefore,
the PA-CHSO and -HSO resulted at a margin increasing of
5.6462 · 10−4 dB and 1.6013 · 10−1 dB, respectively, and
presented a better saving energy. Besides, the σp values found
demonstrated that PA-CHSO is more stable than PA-HSO in
terms of minimum energy expenditure to achieve the BER∗.
In this context, PA-CHSO is effective to mitigate the channel
ageing effects.

3) POWER INSTABILITY
Assuming now a dynamic scenario characterized by power
instability or perturbation, which can represent dropping or
adding channels to the EON. After node add-drop channels
an undesired effect reaches the surviving channels, herein
modeled as a sine function in eq. (13), where Apert =
0.8 dB and f = 0.5 Hz represents overshoot and undershoot
maximum adopted in the project of EDFA compensation of
±1 dB. Theses values assured the drops of the two routes,
simultaneously [36].

In simulations of Fig. 10, a dynamic scenario has been
modeled assuming a network optimized to operate with
12 users, such as in Table 2 and Fig. 2. Thus, a fast variation
is introduced at the node 8, where R10 and R11 are dropped
at the iteration 30. This dropping results in four surviving
channels (R4,R8,R9 andR12) forward. These channels are
affected by power fluctuations from node 8 toD. The interval
of perturbation occurs at 30 < n ≤ 49.
Elaborating furhter, Fig. 10 illustrates the effect of the

power perturbation under three situations: with and without
compensation from PA-CHSO and -HSO. In case of no com-
pensation, the launch power is assumed as optimized from
the PA-CHSO, and power adjustment is not carried out after
the drop of the two channels. In other words, the channels
R4, R8, R9 and R12 are penalized and theirs transmission

FIGURE 10. NMSE for a dynamic scenario characterized by a power
perturbation (pert) occuring in between 30 < n ≤ 49 iterations. Two
channels are dropped, R10 and R11, and three situation are taken:
without compensation and compensation via PA-CHSO and -HSO.

power are not re-optimized, resulting in a NMSE[210] =
1.0406 · 10−1. However, performance improvment can be
attained deploying compensation in PA-HSO and PA-CHSO,
resulting in a NMSE[210] = 1.7455 ·10−4 and 1.2874 ·10−5,
respectively. It is evident the PA-CHSO ability to escape from
local minimum around n = 100, as well as the behavior of
both algorithms in the sense of following the power perturba-
tion and in achieving the optimal power in latter iterations.

A comparison between the initial and final NMSE value
showed that for the PA-HSO, similar values are found, i.e.,
NMSE1 = 1.7946 ·10−4 and NMSE[1] = 1.7455 ·10−4; and
for the PA-CHSO, a better final value is found, i.e., a gap of
1NMSE= 3.76 · 10−5. Therefore, the PA assuming fluctua-
tion from drop channels is validated and a better performance
is found by the PA-CHSO.

E. COMPLEXITY
The CC is evaluated in terms of mathematical operations and
number of channels. In asymptotic terms, the PA-HSO and
PA-CHSO have complexity of order of O(M2). On the other
hand, the complexity of GD algorithm is of order of O(M3),
as described in section IV-E.2. Aiming at attaining more
accuracy in the complexity analyses, we have considered the
mathematical operations from eqs. (27), (26) and (28). Three
different system loadings have been adopted: A has 12 chan-
nels (2,2 Tbps), as described in Table 2 and Fig. 2; B has
120 channels (22 Tbps); and C has 240 channels (44 Tbps).
B and C have the same topology of A, however theirs routes
result of 10 and 20 times of A (R1, · · · ,R12), respectively.
Those scenarios assume perfect channel conditions: opera-
tion at the BoL, static operation, and perfect monitoring of
channel.

Fig. 11 depicts the averaged CC for the three algorithms
operating under A, B and C scenarios. It also assumes opti-
mized parameters from the Table 6. Those parameters result
the worst-case for the CC, i.e., K and Nf can be reduced
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FIGURE 11. Complexity computational for three different channel
scenarios: PA-CHSO, -HSO and -GD.

due to the increasing of M -channels and r0, while ωWP

can be reduced due to the increasing of non-linear effect.
The PA-CHSO has resulted in lower complexity than two
methods. In addition, the CC can be reduced by considering
re-optimization of input parameters for any network operat-
ing conditions.

VI. CONCLUSION
The PA-CHSO method proved to be a promising technique
to resource allocation in elastic optical networks, espe-
cially by Nyquist wavelength division multiplexing (WDM)
super-channels, combining competitive convergence speed,
control capacity, non-linear effects mitigation, higher prob-
ability of success in lower iterations and lower penalties.
The PA-CHSO has demonstrated a higher ability to escape
of local minimum caused by non-linear effects in scenarios
where higher bit rates are required. The optimized parameters
presented robustness considering conditional probability of
success. Moreover, it resulted in a CC in the order ofO(M2),
much lower than the gradient descent method (of order of
O(M3)), and marginally lower compared to the conventional
PA-HSO.

The conventional PA-HSO has presented inferior perfor-
mance regarding the PA-CHSO. In terms of the optimization
of parameters, a narrow conditional probability of success
was found, resulting in a low ability for absorption of ageing
effects and vast-variations, a consequence of higher sensibil-
ity to the parameters variation. Moreover, it was found worse
penalties and lower convergence speed in case of dynamic
scenarios.

The PA-CHSO performs PA in EONs with better
performance-complexity tradeoff regarding both the PA-HSO
and the PA-GD, considering non-perfect monitoring of
OPMs, channel ageing effects and dynamic scenario,
that are the main realistic conditions from EONs oper-
ations. Such advantages result in a better margin reduc-
tion, energy efficiency improvement, and cost limitations.

In summary, inserting chaotic map procedure into the
PA-HSO (or -CHSO) brought better performance-complexity
balancing tradeoff.
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