
Received April 5, 2020, accepted April 20, 2020, date of publication April 29, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991201

A Survey of Handy See-Through Wall Technology
KANGLE MU 1, TOM H. LUAN 2, (Senior Member, IEEE), LINA ZHU 3,
LIN X. CAI 4, AND LONGXIANG GAO 5, (Senior Member, IEEE)
1School of Telecommunications Engineering, Xidian University, Shaanxi 710126, China
2School of Cyber Engineering, Xidian University, Shaanxi 710126, China
3School of Telecommunications Engineering, Xidian University, Shaanxi 710071, China
4Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
5School of Information Technology, Deakin University, Geelong, VIC 3125, Australia

Corresponding author: Tom H. Luan (mailto:tom.luan@xidian.edu.cn)

This work was supported by the China NSF under Grant U1808207.

ABSTRACT The through-wall system, which applies radio technologies to detect objects behind the wall,
can find many appealing applications such as public security, life detection, and medical health monitoring.
While being studied for years, the recent advances in high-performance handheld computing devices and
artificial intelligence have made the through-wall system more practical. In this article, we present a
tutorial-like study on the fundamental radio technologies used in the through-wall system, as well as its
recent advances. Different from the traditional through-wall radars, this paper mainly focuses on the handy
through-wall techniques with low power, narrow bandwidth, lightweight, no contact, and civil use. Advanced
through-wall systems and open research issues are also presented.

INDEX TERMS Seeing through walls, machine learning, motion capture, wireless.

I. INTRODUCTION
People always have a great interest in knowing things behind
walls, which makes the through-wall technology demanding.
The through-wall technology refers to the technology which
has the ability to detect objects of interest inside an enclosed
area, and does not require users to wear any additional
devices.

Through-wall technology can find the following typical
applications:

A. PUBLIC SECURITY
Law enforcement personnel can use this technology to detect
how many individuals are behind the wall and locate them
as well. For example, in a hostage situation, policemen can
use the through-wall technology to identify the distribution of
terrorists hiding in rooms and make a more effective rescue
plan of hostages.

B. LIFE DETECTION
Through-wall technology provides an efficient way for
life-search and detection in disaster rescue. For instance,
after an earthquake, the through-wall system, installed on
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unmanned aerial vehicles, can be used to locate survivors
trapped under the rubble.

C. SMART HOME MONITORING
A house equipped with through-wall devices is able to moni-
tor the movement of people, e.g., the elderly and children [1],
inside the house and analyze their behaviors. For instance,
it would be very dangerous if the elderly fall down, or children
get to dangerous positions such as windows or balconies.
With the real-time continuous motion detection achieved by
the through-wall technology, many dangerous events at home
can be alerted and prevented.

D. MEDICAL APPLICATIONS
Through-wall technology can also be applied to measure vital
signs like breathing and heart rates of human in medical
health care. Typical technology for vital sign measurement
requires body contact; users need to put on extra devices on
their bodies which can be inconvenient and uncomfortable.
The through-wall devices can track the vital signals without
the skin contacts and even through obstacles. The devices can
discover the slight body movement caused by breathing or
heartbeat, and measure the breathing and heart rates accu-
rately by extracting the periodicity of the received signal [2].
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TABLE 1. Structure of this survey.

The through-wall technology mainly uses the radio fre-
quency (RF) signal since RF can penetrate non-metallic
obstacles like wooden walls and reflect off human bodies.
Through-wall systems transmit electromagnetic signals and
then process the received reflected signal to exploit infor-
mation behind walls. In order to have a better penetrability,
most proposed through-wall systems operate at the frequen-
cies below 10GHz, which is because that wall attenuations
of RF signals are reasonable below this frequency, and the
higher frequency, the worse penetrability of RF signals is.
In particular, the Industrial Scientific Medical (ISM) band is
widely adopted in through-wall technology since most daily
used wireless devices, e.g.,WiFi and Bluetooth, operate at the
ISM band of 2.4GHz and 5.8GHz.

The performance of through-wall systems is typically eval-
uated by the following key performance indicators (KPI):

• Detection Ability refers to the accuracy of the through-
wall detection. According to specific applications,
the detection ability is measured in different criteria.
For through-wall imaging systems, the detection ability
is evaluated by the resolution of output images; for
through-wall localization systems, it is measured by
the accuracy of locations of the detected targets; for
through-wall human body detection systems, it is mea-
sured by the number of people they can detect.

• Economical Efficiency refers to the cost of a whole
through-wall system.

• Energy Efficiency refers to the power consumption of
a through-wall system.

The objective of this paper is to survey the most commonly
used techniques, existing systems, and challenges in the
through-wall field. Rather than the through-wall technology
in a general and broad sense, this paper mainly focuses on
the handy through-wall systems which are suitable for civil
use (satisfy the Federal Communications Commission (FCC)
regulations and in ISM band ) with low transmit power (less
than 1W), narrow bandwidth (less than 2GHz), lightweight
and easy to deploy. The techniques for identifying, locating,
or imaging the human body behind a wall are the focus of our
work.

The structure of this paper is illustrated in Table 1.
Section II lists several critical challenges encountered in
the system design. Section III presents the four differ-
ent categories of related systems or works. Section IV
describes the basic principles of through-wall technology, and
Section V introduces commonly used techniques to achieve
through-wall detection. In Section VI, a number of existing
through-wall systems are discussed with their functions, tech-
niques, advantages, and limitations. Section VII closes the
paper with concluding remarks and open research issues.

II. CHALLENGES OF THROUGH-WALL TECHNOLOGY
Although RF signals have natural advantages in the
through-wall scenario, there are still fundamental engineering
challenges as below.

A. SIGNAL ATTENUATION
The transmitted signal typically suffers a great attenuation,
especially through dense obstacles. For example, a one-way
traversal of a concrete wall can reduce WiFi signal power
by 18 dB [3]. In the practical use of a through-wall system,
the signal needs to traverse the wall several times, making
the received signal very weak. As a result, the useful infor-
mation in the received signal is prone to be buried in both
the signal reflected off the wall and the direct signal from
transmit antennas. The basic propagation principle is that
the higher frequency, the worse penetrability is; nevertheless,
the higher frequency can bring better resolution in detection.
Therefore, it is a trade-off to choose an appropriate frequency
in through-wall systems. A survey about through-wall radar
points out that researchers tend to build through-wall radar
below 3GHz [4]. Apart from that, signal strength would
reduce as the propagation distance increases which has a
notable effect on detecting multiple targets with different
distances [5]. In multi-target scenarios, the target close to the
device often has a stronger signal than the ones far from the
device. In this case, the signals from those targets far from
the device are prone to be buried by the stronger signals
from the near targets. Therefore, setting a simple thresh-
old to determine the existence of targets is insufficient and
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through-wall systems need to process signals from different
targets differently to take the distance attenuation into consid-
eration. Besides that, it is also challenging in tiny movements
detection (e.g., breathing and heart rates detection) through
a wall. The fluctuation in the reflected signal caused by the
tiny movements is even weaker than the reflected signal from
the whole human body. To address this challenge, Vital-
Radio, a wireless breathing and heart rates measurement
system, separates the space into multiple buckets based on
the distance from the device and extracts the periodic signal
components in each bucket [2]. By separating the space into
multiple buckets, the signal with useful breathing and heart
rates information would be isolated from the signals reflected
off furniture and walls. Then, if users keep static or do just
small movements (e.g., typing, watching TV), the dominating
periodic components in the received signal are mainly caused
by breathing and heartbeat, which makes it easier to measure
breathing and heart rates.

B. SIGNAL MEASUREMENT
An important parameter in through-wall systems is the time-
of-flight (TOF), which is the time that signal takes from the
transmit antenna to the receive antenna. Because the trans-
mission speed of the RF signal is very high, it is very hard to
accurately measure TOF. For example, one signal only takes
around 0.1ns to travel through 30m. Traditional radars lever-
age high-powered systemswith high-speedADCs (analog-to-
digital converter) to tackle this issue and they are mostly used
in outdoor environments to detect objects at a distance of hun-
dreds or thousands of meters. However, high-speed ADCs are
expensive, power-consuming, and have low bit resolution [1],
which make traditional through-wall radars bulky and costly.
Moreover, the short distance of indoor applications impose
even more challenges in accurate TOF measurements.

To address this challenge, through-wall systems mostly
resort to three techniques: (1) leveraging frequency modu-
lated continuous wave (FMCW) to measure the TOF indi-
rectly, (2) measuring the direction of arrival (DOA) to
obtain angle information instead of the distance information
obtained by TOF, and (3) leveraging the pattern of received
signal strength (RSS) or channel state information (CSI) to
achieve localization. These techniques will be discussed in
detail in Section III and V.

C. MULTIPATH EFFECT
The complicated environment of through-wall detection
would cause a multipath effect, which would get worse in
multi-target scenarios since more targets are accompanied
by more reflection of signals. For example, in the indoor
environment, through-wall systems need to deal with mul-
tipath signals such as ones reflected off walls and furniture.
Such interference signals would bury the signal from intended
targets. Moreover, the received signal from targets may not
only be received directly by antennas but also be reflected off
other objects in the environment or even other surrounding
targets and then received by antennas. These indirect signals

would result in the inaccurate location estimation of the target
or even create some virtual targets which do not really exist.
Virtual targets caused by multipath are very similar to the
scenario in which a person is standing by a mirror and an
observer may observe two persons, one is the real person,
the other is the virtual person in the mirror. Therefore, those
virtual targets would confuse the through-wall system like a
virtual image of targets in a mirror or like a ghost and some
efforts have been made to alleviate the impact caused by mul-
tipath specifically in the radar field. Chen et al. proposed a
method of multipath ghost elimination [6]. Setlur et al. derive
a model for the multipath in an enclosed room and propose
a way to associate the ghosts back to the true location [7].
Those methods of multipath elimination are highly based
on the precise model of multipath signals with certain radar
techniques (e.g., Synthetic Aperture Radar (SAR)). Thus, for
some handy through-wall systems which do not use the same
radar technique, it is hard to apply these methods of multipath
elimination to these systems directly.

To address the multipath effect, different through-wall
systems leverage different methods based on the techniques
they use and their scenarios. For instance, Wi-Vi exploits
Multiple Signal Classification (MUSIC) algorithm to extract
useful information from highly correlated signals (e.g., mul-
tipath signal) [3]. WiTrack takes the assumption that the
multipath signals always travel a longer distance than the
directly received signal, therefore, by determining the signal
with the minimum propagation distance, it can alleviate the
multipath effect and achieve higher accuracy [1]. However,
this assumption only holds in the one-target scenario since
there are multiple direct signals reflected off multiple targets
in multi-target scenarios so that the minimum propagation
rule can only determine one direct signal. To address the
multipath effect with multiple targets, WiTrack2.0 adds the
RF heatmaps from multiple pairs of transmit and receive
antennas together to strengthen the direct signals [5]. Specifi-
cally, since different antenna pairs are placed in different loca-
tions, they suffer from different patterns of multipath signals
whereas similar patterns of direct signals. Then, by adding
the results from multiple antenna pairs, direct signals with
similar patterns would superpose each other and become
more salient.

D. MIRROR EFFECT
The wavelength of RF signals is quite longer than that of the
visible light; in RF, body parts would reflect the signals from
the transmit antenna but not scatter them. However, scatter
is always more useful because scattered signals are visible in
all directions, whereas reflected signals are very directional.
Such directivity could result in only part of the reflected
signal being received by antennas. For instance, the signal
reflected off the chest is along the direction of the receive
antenna but meanwhile the signal reflected off the legs is in
the direction of the floor, so that only the chest is visible at
this time. In other words, different body parts act like mirrors
facing different directions thus some body parts cannot reflect
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the signal to the receive antennas, which is called the mirror
effect [8]. In order to plot the whole human body via RF
signals, one snapshot is insufficient, thus through-wall sys-
tems need extra operations. Fortunately, as the human body
moves, the directions of reflected signals vary over time.
Therefore, in different time periods, the visible parts of a
human body are always different, which makes the capture of
the whole human body possible. RF-Capture, a through-wall
imaging system, leverages consecutive reflection snapshots
to reconstruct the whole human figure based on the fact that
different snapshots consist of different parts of the human
body [9]. Likewise, RF-Pose, a through-wall imaging system
with a machine learning method, needs to feed a sequence of
consecutive frames of RF heatmaps into the neural network
to address the mirror effect [10].

E. PRACTICAL ISSUES
One of the most practical issues is designing real-time
through-wall systems which can process the received signals
efficiently and render the result to users with low time delay.
Handy through-wall systems are always more compact and
with limited computing power, so that how to control the
computation complexity is a very critical problem in system
design. It is common that most through-wall systems are not
able to do a perfect job to extract all kinds of information
from the signals reflected off targets and most of them are
designed to be an expert in extracting certain information.
For instance, Wi-Vi leverages off-the-shelf WiFi devices to
estimate the coarse angle information of targets behind a
wall [3]. It is designed to obtain the number of people behind
a wall rather than to estimate the accurate people’s loca-
tions. WiTrack can only accurately locate one person behind
a wall because multiple people would give rise to a more
complicated environment (e.g., stronger multipath effect and
distance attenuation) where more computation resources are
needed to process signals [1]. RF-Capture, a through-wall
imaging system, resorts to a strategy named coarse-to-fine
scan to reduce the computation complexity [9]. Specifically,
RF-Capture first scans a wide area with low scan resolution
to find the coarse location of the target, and then scans only
this target area with high resolution to achieve fine imaging.
Other through-wall systems, such as through-wall breathing
and heart rate measurement systems [2], do not locate the
accurate location of targets and only extract useful vital infor-
mation from signals. Therefore, to achieve real-time through-
wall detection, designers have to make a trade-off between
capacity and complexity.

Another practical issue is the relatively low detection res-
olution of RF signals comparing to the visible light. This
issue actually limits the performance of today’s through-wall
systems in many aspects. For gesture classification, due to
the low resolution of RF signals, most through-wall systems
can only recognize large movements such as walking forward
or backward, standing up or sitting down, and raising an
arm in a certain direction. Moreover, tracking the trajectory
of certain body parts is still challenging, researchers point

out that due to the mirror effect, some body parts cannot
reflect the signal to the receive antenna efficiently in certain
directions or places [9]. Though some remarkable work has
achieved fine-grained gesture and motion recognition via
CSI, these systems cannot work well in through-wall sce-
narios and nearly have no ability to locate targets behind a
wall [11]–[13].

For through-wall systems leveraging off-the-shelf devices
such as WiFi and Radio Frequency Identification (RFID),
band interference is also a crucial factor affecting the system
performance. Most WiFi-based systems extract useful infor-
mation from measured CSI or RSS. Take CSI as an example,
in most experiments, CSI is obtained by an open-source CSI
Tool which measures channel matrices for 30 subcarriers
in the orthogonal frequency division multiplexing (OFDM)
WiFi system [14]. Fine-grained gesture and motion recog-
nition is achieved by analyzing the CSI pattern of different
gestures and motions. However, once there are other WiFi
devices operating within the sameWiFi channel, signals from
other WiFi devices would contaminate the measured CSI and
then influence the performance of these systems. WiFi-based
through-wall systems face the same situation that the ubiqui-
tousWiFi devices may cause interference to them. Therefore,
the robustness of such through-wall systems is influenced by
band interference.

Apart from the above challenges, some researchers also
focus on the properties of walls that could impact the per-
formance of through-wall systems. When penetrating walls,
RF signal would behave differently due to various electro-
magnetic parameters of walls. Therefore, by operating the
estimation of wall properties, such distortion can be cor-
rected. Solimene et al. propose a method to estimate the wall
transmission coefficient by MIMOwhich is both time-saving
and resource-saving [15]. Vishwakarma et al. propose a
machine-learning-based method to mitigate wall interference
effects [16].

III. CATEGORIES OF THROUGH-WALL SYSTEMS OR
WORKS
Through-wall systems or systems with certain through-wall
detection ability can be divided into four categories:
(1) WiFi-based system, (2) radio tomographic imaging (RTI)
system, (3) traditional through-wall radar, (4) and software-
defined radio (SDR) system. The general setup of the four
categories is shown in Fig. 1.

A. WiFi-BASED SYSTEM
Nowadays, nearly everywhere indoor is covered by WiFi
signals and WiFi devices. WiFi-based systems are defined
as the systems which leverage WiFi devices as a platform
and detect things of interest by measuring the received WiFi
signal. There aremainly three approaches forWiFi-based sys-
tems: (1) analyzing the Received Signal Strength (RSS) from
the MAC layer [17]–[21], (2) analyzing the Channel State
Information (CSI) from the physical layer [22]–[25], and (3)
analyzing WiFi signals through software radio technology.
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FIGURE 1. A brief illustration of the setup of the four categories of through-wall systems. (a) shows the general setup of WiFi-based
systems. Most WiFi-based systems measure the channel fluctuation caused by human movement between multiple WiFi devices within a
WiFi network. Other WiFi-based systems just leverage a single WiFi device to transmit signals, like radar, and then extract human body
information from the received signals. (b) shows the conception of radio tomographic imaging (RTI). RTI systems measure the signal
strength between each pair of sensors in a dense sensor network to capture human body information. (c) is the classic scenario of
traditional through-wall radar. (d) shows the simplest setup of the software-defined radio (SDR) system. Such systems usually use several
antennas to transmit and receive signals and then process received signals by SDR devices, e.g., USRP and personal computers.

RSS represents the received signal power or the signal-to-
noise ratio (SNR) which can be measured within one or more
packets transmitted in WiFi. RSS-based systems analyze the
pattern of varying RSS, i.e., the received signal strength at the
receiver, to extract information of obstacles (e.g., furniture,
walls, etc.); the presence or movement of a human body
would also cause an influence on the RSS. Nuzzer, proposed
by Seifeldin et al., utilizes changes in RSSmeasured by wire-
less networks to locate users directly [17]. EZ, proposed by
Chintalapudi et al., determines the location of users’ mobile
devices by measuring the RSS at different access points
(APs) [18]. It is worth noting that EZ locates users by locating
their mobile devices and therefore is not device-free. WiGest,
proposed by Abdelnasser et al., utilizes changes in RSS to
sense hand gestures which can be used to control a video
player [19]. Mostofi et al. achieve through-wall imaging
based on mobile platforms such as unmanned aerial vehicles
(UAVs) [20] and robots [21].

Different from RSS which records the collective sig-
nal strength at the receiver, CSI between one pair of
transmit-receive antennas contains the signal strength and
the phase information of each OFDM sub-channel. As the
signal strength and the phase information of one sub-channel
reflect the properties of this channel, such as the information
of signal propagation, and the effect of path loss, scattering,
fading, etc., CSI describes more detailed information about
the channel compared to RSS, and accordingly the process-
ing of CSI is more complicated but also more reliable and
accurate. E-eyes, proposed by Wang et al., leverages CSI
measured from a WiFi network to track activities of one
user [22]. Wang et al. show that CSI is more fine-grained
than RSS by detecting the same activity with CSI and RSS,
respectively, and comparing their results. FarSense, proposed
by Zeng et al., can monitor human respiration by CSI even in
through-wall scenarios with commodity WiFi devices [23].
FarSense employs the ratio of CSI readings from two anten-
nas to reduce noise and the ratio enables the use of phase
information to extract respiration information. WiSpy, pro-
posed by Hanif et al., can sense the movement of persons

behind a wall by analyzing CSI and predict their number
as well by applying machine learning algorithms to CSI
data [24]. WiGeR, proposed by Al-qaness et al., can achieve
gesture recognition based on CSI extracted from any common
WiFi router [25].

The software radio scheme applies the universal software
radio peripheral (USRP) [3], [11] to process WiFi signals,
or wireless open access research platform (WARP) to design
customized WiFi systems [26]. Note that this type of system
also meets the definition of Software-Defined Radio (SDR)
system, as discussed in Section III-D. Specifically, USRP
is an integrated hardware platform for software radio which
allows users to configure and process the radio through soft-
ware, such as modulation, coding, and signal processing.
In other words, USRP provides more freedom in adapting
WiFi radios than standard WiFi protocols and thus can pro-
vide and enables the deployment of radar techniques and
complicated frequency analysis for more accurate measure-
ment at the cost of system cost and complexity. Wi-Vi, pro-
posed by Adib et al., can detect the moving people behind
a wall [3]. It leverages the MIMO of the WiFi device to
address the flash effect, which would be discussed in detail
in Section VI. USRP is then employed to process WiFi sig-
nals with radar methods. WiSee, proposed by Pu et al., is a
gesture recognition system leveraging USRP and can work
in through-wall scenarios [11]. WARP has been developed
for the algorithm or system design and is compatible with the
commercial WiFi standard. WiDeo, proposed by Joshi et al.,
is a through-wall device-free motion tracing system with cus-
tomized algorithms to process WiFi signals on WARP [26].

In conclusion, RSS is themost accessible information since
you can obtain the received signal power or SNR easily on
nearly every wireless system. Compared to RSS, CSI can
provide details about each sub-channel (i.e., the strength and
phase information) instead of the rough power provided by
RSS. Though CSI is supported in 802.11n protocols, not
every network interface controller (NIC) provides access to
CSI data from the physical layer. Themethodmost commonly
used by researchers is CSI Tool with Intel 5300 NIC [14].
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Therefore, it is harder to obtain and more expensive to pro-
cess CSI data. USRP is a peripheral device independent of
WiFi whereas we can obtain RSS and CSI merely through
WiFi devices. The processing flexibility and ability of USRP
outweigh WiFi devices but the cost of the USRP hardware
platform is much higher than off-the-shelf WiFi devices.

The most significant advantage of WiFi-based systems is
that they can exploit off-the-shelf WiFi devices, and therefore
they are relatively cheaper and easier to implement. Besides
that, the transmit power of WiFi devices is usually less than
50 mW which is lower than that of traditional through-wall
radars. But the disadvantage is that the performance of such
systems would be limited by WiFi devices (e.g., bandwidth,
sampling rate, etc.) since they are designed for low-cost
wireless communications.

B. RADIO TOMOGRAPHIC IMAGING (RTI) SYSTEM
RTI is an emerging technique [27]–[31] which reconstructs
the spatial loss field of the environment by a dense wireless
sensor network [30]. In specific, by placing a large number
of sensors around the target area, RTI systems analyze the
spatial accumulation effect of shadowing loss of the RSS to
image area of interest [28]. RTI is an effective technique for
through-wall detection and its sensor nodes are low-cost and
low-power [29]. In order to have better accuracy, most RTI
systems need to place a mass of sensors to enclose the whole
area of interest. This, however, makes it impractical in some
scenarios like hostage rescue.

C. TRADITIONAL THROUGH-WALL RADAR
Traditional through-wall Radar is a well-studied area and
has achieved great success, especially in military applica-
tions. Radar-based methods can be roughly divided into
three categories: ultra-wideband (UWB) radar [32]–[41],
Doppler radar [42], [43], and Frequency Modulated Contin-
uous Wave (FMCW) radar [44], [45]. With radar devices,
some critical challenges in through-wall scenarios (e.g., flash
effect [3]) can be easily solved. The most widely used one
is UWB radar because of its high range resolution and good
penetrability [32]. However, most traditional through-wall
radars are costly and bulky since they need high-performance
hardware, higher transmit power, and large antenna arrays
which are the key features that make them different from
the other three categories. For instance, though some SDR
through-wall systems (will be discussed in Section III-D)
also adopt techniques from radar fields, such as FMCW, their
transmit power is less than 1mW, which is far less than that of
the FMCW radars mentioned above (e.g., the transmit power
is 1W in [45]). The high transmit power makes it hard for
traditional through-wall radars to meet the power limitation
in the ISM band, and costly and bulky hardware also prevents
traditional through-wall radars from civil use.

D. SOFTWARE-DEFINED RADIO (SDR) SYSTEM
The SDR system refers to the RF system where most
hardware components are replaced by software methods.

It requires professional RF devices (e.g., special antennas,
radio frequency identification (RFID) devices) and special
programmable software platforms (e.g., USRP). The flexi-
bility of software provides SDR systems with more algo-
rithm options (from radar to machine learning). Besides
that, SDR systems controlled by software could achieve
reasonable resolution with less transmit signal power than
WiFi (even less than 1mW) since they can break the limits
of WiFi devices (e.g., bandwidth, sampling rate, etc.) and
focus only on through-wall purpose. Table 5 summarizes
the power consumption of some systems. SDR-based sys-
tems have achieved through-wall localization [1], [5], [46],
through-wall imaging [9], [10], [47], [48], and human vital
signals detection [2], [49]. The advantage of such systems is
that signal processing methods are relatively flexible but the
disadvantage is the high cost of special devices like USRP.

WiTrack [1] and WiTrack2.0 [5], proposed by Adib et al.,
are designed for through-wall localization. They leverage
USRP to generate FMCW signals to measure the dis-
tance from antennas to targets. RF-Capture, proposed by
Adib et al., leverages FMCW and USRP to achieve through-
wall imaging [9]. Tadar, proposed by Yang et al., leverages
an RFID reader and multiple RFID tags to locate people
behind a wall [46]. RF-Pose [10], RF-Pose3D [47], and
RF-Avatar [48], proposed by Zhao et al., can reconstruct the
2D or 3D model of a human body through RF signals. These
three systems combine RF devices and camera devices, and
leverage machine learning techniques to train RF systems
supervised by vision systems. Besides that, Vital-Radio, pro-
posed by Adib et al., can achieve breathing and heart rate
detectionwith FMCWsignals even in through-wall scenarios,
which shows the great potential of SDR systems [2].

Table 2 summarizes the systems mentioned above. The
reference number with a superscript indicates that the cor-
responding paper meets the definition of handy through-wall
technology in Section I and they are the focus of this paper.
The basic principles and methods discussed in Section IV and
V are mainly based on these systems.

IV. BASIC PRINCIPLE OF THROUGH-WALL TECHNOLOGY
Through-wall systems transmit electromagnetic waves to
detect the space and then receive the reflected signals to
obtain the location of targets. Some basic principles of the
electromagnetic wave and localization are as follows.

A. PRINCIPLE OF ELECTROMAGNETIC WAVE
Since electromagnetic wave was discovered, it has been
applied in numerous fields. Because electromagnetic wave
has the ability of transmission and reflection, it is widely
used in the through-wall technology with basic principles as
follows.

1) TRANSMISSION
Electromagnetic signals can penetrate non-metallic obstacles,
which means that these signals can allow us to get valu-
able information from things behind walls. The transmission
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TABLE 2. Related systems/works summary.

TABLE 3. Attenuation with different frequencies [54].

performance varies by frequency. Specifically, the higher the
frequency, the worse the transmission performance is, which
results in a low-pass filtering effect when penetrating an
obstacle [53]. For example, visible light is in the band of
3.9×105–8.6×105 GHz, whereas the RF signal is in the band
of 3–300 GHz. Consequently, visible light has an extremely
poor penetrability but RF signals can penetrate obstacles well
or just bypass them like FM (frequency modulated) signals
used in radio systems. Apart from that, the performance of
transmission is influenced significantly by the material of
obstacles. Materials like wood, drywall, and styrofoam have
small loss effects whereas brick walls and blocks have signifi-
cant loss effects [53]. Table 3 shows the attenuation of signals
with different frequencies. Table 4 shows the attenuation of
signals through different materials.

2) REFLECTION
Transmitted signals are reflected once encounter obstacles
such as human bodies and furniture. Then, by analyzing these

TABLE 4. Attenuation through different materials [54].

reflected signals, through-wall systems can calculate the dis-
tance or angle of objects. However, not all the reflected sig-
nals are valuable such as ones reflected off walls. Therefore,
through-wall systems always need an extra filtering process
to filter out unwanted reflections. In addition, there is a great
difference between the reflection of RF signals and that of
visible signals. Since the wavelength of RF signals is much
longer than that of visible light, the human body acts as a
reflector rather than a scatterer.

B. PRINCIPLE OF LOCALIZATION
Localization is a core function of through-wall technology.
For easy understanding, we assume that the location of the
target is in the 2D plane. Through-wall systems leverage the
following principles to locate.

First, a widely used method for locating is achieved by
the measurement of distance. Specifically, the round-trip dis-
tance, from the transmit antenna to the target and then back
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FIGURE 2. Two pairs of directional antennas can uniquely locate the
location of a person.

to the receive antenna, is used to calculate the location of
the target. Suppose we know a round-trip distance between a
pair of antennas, according to math principles, we can plot an
ellipse and the sum of distances to the two antennas is equal to
the round-trip distance we know. In other words, the couple
of antennas is a couple of foci of an ellipse; the location of
the target must fall on the periphery of the ellipse. Using one
pair of antennas, however, is insufficient to locate the target,
and we need another pair of antennas. Similarly, the second
pair of antennas with known round-trip distance enables us to
plot another ellipse on the plane. The foci of the new ellipse
are two other antennas. Since the correct location is on both
ellipses, one of the intersection points is the location of the
target.

To express mathematically, assuming that the round-trip
distance is d1 and the locations of the pair of antennas are
(x1, 0) and (x2, 0) in the (x, y) plane, respectively. The stan-
dard parameters of this ellipse are

2a = d1 (1)

2c = |x2 − x1| , (2)

where a is the length of the semi-major axis and c is the
distance between a focus and the center of the ellipse. Then
we can derive the equation of this ellipse as

(x − x1+x2
2 )2

( d12 )
2

+
y2

( d12 )
2 − ( |x2−x1|2 )2

= 1. (3)

Similarly, assuming the round-trip from another pair of
antennas is d2, and the location of this pair of antennas
are (x3, 0) and (x4, 0), respectively. Then we can derive the
equation of this ellipse as

(x − x3+x4
2 )2

( d22 )
2

+
y2

( d22 )
2 − ( |x3−x4|2 )2

= 1. (4)

Now we have the equations of two ellipses on which the
location of the target falls. Therefore, by solving (3) and (4),
the solution is the possible location of the target.

If the antennas are directional, it’s very easy to rule
out the invalid intersection, as shown in Fig. 2. If there
are more than two pairs of antennas, the location can
be uniquely determined. It’s easy to generalize the argu-
ment to a 3D space. In the 3D space, ellipses estab-
lished by pairs of antennas would become ellipsoids and
3 ellipsoids can determine one intersection (with directional
antennas).

FIGURE 3. Localization can be achieved with a round-trip distance and an
angle from a reference direction.

Another way to locate is by leveraging both the distance
and the angle. It is similar to the localization in the polar
coordinate system. Take a 2D situation for example, each
point in the polar coordinate system is determined by a
distance from a reference point and an angle from a refer-
ence direction. Once we know the distance and the angle
of the target, we can locate it accurately. In antenna sys-
tems, we can only get the round-trip distance rather than the
direct distance to the target, hence like the above statement,
we leverage the round-trip distance to plot an ellipse rather
than a circle. Then, if we know the angle of the object,
we can plot a ray and there will be only one intersection
point which indicates the location of the object, as shown
in Fig. 3. It is straightforward to generalize the argument to
3D space. In a 3D space, like a point determined by (r, θ, ϕ)
in a spherical coordinate system, the location of an object
can be determined by the round-trip distance and two spacial
angles.

V. BASIC METHOD OF THROUGH-WALL TECHNOLOGY
Most through-wall systems leverage RF techniques to obtain
distances and angles (namely direction of arrival (DOA))
of targets. Nowadays, in radar systems, there are many
approaches to measure the distance and DOA, and most of
them are based on the following ideas. Since through-wall
technology has a strong relationship with radar technology,
we can find that some through-wall techniques are similar to
radar techniques.

A. OBTAINING DISTANCE
We usually leverage RF signals to measure the distance
between two objects. Specifically, we know that RF signals
travel at the speed of light so once we obtain the time of flight
(TOF), which the signal takes to travel from its transmitter to
receiver, we can calculate the propagation distance. The direct
and indirect measurements of TOF are as follows.

1) PULSE METHOD
The pulse method is a direct solution to measure the
TOF. First, the antenna transmits a very short pulse. Then,
the receive antenna receives the echo of the pulse and calcu-
lates the time delay. The time delay is exactly the TOF we
want. Finally, the distance from the transmit antenna to the
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FIGURE 4. The blue one is the transmitted pulse signal and the green one
is the echo from the object. The time delay between the two signals is
TOF.

FIGURE 5. d1 is the distance between the transmit antenna and the
target and d2 is the distance between the target and the receive antenna.
d1 + d2 is the round-trip distance.

target and back to the receive antenna is

d1 + d2 = c× tTOF , (5)

where d1 is the distance between the transmit antenna and
the target, d2 is the distance between the target and the receive
antenna, c is the propagation speed, and tTOF is the time delay.
Fig. 4 and Fig. 5 illustrate this situation.

The advantage of this method is that the measurement
is simple and does not need complex algorithms. How-
ever, the propagation speed is so fast that TOF at short
range is extremely hard to measure. Specifically, in order
to obtain such a short TOF, the through-wall system must
operate at a very high speed to sample the signals at
subnanosecond intervals. Therefore, high-speed ADCs that
operate at multi-GS/s are necessary [1]. Such ADCs are
power-consuming, expensive, and not practical in small-size
systems.

2) FMCW
Frequency modulated continuous wave (FMCW) technique
is an indirect method to measure the TOF. FMCW transmits
a periodic signal whose carrier frequency changes linearly
with time. The chirp reflected off objects and then received
by antennas has both time delay and frequency shift. Instead
of measuring the delay directly, FMCW leverages the fre-
quency shift to calculate the delay. Since the carrier frequency
is changing linearly in time, the delay and the frequency
shift are linearly related. In Fig. 6 (a), the blue line is the
transmitted signal whose frequency is changing linearly with
time. The green line is the received signal reflected off an
object. Because the received signal delays in time, there is a

FIGURE 6. (a) shows the transmitted signal in blue and the received
signal in green. The received signal has both the time delay (tTOF ) and the
frequency shift (1f ) and these two differences are linearly related.
(b) shows that with a higher rate of change in frequency, the 1f would be
more notable.

frequency shift between the transmitted and received signals
at the same time. Obviously, the TOF and round-trip distance
can be calculated by the equations as

tTOF =
1f
k

(6)

d = c× tTOF , (7)

where k is the slope of the frequency.
Besides that, to show the advantage of this method,

we assume that the object is static, i.e., the distance between
the object and antennas is constant. Hence, the time delay of
the received signal is constant. According to (6), 1f only
depends on k which is the rate of the frequency change.
Therefore, the higher the rate of change, the larger the1f is,
as shown in Fig. 6 (b). Because the TOF is always very short
in the short-range situation, we can obtain the TOF much
easier by measuring the 1f which can be more than billions
of times larger than TOF. For example, if the carrier frequency
changes from 5 GHz to 7 GHz per second, theoretically,
the frequency shift would be 2 × 109 times TOF, hence the
easier measurement of TOF.

When applying FMCW to a real system, system designers
need to make sure that the carrier frequency of the trans-
mit signal changes linearly with time. To achieve this goal,
the linearity of the hardware of the transmitter within the
bandwidth is very important and any nonlinear components
in the transmitter would affect the estimation of TOF. Take
a voltage-controlled oscillator (VCO) as an example, if the
control signal is out of the linearity tuning range, the output
frequency of VCO would not satisfy the linear relationship
with the control signal. Moreover, the selection of the band-
width of FMCW affects not only the linearity of the output
frequency, but also the detection resolution of FMCW. Typi-
cally, the resolution of FMCW, i.e., the minimummeasurable
change in location, is:

R =
c
2B
, (8)

where B is the bandwidth of the FMCW signal [1]. Therefore,
in order to achieve a sub-meter accuracy, FMCW-based sys-
tems always have the bandwidth of multiple GHz, as shown
in Table 5. Note that the bandwidths of such through-wall
systems are selected around 1.7GHz to satisfy the FCC regu-
lations for civil use.
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FIGURE 7. The estimation of DOA (θ) can be achieved by an antenna array
which is placed uniformly in a straight line and the distance between two
adjacent antennas is d . With the assumption that the wave arriving at the
array is considered to be planar, the distance that the signal propagates
between two adjacent sensors can be calculated as d sin θ . Therefore
corresponding time delay τ is d sin θ

c [55].

B. OBTAINING DIRECTION OF ARRIVAL
For localization, sometimes the distance information is insuf-
ficient. There is another technique that allows us to obtain the
direction of arrived signals (DOA) and can be used to detect
the angles of objects. This technique leverages antenna arrays
to achieve this goal.

First of all, assume we have an antenna array containing m
identical antennas which are placed uniformly in a straight
line and the distance between two adjacent antennas is d ,
as shown in Fig. 7. After the demodulation, the output of
antenna k(k = 1, 2, . . . ,m) can be written as the following
equation [55]:

yk (t) = Hk (ωc)e−jωc(k−1)
d sin θ
c s(t)+ ek (t), (9)

where θ is DOA, c is the propagation speed of signals, ωc is
the carrier frequency, s(t) is the baseband signal,Hk (ω) is the
frequency response of kth antenna within the band of s(t), and
ek (t) is the noise received at the kth antenna.
Then, with m sensors, we will obtain

y(t) = a(θ )s(t)+ e(t), (10)

where

y(t) = [y1(t) . . . ym(t)]T

a(θ ) = [H1(ωc),H2(ωc)e−jωc
d sin θ
c

. . .Hm(ωc)e−jωc(m−1)
d sin θ
c ]T

e(t) = [e1(t) . . . em(t)]T .

By (10) with known yk (t), s(t), andHk (ωc) (k = 1, . . . ,m),
we can obtain θ (DOA) approximately. The details of deriva-
tion are illustrated in the appendix.

In the real-world scenario which contains more than one
source, however, the environment would become more com-
plicated since more sources could bring more noises and
interferences. Some advanced algorithms were proposed to
estimate multiple DOAs. The most famous algorithm is Mul-
tiple Signal Classification (MUSIC) algorithm, which per-
forms well in multi-DOA estimation [56]–[58].

C. MACHINE LEARNING
To achieve through-wall localization with higher precision
and more fine-grained through-wall motion classification,
system designers need to formulate more sophisticated mod-
els to fit the complicated environment caused by minor
movements of the human body and fine-grained motions.
Therefore, researchers resort to machine learning, which is
a powerful technology to find the hidden relationship in a
complicated environment. The most used machine learning
method is the convolutional neural network (CNN) which
has a good performance in image processing. The reason
that CNN is widely adopted in through-wall systems is that
the formats of RF signals (e.g., RF heatmaps which indicate
the signal strength in different positions) are quite similar to
images. In the through-wall imaging scenario, each snapshot
consists of lots of pixels representing the spacial information
of RF signals. However, feeding the whole snapshot to a fully
connected neural network is intractable since such a dense
neural network would contain a huge number of parameters
which are hard to train and easy to overfit. Therefore, CNN
is used to reduce the complexity and extract only important
features from the input RF signals and then uses these features
to predict the positions of targets [10], [47], [48].

The traditional structure of CNN is shown in Fig. 8. There
are three kinds of layers in CNN: Convolutional Layer, Pool-
ing Layer, and Fully Connected Layer. Convolutional layers
are used to extract features from the input data. Each neuron
in a convolutional layer is connected with a group of neurons
in the previous layer, and the relationship between the neu-
rons in two layers is determined by a matrix which contains
the weights of connection between neurons in two layers.
This matrix is called Kernel or Filter. Specifically, a neu-
ron in one layer is calculated by the convolution operation
between the previous layer and a Kernel. Different Kernels
can capture different features of data from the previous layers.
Then, the pooling layer is used to reduce the spatial size of
the convolved feature from convolutional layers. The main
purpose of this layer is to identify dominant features and
ignore the trivial ones in order to reduce the computation
complexity. After multiple layers of convolution and pool-
ing, the extracted features are put into the following fully
connected layers, which are used for classification. In short,
convolutional and pooling layers are responsible for feature
extraction, and fully connected layers are responsible for
mapping different combinations of features with different
outputs.

The structure of the neural network in CNN-based through-
wall systems varies from system to system but the ideas
of extracting features from RF signals are quite similar.
Specifically, a common way to process RF signals is called
the spatio-temporal convolution, which applies convolution
operations to both the spatial dimension and the temporal
dimension. The motivation is that, in order to locate different
body parts, the neural network should not only focus on
the information in one snapshot (spatial dimension) but also
take a series of consecutive snapshots (temporal dimension)
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FIGURE 8. Structure of CNN. The convolutional layers are used for extracting features, and the more convolutional layers, the more high-level
features (e.g., faces and eyes) can be extracted. The pooling layers are designed to extracting dominant features after convolutional layers.
The last layer is the fully connected layer, which works as a classifier to match different features with corresponding objects.

FIGURE 9. Spatio-temporal convolution. The convolution operation is
applied to a series of consecutive RF snapshots to extract features from
both spatial and temporal dimensions [59].

into consideration, since the motions of the human body
are continuous and highly correlated over time. Based on
this motivation, the common input of CNN is a series of
consecutive RF snapshots and the convolution operation is
applied to both spatial and temporal dimensions, as shown
in Fig. 9. For instance, in the 2-dimensional through-wall
imaging scenario, we need 3-dimensional (2 spatial dimen-
sions and 1 temporal dimension) convolution operations to
process RF data; in the 3-dimensional through-wall imaging
scenario, we need 4-dimensional (3 spatial dimensions and
1 temporal dimension) convolution operations to process RF
data. Note that the higher the dimension of convolution oper-
ations, the higher the computational complexity is. Applying
4-dimensional convolution operations to extract features from
RF signals directly is time-consuming and even mainstream
open-source machine learning libraries (e.g., Tensorflow)
only support up to 3-dimensional convolution operations.
Therefore, Zhao et al. proposed a tensor decomposition tech-
nique to reduce the convolution dimension and leveraged aux-
iliary neural networks to help CNN focus on the regions with
targets to reduce the computational complexity [47], [48].

In through-wall systems, machine learning is often used
in cross-modal supervision. This is because the training
set, i.e., RF data labeled with true human body positions,
is insufficient in the through-wall field. Thus, systems with
machine learning leverage vision-based human body tracking
systems to supervise the training. Specifically, in the training

FIGURE 10. Through-wall systems with machine learning methods are
usually based on the structure of cross-modal supervision. The
vision-based system is used to supervise the RF-based system.

stage, the RF-based system and vision-based system work
together to extract human bodies respectively. The results of
the vision-based system are then used to amend the neural
network in the RF-based system. Most often, the vision-
based system is based on another well-trained neural network.
After the training, the RF-based system can work alone. The
cross-modal supervision structure is shown in Fig. 10.

VI. EXAMPLE OF HANDY THROUGH-WALL SYSTEMS
In recent years, there is a rapid rise of handy through-wall
systems with the functions of identification, localization,
or imaging. These systems have low power, narrow band-
width, and lightweight. Besides that, different from some tra-
ditional monitoring devices, these systems do not need extra
devices equipped on the human body. Some radar techniques
(e.g., FMCW and ISAR) and machine learning techniques
(e.g., CNN) have been used in the existing through-wall sys-
tems. Some of these systems are explained in detail as follows
and crucial implementation characters of these systems are
summarized in Table 5, and their performance is summarized
in Table 6.

A. Wi-Vi
Wi-Vi is a wireless device which was proposed by Adib et al.
in 2013 [3]. It belongs to both the WiFi-based system defined
in Section III-A and the SDR system defined in Section III-D.
The main function of Wi-Vi is to detect the movement
of people walking behind the wall. Wi-Vi leverages the
MIMO technique, ISAR, and MUSIC algorithm to work in
the through-wall scenario. Furthermore, another function of

VOLUME 8, 2020 82961



K. Mu et al.: Survey of Handy See-Through Wall Technology

TABLE 5. Handy through-wall systems implementation summary.

TABLE 6. Handy through-wall systems performance summary.

Wi-Vi is gesture encoding by tracking the motion of the
human body.Wi-Vi allows a person to send bit information as
‘‘1’’ and ‘‘0’’ by moving forward and backward without any
communication device.

Wi-Vi is a MIMO device with 2 transmit antennas and
1 receive antenna and leverages WiFi OFDM signals in the
ISM band (at 2.4 GHz). Besides, Wi-Vi is based on the
typical WiFi hardware which makes it relatively low-power,
low-cost, and low-bandwidth. Since it has the standard WiFi
structure, Wi-Vi might be implemented on WiFi devices and
operated by the public in the future.

Wi-Vi has to address several challenges and the toughest
one is called flash effect. In order to detect things behind
walls, signals need to traverse the wall at least twice which
would lead to significant signal attenuations. Therefore the
reflections from the objects of interest are buried in the
reflections off the wall as well as the signal directly received
from the transmit antenna. These two kinds of signals are so
strong that overwhelm the ADC of the standard WiFi device
(the overflow in ADC means background subtraction is not
desirable). Wi-Vi utilizes the MIMO technique to eliminate
the flash effect.
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FIGURE 11. Generally speaking, DOA is obtained by an antenna array,
as shown in (a). Wi-Vi with only one receive antenna, as shown in (b),
exploits ISAR to simulate a virtual antenna array by the movement of the
target (figure from [3]).

First of all, to eliminate the flash effect, Wi-Vi estimates
a special channel between the first transmit antenna and the
receive antenna and another channel between the second
transmit antenna and the receive antenna. ThenWi-Vi lets the
signals from two transmit antennas interfere with each other
at the receive antenna. In this case, Wi-Vi can eliminate the
direct signals and all the reflections off the static objects such
as walls and furniture. After the flash is removed, Wi-Vi can
receive only signals reflected from moving objects. The next
step is localization. Because there is only one receive antenna,
Wi-Vi employs a technique called Inverse Synthetic Aperture
Radar (ISAR). ISAR leverages the movement of the target to
emulate an antenna array. As mentioned above, to obtain the
DOA of signals, an antenna array is necessary. Hence ISAR
provides Wi-Vi a virtual antenna array to obtain the DOA.
Fig. 11 illustrates ISAR used in localization. Comparing with
a real antenna array, ISAR with only one antenna is cheaper
and simpler. In the scenario of tracking multiple people, since
the received signal is a superposition of multiple moving
humans with significant noise and correlates in time, Wi-Vi
leverages the smoothed MUSIC algorithm to process the
received signals. Finally, data of DOA are the only straight-
forward output of Wi-Vi and all the other functions (e.g.,
number identification and gesture-based communication) are
based on the information of DOA.

1) EXPERIMENTAL EVALUATION
Wi-Vi can distinguish between 0, 1, 2, and 3 moving humans
with an accuracy of 100%, 100%, 85%, and 90% respec-
tively at a room with 6-inch hollow walls supported by steel
frames. Wi-Vi correctly decodes all the massages within 5
meters. And the decoding accuracy decreases to 75% at
8 meters. Besides, Wi-Vi cannot detect gestures beyond
9 meters.

2) LIMITATIONS
First, Wi-Vi can only track moving objects, i.e., if a per-
son keeps stationary, its existence will not be detected. Sec-
ond, the detectable number of individuals is limited because
more individuals lead to more complicated situations. Third,
the virtual antenna array is affected by the velocity of moving

FIGURE 12. WiTrack implementation (figure from [1]). (a) shows WiTrack’s
antenna setup. One receive antenna is in the middle of the upper three
antennas and the remaining ones are 3 transmit antennas. (b) shows the
hardware of the FMCW signal generator.

objects. However both the value and direction of the velocity
are unknown, the DOA calculated in this antenna model is
relatively rough.

B. WiTrack
WiTrack is a wireless system which was proposed by
Adib et al. in 2014 [1]. It belongs to the software-defined
radio system defined in Section III-D. The main function
of WiTrack is 3D motion tracking in both line-of-sight and
through-wall scenarios.WiTrack leverages FMCW technique
and its hardware is shown in Fig. 12(b). Besides, WiTrack
can also detect the movement of body parts. Based on the
above two functions, WiTrack can be applied to elderly fall
detection and gesture-based appliance control.

WiTrack has 4 antennas: 1 transmit antenna and 3 receive
antennas which are arranged in a ‘‘T’’ shape. Fig. 12(a)
illustrates the setup of antennas. By analyzing the reflected
signals from a human body,WiTrack calculates the round-trip
distances from the transmit antenna to the body then back
to each receive antennas. As known in Section IV-B, the 3D
location of the body can be uniquely determined by 3 round-
trip distances. Detailed steps are as follows:

The first step is to obtain the TOF. WiTrack exploits
FMCW, as illustrated in Section V-A.2, to obtain TOF
and then calculates each round-trip distances. Specifically,
WiTrack transmits a periodic signal whose carrier frequency
changes linearly with time. Then, bymeasuring the frequency
shift in the received signal, WiTrack can obtain the TOF
easily without high-speed ADCs which are expensive and
high power. At last, round-trip distances can be calculated
directly from TOFs.

The second step is to extract the information of the human
body. WiTrack also needs to face the flash effect and the
multi-path effect. This is because the objects in the room
would reflect a huge amount of signal and reflected signal
would bounce off other objects before reaching the receive
antenna. Therefore, useful information is buried in these
interference signals and WiTrack needs extra operations to
extract the useful parts. To remove the reflections from all the
static objects, WiTrack leverages the fact that the frequency
shift of the signal reflected off static objects is constant
over time. Therefore, by extracting the changing compo-
nent, WiTrack can distinguish body (moving) reflections
from static reflections and this process is called background
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FIGURE 13. Distance extraction (figure from [1]). (a) shows the spectrogram of distance information. Different colors
represent different power at the corresponding distance. (b) is the result of background subtraction. (c) shows the useful
information extracted from (b) and the denoised result.

subtraction. Besides that, to address the multi-path effect,
WiTrack extracts the valid path according to the assumption
that the direct signal reflected from the human would have
the smallest frequency shift (the distance is the shortest). The
noise, however, would affect the judgment on the smallest fre-
quency shift. WiTrack averages the data over five consecutive
sweeps (the period of FMCW) to reduce the effects of noise.
Because the noise is random and hence adds up incoherently,
the useful information would become more significant after
averaging. Then WiTrack finds the local maximum value
with the shortest distance as a valid path. Finally, WiTrack
leverages outlier rejection andKalman Filter to obtain a better
result. Fig. 13 illustrates this step. A noteworthy point is that,
due to the background subtraction, WiTrack cannot track the
person who stops moving. Therefore, WiTrack interpolates
the latest location to supplement the missing data when a
person stops moving.

The third step is the 3D localization. After getting the
3 round-trip distances between antennas and the body,
WiTrack can localize the position in 3D space. Based on this
3D position, WiTrack has the ability to detect falls and the
direction of a pointing hand.

1) EXPERIMENTAL EVALUATION
WiTrack’s median location error is 9.9 cm, 8.6 cm, and
17.7 cm along the x, y, and z dimensions in line-of-sight
scenarios respectively. The median location error is 13.1 cm,
10.25 cm, and 21.0 cm along the x, y, and z dimensions in
through-wall scenarios respectively.

2) LIMITATIONS
First, WiTrack can track only one person. Second, WiTrack
cannot identify still people, i.e., in order to be detected,
the user needs to move. Third, the detection of body
parts is relatively coarse. Only the motions of large parts
such as legs and arms can be tracked. Besides that,
WiTrack cannot identify which part of the body has
moved.

C. RF-CAPTURE
RF-Capture is an advanced wireless device which was pro-
posed by Adib et al. in 2015 [9]. It belongs to the software-

FIGURE 14. Coarse-to-fine angular scan (figure from [9]). (a) shows the
coarse angle scan with a small number of antennas. (b) shows the finer
scan with more antennas but within the limited region.

defined radio system defined in Section III-D. The main
function is capturing the human figure through a wall. Specif-
ically, RF-Capture can capture a coarse human skeleton with
low-power RF signals (1/1000 the power of WiFi), classify
different subjects, as well as identify and track body parts
through a wall.

The antenna array of RF-Capture is ‘‘T’’ shaped and con-
tains 4 transmit antennas and 16 receive antennas. The scan
of the environment is realized by a special coarse-to-fine
algorithm based on the FMCW technique and antenna array
technique. Besides, the figure capture is achieved by several
identification and classification algorithms. Two key compo-
nents are as follows.

1) COARSE-TO-FINE 3D SCAN
To capture a figure of a human, RF-Capture needs to scan
every voxel in the surrounding space. RF-Capture exploits
the spherical coordinate (r, θ, φ) to determine each voxel.
The depth r is obtained through FMCW and two angles
θ , φ are obtained through the ‘‘T’’ shaped antenna array.
Calculating the position of each voxel, however, would take
a long time. Therefore, RF-Capture leverages a coarse-to-
fine algorithm to reduce algorithmic complexity. The coarse-
to-fine algorithm contains two components: coarse-to-fine
angular scan and coarse-to-fine depth scan. Coarse-to-fine
angular scan exploits the fact that the larger an array, the finer
its spatial resolution. Hence, as shown in Fig. 14, RF-Capture
starts with a small array to scan all the space with a relatively
low resolution and then gradually adds more antennas to the
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FIGURE 15. Coarse-to-fine depth scan (figure from [9]). (a) shows the
coarse depth scan with a small chunk of bandwidth. (b) shows the finer
scan with more bandwidth but within the limited region.

array to scan the region with high reflection power. In this
case, the region with more objects would have a higher
resolution, which can save lots of computing resources in
empty regions. Similar to the angular scan, the coarse-to-
fine depth scan changes the depth resolution by changing
the bandwidth of FMCW. First, RF-Capture uses a small
chunk of bandwidth to obtain a coarse region of the human
body. Then, by adding more bandwidth, RF-Capture res-
cans the region of interest with higher resolution, as shown
in Fig. 15.

2) MOTION-BASED FIGURE CAPTURE
One challenge RF-Capture has to face is the mirror effect,
as discussed in Section II. To address this challenge,
RF-Capture leverages consecutive reflection snapshots to
reconstruct the whole human figure. The process contains
four steps: Compensation for Depth, Compensation for
Swaying, Body Part Segmentation, and Skeletal Stitching.

3) EXPERIMENTAL EVALUATION
In the 5 users’ condition, the classification accuracy is 95.7%.
And in the 15 users’ condition, the classification accuracy
is 88.2%. Besides, the through-wall body part identification
accuracy is 99.13% when the user is 3 m away and 76.4%
when the user is 8 m away. Finally, RF-Capture can track the
palm of a user within a couple of centimeters.

4) LIMITATIONS
First, the algorithm of motion-based figure capture is based
on the assumption that the user starts by walking towards the
device. Hence, it doesn’t work with other motions. Second,
though the resolution of RF-Capture has a great leap com-
paring to other through-wall devices, it can just capture a
relative coarse human skeleton. Besides that, some functions
such as body part tracking can only be applied to certain
motions at certain positions since not all the reflected signals
can be detected by the device. Finally, because of the use of
background subtraction, RF-Capture cannot detect the static
object.

D. RF-POSE
RF-Pose is a wireless device which was proposed by
Zhao et al. in 2018 [10]. It belongs to the software-defined

radio system defined in Section III-D. RF-Pose is a neural
network system that reconstructs an accurate 2D human pose
even in through-wall scenarios.

RF-Pose is relatively special because it follows a
teacher-student design based on a deep neural network.
RF-Pose has two parts: visual supervision and RF-based pose
estimation, as shown in Fig. 16. The visual part has the
ability to extract 2D pose through a camera, which provides
cross-modal supervision for RF-based pose estimation. The
RF-based part is used to detect reflections of RF signals and
perform pose estimation which is trained by the visual part.
Specifically, RF-based pose estimation leverages FMCW to
obtain depth information with two antenna arrays: vertical
and horizontal. Therefore, as shown in Fig. 17, RF-Pose
generates two RF heatmaps and an RGB image (recorded at
the same time) as input to the deep neural network. Then
the teacher network predicts keypoint (parts of a human
body) confidence map based on the image and exploits this
keypoint map to supervise the student network. Once the
student network is trained, RF-Pose can work only with
RF signals.

One challenge RF-Pose has to face is the mirror effect,
as discussed in Section II. Since the human body reflects
RF signal like a mirror not a scatter, one snapshot cannot
capture all parts of the human body. To address this challenge,
RF-Pose packages a sequence of RF snapshots as the input
to the neural network, since multiple snapshots contain more
information about the human body and motion.

1) EXPERIMENTAL EVALUATION
In line-of-sight scenarios, the average precision (AP) of
RF-Pose is 62.4 whereas the AP of the vision-based system
is 68.8. In through-wall scenarios, the AP of RF-Pose is
58.1 whereas the vision-based system doesn’t work.

2) LIMITATIONS
The RF signal of RF-Pose can traverse walls, however, it can-
not traverse the human body. Therefore, inter-person occlu-
sion is a limitation of RF-Pose.

E. OTHER SYSTEMS
There are some other handy through-wall systems with
advanced or novel functions. All of these systems have fea-
tures of low power, low bandwidth, and compaction. Besides,
these systems do not need users to carry extra devices and can
be applied to non-military use as well.

WiTrack2.0, proposed by Adib et al. in 2015, is an
updated vision of WiTrack [5]. WiTrack2.0 belongs to the
software-defined radio system defined in Section III-D.
WiTrack2.0 has the ability to locate multiple people (up to
five people) and even static ones. There are two challenges
that WiTrack2.0 has to face: The first one is the significant
multipath effect since themovement ofmultiple peoplewould
result in more reflections, which influence signals a lot.
The second one is the near-far problem. Since the power of
near reflections is much higher than that of distant reflections,

VOLUME 8, 2020 82965



K. Mu et al.: Survey of Handy See-Through Wall Technology

FIGURE 16. RF-Pose is based on a teacher-student network (figure from [10]).

FIGURE 17. Input of RF-Pose’s neural network (figure from [10]). Vertical
and horizontal RF heatmaps and corresponding RGB image.

it is difficult to detect further people. WiTrack2.0 lever-
ages multi-shift FMCW to address the multipath effect
and successive silhouette cancellation algorithm to face the
near-far problem. Besides that, the detection of static people
is based on their breathing, i.e., when a person is breath-
ing, his/her chest moves within a sub-centimeter. Finally,
WiTrack2.0 has a median accuracy of 11.7 cm in each of
x and y dimensions.

Vital-Radio, proposed by Adib et al. in 2015, is a wire-
less monitoring device [2]. It belongs to the software-
defined radio system defined in Section III-D. Vital-Radio
can track breathing and heartbeats without physical contact
even through a wall. Besides that, it can monitor the vital
signs of multiple people simultaneously. The main idea of
detection is to identify the minor movement of the human
body caused by the breathing and heartbeat. There are three
steps in the operation: First, Vital-Radio leverages FMCW
to separate the space into different buckets depending on
the distance from the device, as shown in Fig. 18. In this
case, Vital-Radio can isolate reflections from different users
and eliminate reflections off furniture and walls since they
are in different buckets. Then, Vital-Radio identifies the

FIGURE 18. Vital-Radio leverages FMCW to separate reflectors into
different buckets (figure from [2]).

reflections involving the breathing and heartbeat by analyz-
ing the periodicity in each bucket. Since the breathing and
heartbeat are periodic, the reflections in the buckets where
the dominant motion is breathing and heartbeat would be
periodic. Finally, leveraging FFT and linear regression on
phase, Vital-Radio can extract the breathing and heart rates
from the received signals. In the experimental evaluation,
Vital-Radio can track users’ breathing and heart rates with
a median accuracy of 99% when a person is 8 m from the
device.

RF-Pose3D, proposed by Zhao et al. in 2018, is an updated
vision of RF-Pose [47]. RF-Pose3D belongs to the software-
defined radio system defined in Section III-D and is the first
system that extracts full dynamic 3D skeletons of people
(including the head, arms, shoulders, hip, legs, etc.) from
RF signals. Besides, RF-Pose3D works with multiple people
even in through-wall and occlusive scenarios. RF-Pose3D
is based on CNN, which takes the RF signal captured by
multi-antenna FMCW and 3D video of skeletons as inputs, as
shown in Fig. 19. There are three components in the architec-
ture: First, sensing the 3D skeleton. RF-Pose3D obtains the
reflected signal and then leverages CNN to extract skeletons.
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FIGURE 19. Architecture of RF-Pose3D (figure from [47]). The upper half
shows the visual-based skeleton identification system which provides
supervision for the RF-based system. The lower half is the RF-based
system.

Second, scaling to multiple people. RF-Pose3D exploits a
deep neural network to learn to detect people and focus
on people. Third, training. The training data are obtained
by a set of 2D visual-based skeleton identification systems.
Since training data should be the 3D skeleton information,
the team of RF-Pose3D develops a system containing 12 such
2D systems to obtain 3D training data. Once the network is
trained, RF-Pose3D can extract 3D skeletons just from RF
signals. In the experimental evaluation, the average errors of
tracking each keypoint on the human body are 5.2 cm, 3.7 cm,
and 4.7 cm along the x, y, and z dimensions, respectively (in
through-wall scenarios).

Tadar, proposed by Yang et al. in 2015, is a through-wall
system achieved by radio frequency identification (RFID)
technique [46]. It belongs to the software-defined radio sys-
tem defined in Section III-D. RFID is a popular technique
in wireless identification fields. Typically, an RFID system is
made of a reader and several tags. In the progress of obtaining
information from one tag, the reader first transmits a contin-
uous wave signal to activate a tag. The widely used tags are
passive which means that there is no battery in such tags and
they cannot transmit signals actively. Therefore, tags need to
be activated by a reader, that is, tags leverage the energy of the
received signal (from the reader) to respond to the reader and
the identity information is carried by the responding signal,
or called the backscatter signal. The design of Tadar is novel.
Tadar contains one reader and 45 tags attached on the outer
wall, constituting a virtual antenna array, as shown in Fig. 20.
The transmitted signal from the reader would reflect off walls,
furniture, human bodies, and other things inside the room.
Thus tags would be activated by both the reflected signal
and the signal directly from the reader and then generate the
backscatter signal. By extracting the reflection of the human
body from the backscatter signal, Tadar can obtain the loca-
tion of the human body. One advantage of leveraging RFID
is the simplicity of passive tags. Passive tags do not need
batteries and other complicated structures so that the cost of
each tag is low and tags are easy to be deployed. However,
the disadvantage of Tadar is that the transmit power is higher
than the systems we have discussed above by 3 orders of
magnitude, as shown in Table 5. This is because the human
body reflections are relatively weaker than other reflections

FIGURE 20. Design of Tadar (figure from [46]). Tadar contains 1 RFID
reader and 45 tags attached on the outer wall. The tags serve as a virtual
antenna array to receive the reflected signal from the room for the reader.

so that the backscatter signals from passive RFID tags acti-
vated by these weak human body reflections would be much
weaker. Therefore, to capture such backscatter signals, higher
transmit power is necessary. In the experimental evaluation,
the median of the tracking error of Tadar is 7.8 cm and 20 cm
along the x and y dimensions, respectively.

VII. CONCLUSION AND OPEN ISSUE
This paper surveys the handy through-wall techniques which
have low power, narrow bandwidth, lightweight, without
extra devices equipped on the human body and can work
in non-military scenarios. The main functions of systems
based on these techniques are identifying, locating, or imag-
ing the human body behind a wall. By applying the radar
technologies and artificial intelligence (AI) in off-the-shelf
mobile wireless systems, through-wall systems are becoming
more practical, accurate and efficient to be applied in civil
applications.

Though through-wall systems have made a great achieve-
ment in research community, several open issues need to be
solved in the future:

A. FEASIBILITY
Most handy through-wall systems are only tested in exper-
imental environments and are still facing lots of problems
when applied to real-world scenarios. Note that the real-world
environment is much more complicated than the lab environ-
ment. For example, for through-wall systems used for human
body localization, the presence of pets in the house may
influence the performance of devices. The fast movement of
pets would make a distortion of signals and interfere with
the detection of human bodies. Besides that, through-wall
systems also need to be tested in outdoor environments.
Specifically, dense urban areas always have complicated elec-
tromagnetic interference. For example, the intensive cover-
age of WiFi signals in city centers is a huge challenge to
WiFi-based systems. In this case, anyWiFi device from shops
or pedestrians is the interference to these systems. The ability
of through-wall localization is also limited by the number of
people. If there is a meeting in a room that contains dozens
of people, most through-wall systems cannot work with such
a massive density of people. How to further improve the
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performance in such challenging scenarios deserves further
study.

B. MOBILITY
While the paper investigates the handy through-wall system,
the real-world portable through-wall systems is still chal-
lenging; most the through-wall devices need to be fixed at
a certain position to make the signal processing much easier,
and the bulky hardware devices (e.g., USRP) and real-time
processing make it challenging to be portable. It is also chal-
lenging yet appealing to apply the through-wall technology
in a highly mobile environment. For example, by equipping
autonomous cars with through-wall devices, the cars can
identify potential risks at the street corner that camera-based
visual systems cannot work.

C. INTELLIGENT SIGNAL PROCESSING METHOD
Nowadays, AI has become a very powerful method to process
signals. The combination of AI and through-wall technology
could be the mainstream of future development. As several
systems mentioned above [10], [47], [48], [52], AI has been
proved to have the ability to extract fine-grained information
of human bodies from coarse RF signals. How to combine
AI and through-wall technology much closer is a challenge
to future through-wall systems. Supervised machine learning
is now widely used in through-wall scenarios to interpret
complicated RF information. Supervised learning, however,
requires a huge amount of training set which is scarce in
the through-wall detection field. For example, in the absence
of labeled RF data of walking people, today’s systems turn
to the visual-based system for help. However, how to teach
through-wall systems to recognize dancing people instead
of walking ones, a new training set is required. Due to
such challenges in supervised learning, unsupervised learning
may be an alternative choice. Therefore, combining AI and
through-wall technology effectively is a big deal for future
research.

D. PRIVACY
The through-wall technology, if inappropriately used, would
severely violate the privacy of people. Therefore, privacy-
preserving technology is necessary before the wide civil
adoption of the through wall system.

APPENDIX A
DERIVATION OF DOA
To make the task easier and reduce the difficulty of calcula-
tion, some assumptions are made as follows [55]:

• The propagation medium is homogeneous which means
that the waves arriving at the array can be considered
planar.

• The locations of every sensor (antennas array) are known
and uniform.

• Sensors can be modeled as linear time-invariant (LTI)
systems.

• The received signals are narrow-band and the sensor
frequency response is flat over the pass-band.

• Sensors are identical and omnidirectional over the DOA
range of interest which means the sensor frequency
responses are independent of DOA.

Above all, we use the transmitted signal x(t) at a refer-
ence point to describe the signal received by sensors(antenna
array). The reference point can be one of the sensors or any
other point placed near enough to the sensors. Assume that
the number of sensors is m. Then the output of sensor k
(k = 1, 2, . . . ,m) can be written as

ȳk (t) = h̄k (t) ∗ x (t − τk)+ ēk (t) , (11)

where h̄k (t) is the impulse response of the kth sensor, τk is the
time that signals take to travel from the reference point to the
kth sensor, and ēk (t) is additive noise. Similarly, the output
of sensor k in the complex frequency domain is

Ȳk (ω) = H̄k (ω)X (ω)e−jwτk + Ēk (ω), (12)

where Ȳk (ω), H̄k (ω), X (ω), and Ēk (ω) denote the Fourier
transform of ȳk (t), h̄k (t), x(t), and ēk (t), respectively.

Let s(t) denote the baseband signal associated with x(t).
Then X (ω) can be expressed with S(ω) (Fourier transform of
s(t)) through real modulation process:

X (ω) = S(ω − ωc)+ S∗(−(ω + ωc)), (13)

where ωc is the carrier frequency of the modulation. Accord-
ing to (13), (12) can be written as

Ȳk (ω)= H̄k (ω)
[
S(ω−ωc)+S∗(−ω − ωc)

]
e−jwτk + Ēk (ω).

(14)

After the modulated signal (Ȳk (ω)) has been received by a
sensor, the next the procedure is demodulation. Let ỹk (t) and
Ỹk (ω) denote the demodulated signal. Then we can obtain the
demodulated signal by translating in frequency to the left by
ωc:

Ỹk (ω) = Ȳk (ω + ωc)

= H̄k (ω + ωc)
[
S(ω)+ S∗(−ω − 2ωc)

]
×e−j(w+ωc)τk + Ēk (ω + ωc). (15)

The next step is to extract the baseband signal from the
demodulated signal ( ỹk (t)) by passing through a lowpass
filter whose bandwidth is equal to s(t). Let yk (t) denote the
output of the lowpass filter and Yk (ω) is its Fourier transform.
Then

Yk (ω) = Hk (ω + ωc)S(ω)e−j(w+ωc)τk

+Ek (ω + ωc) (16)

≈ Hk (ωc)S(ω)e−jωcτk

+Ek (ω + ωc), (17)

where Hk (ω) and Ek (ω) denote the parts of H̄k (ω) and Ēk (ω)
within the band of the lowpass filter. The approximation
in (17) is based on the above assumption that the received
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signals are narrowband. Therefore, in time domain, (17) can
be transformed into

yk (t) = Hk (ωc)e−jωcτk s(t)+ ek (t), (18)

where yk (t) and ek (t) are the inverse Fourier transforms of
Yk (ω) and Ek (ω + ωc).
In order to obtain the DOA by detecting the signals,

we need to obtain the relationship between yk (t) and DOA(θ).
Assume that the reference point is sensor 1 (i.e., τ1 = 0) and
let d donate the distance between sensors, as show in Fig. 7.
Then τk and θ meet the following equation:

τk = (k − 1)
d sin θ
c

. (19)

Then (18) can be written as

yk (t) = Hk (ωc)e−jωc(k−1)
d sin θ
c s(t)+ ek (t). (20)

Therefore, with m sensors, we will obtain a matrix
equation:

y(t) = a(θ )s(t)+ e(t), (21)

where

y(t) = [y1(t) . . . ym(t)]T

a(θ ) = [H1(ωc),H2(ωc)e−jωc
d sin θ
c

. . .Hm(ωc)e−jωc(m−1)
d sin θ
c ]T

e(t) = [e1(t) . . . em(t)]T .

Leveraging (21) with known yk (t), s(t), and Hk (ωc) (k =
1, . . . ,m), we can obtain θ (DOA) approximately.
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