
Received April 10, 2020, accepted April 21, 2020, date of publication April 29, 2020, date of current version May 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991338

Efficient Video Fire Detection Exploiting
Motion-Flicker-Based Dynamic Features
and Deep Static Features
YAKUN XIE , JUN ZHU, YUNGANG CAO, YUNHAO ZHANG, DEJUN FENG,
YUCHUN ZHANG, AND MIN CHEN
Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Corresponding authors: Jun Zhu (zhujun@swjtu.edu.cn) and Yungang Cao (yungang@swjtu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 41871289 and Grant 41771451, and in
part by the Sichuan Youth Science and Technology Innovation Team under Grant 20CXTD0102.

ABSTRACT Since fire is one of the most serious types of accidents that can occur, there is always a need
for improvement in fire detection capabilities. Convolutional neural networks (CNNs) have been used for a
variety of high-performance computer vision tasks. The use of CNNs to extract deep static features of fire
has greatly improved the accuracy of fire detection. However, the implementation of CNNs in the real world
is limited by their high computational cost. In addition, fire detection methods based on the classification of
images alone using CNNs cannot account for the dynamic features of fire. Therefore, in this paper, a method
that exploits both motion-flicker-based dynamic features and deep static features is proposed for video fire
detection. First, dynamic features are extracted by analyzing the differences in motion and flicker features
between fire and other objects in videos. Second, an adaptive lightweight convolutional neural network (AL-
CNN) is proposed to extract the deep static features of fire. Finally, the dynamic and static features of fire
are combined to establish a video fire detection method with improved operational efficiency in terms of
accuracy and run time. To prove the validity of our method, its accuracy and run time are evaluated on
three test datasets, and the results reveal that our method exhibits better performance than state-of-the-art
methods. Moreover, our method is shown to be feasible in complex video scenarios and for devices with
resource constraints.

INDEX TERMS Fire detection, motion-flicker-based dynamic features, deep static features, background
subtraction, flicker detection, adaptive lightweight convolutional neural network.

I. INTRODUCTION
Fire is one of the most dangerous types of disasters, threat-
ening human life and property, the ecological environment,
and infrastructure. Reducing the damage caused by fire has
important theoretical and practical significance [1], [2]. With
the increasing popularity of video surveillance equipment
and the development of computer vision techniques, video
fire detection methods based on fire features have attracted
widespread attention from researchers [3]–[5].

The features of fire can be divided into static features and
dynamic features. Static features include spectral information
and spatial structure information, such as brightness, color,
texture, and edges. Dynamic features include the overall
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motion features and random motion features, such as motion
and flicker features [6]. Early methods of fire detection usu-
ally identify fire on the basis of one or more of these features,
such as methods based on the construction of color models
using static features, including RGB, HIS, and YCbCr fea-
tures [7]–[9]. In addition, methods involving the combination
of multiple color models have been applied for fire detection.
Zaidi et al. performed video fire detection based on RGB and
YCbCr features by setting thresholds [10]. However, color-
based fire detection methods are often susceptible to a variety
of environmental factors, such as sunlight, other light sources,
and red or orange objects, which can lead to high false alarm
rates.

To overcome this susceptibility, researchers have con-
ducted further investigations by combining color features,
shape features, dynamic features, etc. Seebamrungsat et al.
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performed fire detection by combining multiple feature rules,
considering the HSV, YCbCr, and interframe features of
fire [11]. Lascio et al. combined color and motion features
in an expert system for fire detection based on the analysis of
surveillance videos [12].Marbach et al. analyzed video frame
sequences. The features of video sequences were extracted
and used to determine whether a fire had occurred [13].
Chen et al. used a background detection method to obtain
the moving areas associated with fire and smoke in videos
and then determined the color features of these moving areas
to identify the presence of a fire [8]. Foggia et al. used an
expert system to build a rule set based on fire color, shape, and
motion features, which offered improved accuracy but also
suffered from a high false alarm rate [6]. Yan et al. extracted
multiple features for forest fire recognition, including color,
texture, area, and shape features [14]. Kosmas et al. built an
SVM classifier for fire detection based on motion features,
texture features, flicker features, and color probability fea-
tures [15]. Toreyin et al. carried out a series of studies on
fire discrimination and successfully used a hidden Markov
model to realize the real-time detection of fire in videos [16].
The researchers whose methods are reviewed above built
their own extractors to improve the accuracy of fire detec-
tion. Such ‘‘hand-crafted’’ dynamic features, for example,
motion and flicker features, have promoted the development
of video fire detection. However, motion detection or flicker
frequency analysis alone is insufficient to effectively extract
dynamic features. In addition, because of the high complexity
of fire scenes in videos, artificially designed static features
are highly redundant. The intelligent extraction of as many
deep static features as possible is impossible. However, a deep
neural network can effectively extract the deep static features
of an image through automatic learning, which can help to
improve performance.

Hinton et al. proposed the theory of deep learning
in 2006 [17]. Deep learning involves extracting high-level
abstract features of data through nonlinear expressions and
building mathematical models to achieve improved classifi-
cation and detection accuracy; hence, it has become a popu-
lar area of research in the artificial intelligence community.
In recent years, a large number of neural network models
have been proposed, such as convolutional neural networks
(CNNs) [18], recurrent neural networks (RNNs) [19], and
deep belief networks (DBNs) [20]. These networks have
been used for a variety of high-performance computer vision
tasks, such as image processing [18], [21], object detec-
tion [22], natural language processing [23], speech recogni-
tion and other applications [24]–[27]. Among them, CNNs
have achieved superior results in image classification.

More recently, many methods using neural network algo-
rithms to extract the static features of fire have been applied
for fire detection. Frizzi et al. proposed a CNN-based
method for fire and smoke detection and tested it on video
sequences [28]. Sharma et al. used higher-performing net-
work models, i.e., VGG16 and ResNet50, for fire detec-
tion [29]. Shen et al. used the popular YOLO network

framework for fire detection and compared the results with
those of shallow learning methods to prove the effective-
ness of deep learning [30]. Hu et al. proposed a long-period
neural network model and an optical flow method for the
real-time detection of fire and smoke [31]. Zhang et al.
jointly trained a CNN on complete images and image blocks
for the detection and localization of fire in an image [32].
Muhammad et al. proposed a CNN-based early fire recog-
nition method for early real-time fire detection in surveil-
lance videos and established a more efficient CNN-based
fire detection framework based on SqueezeNet [33]. In addi-
tion, Muhammad et al. conducted further research and
established a fire detection framework combined with
5G network transmission to achieve fire detection in uncer-
tain environments [34].

Although these works using CNNs are notable, they do
not take advantage of the dynamic features of fire. In addi-
tion, CNN models face challenges in terms of popularization
because of their high memory consumption. Furthermore,
the accuracy of fire detection still requires improvement due
to its critical importance for disaster management. Moreover,
achieving high robustness of deep learning models for video
fire detection in complex video scenarios remains challeng-
ing. The main contributions of our work are summarized
below.

1) An efficient video fire detection method is proposed
that exploits both motion-flicker-based dynamic fea-
tures and deep static features to achieve improved per-
formance in terms of its accuracy and false alarm rate.
In addition, experiments prove that our method can be
applied to a variety of complex video scenarios.

2) Our method considers both motion and flicker fea-
tures, which is helpful for more effectively extracting
dynamic features while reducing time consumption.

3) Our method uses an adaptive lightweight CNN to
extract the deep static features of fire, which can reduce
the computational burden while avoiding the loss of
image features caused by fixed-size image input.

The remainder of this article is structured as follows.
The proposed method is presented in Section II, including a
detailed introduction to the dynamic and static feature acqui-
sition methods. In Section III, the hyperparameter settings
and experimental dataset, the evaluation metrics, and the
experimental results are described in detail. The results of this
paper are discussed in Section IV. Finally, the conclusion and
plans for future work are presented in Section V.

II. THE PROPOSED METHOD
A. ACQUISITION OF DYNAMIC FEATURES
As a nonrigid moving object, a fire has obvious dynamic
features in a video [35]. To make full use of these dynamic
features, a motion-flicker-based algorithm that considers both
motion and flicker features is proposed for the acquisition of
dynamic features, inspired by the work of Chen et al. [36].
This algorithm includes background subtraction and flicker
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detection. First, background subtraction is applied to extract
motion features, which are often used for the extraction of
moving areas in videos [37]. Research has shown that the
KNN-based approach offers desirable performance in out-
door scenarios [38], [39]. Similarly, this approach is suitable
for the background subtraction of fire. Video stream pro-
cessing and background subtraction are implemented through
OpenCV, which is an open-source algorithm library [40].
A moving area in a video extracted through background
detection is called a suspected region of interest in our
method. The second step is flicker detection. A fire will
produce a disordered continuous high-frequency time series
of changes relative to ordinary objects due to the combustion
process [41], [42]. These changes manifest as flicker or pul-
sations, which are called the flicker features of fire. This step
can determine whether a suspected region of interest exhibits
flicker features; if so, the moving area is considered to have
the dynamic features of fire and is called a region of interest.
The overall algorithm is explained as follows.

1) Obtain the coordinate position (x, y, w, h) of each sus-
pected region of interest in the current video frame based
on background subtraction, where (x, y) represents the coor-
dinates of the upper-left corner of the suspected region of
interest and (w, h) represents the width and height.
2) Create a pixel frequency matrix SUM of the same size as

each suspected region of interest, which will be used to ana-
lyze the brightness changes of each pixel, with coordinates
(x, y), in the moving area. The brightness calculation method
is shown in equation (1). The equal-weighted average of the
three channels is used to avoid floating-point calculations to
reduce the number of calculations required [36].

It (x, y) =
1
3
[Rt (x, y)+ Gt (x, y)+ Bt (x, y)] (1)

where It represents the pixel brightness value at time t; Rt ,Gt ,
and Bt represent the pixel value in each band at time t; and (x,
y) represents the coordinates of the pixel in the image.

3) If the brightness value of the pixel at (x, y) changes
between time t and time t-1, the value of the corresponding
element in the frequency matrix, SUMt (x, y), is increased
by 1, whereas otherwise, it is increased by 0, as shown in
equation (2).

SUMt =

{
SUMt−1(x, y)+ 1 if (1I (x, y) ≥ TI )
SUMt−1(x, y)+ 0 if (1I (x, y) < TI )

(2)

where

1I (x, y) = |It (x, y)− It−1(x, y)| (3)

where 1I(x, y) represents the change in brightness at (x, y)
between time t and time t-1 and TI is a positive real number
that represents the global change threshold.

4) If the oscillation count for a pixel within a certain time
exceeds a set threshold, that pixel is considered to have a fire
flicker feature, as shown in equation (4).

|SUM t (x, y)− SUM t−n(x, y)| ≥ SUMT (4)

where n is the specified counting period, the length of which
is set to 3, and the interval between counting periods is set
to 1. SUMT is the dynamic flicker threshold. With these
settings, if there is at least one above-threshold brightness
difference between three consecutive frames of video at the
same pixel coordinates, this pixel is considered to have a
flicker feature.

5) The final regions of interest are determined on the basis
of a threshold λ, as shown in equation (5).

Tf /Trect ≥ λ (5)

where Tf is the number of pixels satisfying equation (4) in the
candidate fire region and Trect is the total number of pixels
in the candidate fire region. λ is an experimental threshold.
Finally, any area that satisfies equation (5) is identified as a
region of interest.

B. ACQUISITION OF DEEP STATIC FEATURES
To extract the deep static features of fire, we propose an adap-
tive lightweight convolutional neural network (AL-CNN),
as shown in Fig. 1. The core of the lightweight network is
a deep separable convolution structure, which realizes the
separate mapping of channels and regions and reduces the
required number of parameters and memory consumption.
The AL-CNN consists of three parts: a network initialization
stage, an inverted residual block stage and a spatial pyramid
pooling stage.

The first part is the network initialization stage, as shown
in Fig. 1 (A), which consists of three modules: a convolu-
tional layer, a batch normalization (BN) layer and a hard
version of the swish (h-swish) activation function. BN is a
neural network training optimization method proposed by
Google [43]. It has been widely used in neural networks to
accelerate network convergence and improve the stability of
training. The h-swish activation function draws on the latest
achievements of MobileNetV3; it offers increased accuracy
while ensuring a low computational cost [44], [45]. During
training, the network initialization stage can enhance the
ability of the network to learn sparse features and improve
the robustness of the extraction of deep static features.

The second part is the inverted residual block stage, which
is inspired by MobileNetV2 [46] and consists of two types
of components: inverted residual blocks and downsampling
blocks. Each inverted residual block consists of three steps,
as shown in Fig. 1 (B1). First, the dimensionality is expanded
by a 1 × 1 convolution, as a deep convolution itself does
not have the ability to change the number of channels. Then,
image features are extracted through depthwise separable
convolutions. Finally, multiple features are obtained through
shortcut connections. The structure of a downsampling block
is shown in Fig. 1 (B2). The purpose of downsampling is
achieved by setting the stride to 2. The inverted residual
block and the downsampling block have the same structure,
except for the shortcut connection and the stride. The inverted
residual block stage enables us to extract the deep static
features of fire.
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FIGURE 1. Deep static feature extraction framework based on an AL-CNN.

The third part is the spatial pyramid pooling (SPP) stage,
as shown in the red dotted box in Fig. 1. SPP was proposed by
He et al. in 2015 [47]. It can enable a CNN to process images
of any scale while avoiding the loss of static features caused
by cropping and warping operations; this is why we call
our network an adaptive network. In addition, the maximum
pooling function is used to suppress local noise and improve
the accuracy of target recognition. Adding the SPP structure
at the end of the network avoids the need for fixed-size image
input and improves the ability of the network to detect fire.

C. VIDEO FIRE DETECTION EXPLOITING
MOTION-FLICKER-BASED DYNAMIC FEATURES AND DEEP
STATIC FEATURES
To improve the accuracy and efficiency of video fire detec-
tion, a method that exploits motion-flicker-based dynamic
features and deep static features is proposed, as shown
in Fig. 2. The proposed framework is divided into two
main phases. First, region-of-interest acquisition is carried
out based on the dynamic features. This process involves
background subtraction and flicker detection. Background
subtraction helps to obtain the suspected regions of interest,
while flicker detection helps to obtain the regions of interest.
In this phase, the images of interest are extracted, and the
coordinates of interest in the video frames are recorded. Sec-
ond, fire detection is carried out based on the static features.
This phase involves extracting the deep static features of fire
using the AL-CNN, which can fully extract these static fea-
tures by means of inexpensive computations while avoiding

TABLE 1. Values of hyperparameters used in the experiments.

the loss of image features due to fixed-size image input. The
AL-CNN is used to identify whether each region of interest
identified in the first phase is, in fact, a fire region; if so, an
alarm is generated, and the fire coordinates in the video frame
are output.

III. EXPERIMENTS AND RESULTS
A. HYPERPARAMETER SETTINGS AND DATASET
DESCRIPTIONS
1) HYPERPARAMETER SETTINGS
All training and testing are implemented using TensorFlow
and Keras on the Windows 10 platform with an Nvidia
GeForce GTX 1060 6 GB graphics card. The values of the
hyperparameters are shown in Table 1.

By monitoring the value of the loss function, the learn-
ing rate was reduced by 0.9 after every 5 consecutive
epochs in which the performance did not improve. In addi-
tion, the transfer learning strategy was applied during the
training process. First, the AL-CNN was pretrained on the
1000 classes of the ImageNet Dataset to determine the initial
weights. Then, to classify fire and nonfire regions, the number
of neurons in the last layer of our network was changed
from 1000 to 2.
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FIGURE 2. The proposed framework for video fire detection exploiting motion-flicker-based dynamic features and deep static features.

2) DATASET DESCRIPTIONS
Many fire detection datasets have been provided by
researchers. Chino et al. provided an image dataset including
119 fire images and 107 nonfire images [48]. Foggia et al.
provided a fire video dataset consisting of 31 videos cap-
tured by a camera in different scenes, with a total duration
of more than 1 hour [6]. In addition, Dimitropoulos et al.,
Byoung et al., Hüttner et al., and Chenebert et al. have also
provided datasets for fire detection [15], [49]–[51]. Although
the existing datasets are large, the training datasets mostly
consist of video frame images, leading to a large number of
repeated images. Considering the features of only a single
fire type will result in a feature representation that is insuffi-
ciently discriminative. By contrast, the combustion of differ-
ent substances will produce fires with different representative
color features, as shown in Fig. 3. Therefore, to improve
the robustness of the neural network model, the fire training
dataset was refined by adding different categories of fire
images. The final training dataset included 22586 images,
of which 9332 were fire images and 13254 were nonfire
images. A detailed description of the training and testing
datasets is shown in Table 2. Note that the images used during
training and testing do not overlap.

B. EVALUATION METRICS
To quantitatively evaluate the performance of our proposed
method and compare it with the results of other researchers,

FIGURE 3. Fires with different features observed when different
substances are burning. (a) Fire from the burning of solid fuel. (b) Fire
from the burning of liquid or liquefiable fuel. (c) Fire from the burning of
gaseous fuel. (d) Fire from the burning of combustible metals. (e) Any
type A or type B fire that occurs next to an electrical appliance,
wire, or living object. (f) Fire from the burning of fat and oil used for
cooking.

TABLE 2. Statistics of the training and test datasets.

the false positive rate (also referred to as the false alarm
rate) (equation (6)), false negative rate (equation (7)) and
accuracy (equation (8)) are used as evaluation metrics in
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FIGURE 4. Results of dynamic feature extraction. (a) The original video
frames. (b) The resulting suspected regions of interest obtained via
background subtraction. (c) The resulting regions of interest obtained via
background subtraction and flicker detection.

this paper [52]. The goals in this paper are to achieve a high
accuracy, a low false positive rate and a low false negative
rate. In addition, the run time necessary for detection is
evaluated in terms of the frame rate (fps), which is the average
number of video frames that can be processed per second.

Falsepositiverate =
FP

FP+ TN
(6)

Falsenegativerate =
FN

FN + TP
(7)

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(8)

TP, FN, FP and TN represent the fire detection results in
comparison with the ground truth.

TP: the number of true positives, i.e., the number of cor-
rectly detected fire regions.

FN: the number of false negatives, i.e., the number of
misclassified fire regions.

FP: the number of false positives, i.e., the number of erro-
neously detected fire regions.

TN: the number of true negatives, i.e., the number of
correctly detected nonfire regions.

C. EXPERIMENTS ON DYNAMIC AND STATIC FEATURE
EXTRACTION
1) RESULTS OF DYNAMIC FEATURE EXTRACTION
To prove the performance of the dynamic feature extraction
method, several videos in the test dataset were used for exper-
iments. Fig. 4 (a) shows the original video frames, including
images of a fire and other moving objects. Fig. 4 (b) shows
the suspected regions of interest obtained after background

TABLE 3. Run-time comparison of dynamic feature acquisition using
different strategies.

subtraction, which includemany sources of interference, such
as pedestrians, car lights, and sunlight. Fig. 4 (c) shows
the resulting regions of interest obtained after background
subtraction and flicker detection. As shown, most of the fire-
like sources of interference are eliminated in these results.
However, this extraction method is based on hand-crafted
features, and some items may be missed during detection in
complex video scenarios, such as the moving fog in the last
row of Fig. 4 (c). These sources of interference are avoided
through the use of the deep neural network in the next step.

The run time needed for the acquisition of dynamic fea-
tures is also considered in this paper. Background subtraction
can eliminate static frames and avoid the need for time-
consuming flicker detection over an entire image. In Table 3,
we compare the run times for dynamic feature acquisition
using our method (background subtraction and flicker detec-
tion) and using only flicker detection without background
subtraction. Our method achieves a frame rate of 67 fps,
whereas flicker detection without background subtraction has
a frame rate of 43 fps, thus proving that the strategy for
dynamic feature acquisition presented in this paper can result
in a faster run time.

2) RESULTS OF DEEP STATIC FEATURE EXTRACTION
To verify the performance of static feature extraction based
on the AL-CNN, a small image dataset (DS1) was used to
test the model in a separate experiment. In addition, several
excellent existing lightweight networks were selected for
comparison, namely, SqueezeNet, ShuffleNet, ShuffleNetV2,
MobileNet, and MobileNetV2 [53]–[56], [46]. The results
are shown in Table 4. Compared with the other methods,
our method achieves a false positive rate that is lower by
0.94-9.21%, a false negative rate that is lower by 2.6-6.73%,
and an accuracy rate that is higher by 1.83-7.48%. In addi-
tion, the average time needed to process an image using
our method is 0.014 s. Nevertheless, although the overall
performance of our method is better than that of the existing
lightweight networkmethods, its accuracy is still limited. The
false positive and false negative rates are still undesirably
high, reaching 14.15% and 6.72%, respectively. Similarly,
although the accuracy is also improved, it is only 89.78%.

The test results were further analyzed to identify the
specific shortcomings of our method. Example of correct
detection results are shown in Fig. 5 (a). Examples of mis-
classification are shown in Fig. 5 (b); these cases mostly
correspond to small fires at long distances or with occlusions.
Fig. 5 (c) shows examples of erroneous detection, which is
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FIGURE 5. Fire detection results of the AL-CNN. (a) Correct detection of fire. (b) Misclassification of fire. (c) Erroneous
detection of fire.

TABLE 4. Comparison of our method with other lightweight CNNs on DS1.

mostly caused by fire-like sunlight or other light sources. The
region-of-interest acquisition process can be used to identify
small moving objects and recognize whether such moving
objects exhibit flicker features, which helps our method to
avoid misclassification and erroneous detection.

D. EXPERIMENTS ON VIDEO DATASET 2
DS2 was provided by Foggia et al. and includes 31 videos
captured by a camera in different scenes, of which 14 videos
contain fire and the remaining 17 videos are ordinary videos.
As done by Foggia et al., 80% of the videoswere used for test-
ing in these experiments [6]. Examples of images extracted
from DS2 are shown in Fig. 6. Videos 1-3 show small
fires from a long distance, videos 4 and 5 contain fire-like
objects, and videos 6-8 contain forest fires, thus constituting
a good test of ourmethod’s robustness. In addition, the dataset
contains a large number of nonfire interference videos.

TABLE 5. Comparison with different fire detection methods on DS2.

Videos 9 and 10 contain red fire-like objects, videos 11 and
12 contain sunlight and fire-like objects, videos 13 and
14 show common outdoor scenes that contain interference
from fire-like objects and smoke, and videos 15 and 16 con-
tain videos recorded in the mountains with moving fog.
Hence, this dataset is challenging for both color-based and
motion-based fire detection methods. In addition, this dataset
is often used in fire detection studies, which makes it easier
to compare the method proposed in this paper with other
existing methods.

We selected 8 related algorithms that yield excellent results
for comparison with our method, including methods based on
both deep learning and hand-crafted features for fire detec-
tion. The accuracy comparison results are shown in Table 5.
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FIGURE 6. Examples of images extracted from DS2. The top two rows show frames extracted from fire videos, while
the bottom two rows show frames extracted from normal videos.

Among the compared methods, the algorithms of Foggia,
Lascio, and Celik have the best false negative rates, but
among them, the highest false positive rate is 29.41%, and the
lowest is 6.67%. These algorithms have high false positive
rates, and their accuracy is not optimal. From the perspec-
tive of the false positive rate, the best result is achieved
by the method of Habioğglu, i.e., 5.88%, but the corre-
sponding false negative rate is 14.29%, which is the worst
among all of the detection methods. The method proposed by
Muhammad et al. has the best accuracy, but its false positive
rate is 8.87%, and its false negative rate is also still somewhat
high. By contrast, the false positive rate of our method is
2.33%, representing a reduction of 3.55%-38.85% relative to
the other methods. The accuracy of our method is 97.94%,
corresponding to an increase of 3.44%-23.74%, and the false
negative rate is 0.84%. A further analysis of the experimental
results showed that the false negatives correspond to frames
in which the fires are about to burn out, whereas the fires can
be detected effectively in the early stage. In summary, our
method shows the best performance.

E. EXPERIMENTS ON VIDEO DATASET 3
We built a new dataset from complex video scenarios to
further demonstrate the performance of our method. Sam-
ple frames from the videos in DS3 are shown in Fig. 7.

The dataset includes 20 videos: 10 fire videos (videos 1-10)
and 10 nonfire videos (videos 11-20). The total time of
the videos in DS3 is approximately 43 minutes. In addi-
tion, videos 8-10 and 16-20 were obtained experimentally,
whereas the other videos were found on the Internet.

The example frames show that DS3 contains many chal-
lenges, such as fires viewed from far away, an occluded fire,
a tunnel fire, and fires obscured by smoke and light. The
nonfire videos include complex video scenarios with many
types of interferences, such as artificial lights, sunlight, red
objects, and bad weather. A detailed explanation of each
video in DS3 is given in Table 6.

In addition to our proposed method, four commonly used
deep neural networks were selected for use in place of
the network proposed in this paper for comparison. Among
them, ShuffleNetV2 [55] and MobileNetV2 [46] are excel-
lent lightweight neural networks that have been recently
proposed, and VGG16 [58] and ResNet50 [59] are ordi-
nary CNNs with many applications. In Table 7, we com-
pare five models in terms of run time and accuracy. Clearly,
our proposed method is superior to ShuffleNetV2 and
MobileNetV2 based on its false positive rate, false nega-
tive rate, and accuracy. The false positive rate is lower by
1.41%-2.30. The false negative rate is lower by 0.78%-1.5%.
The accuracy is higher by 1.45%-1.69%. However, the frame
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FIGURE 7. Sample video frames from DS3 that were used to test the proposed method.

TABLE 6. Detailed descriptions of the videos in DS3.

rate is somewhat lower than that of MobileNetV2, which is
far higher than the general video frame rate requirements. The
resulting accuracy is not very different from that of VGG16 or

TABLE 7. Comparison with different deep neural network models on DS3.

ResNet50, but our method achieves a shorter run time than
these methods do. Thus, our proposed method can better
balance accuracy and run time for fire detection.

IV. DISCUSSION
A. COMPARISON OF FIRE DETECTION RESULTS WITH
RECENT RESEARCH
We tested our method with three different device configu-
rations: an Intel Core i7-8750H CPU with 8 GB of RAM,
and an Nvidia GeForce GTX 1060 with 6 GB of onboard
memory, an Intel(R) Core(TM) i7-4810MQ CPU with 8 GB
of RAM, and an Intel(R) Core(TM) i7-5500UCPUwith 8GB
of RAM. We compared our method with the most advanced
methods reported to date in terms of the frame rate, accuracy,
and false positive rate on DS2. Our method can balance
time and accuracy better than the other methods, as shown
in Table 8. Real-time detection can be achieved in all three
device configurations, with frame rates of 41 fps, 36 fps,
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TABLE 8. Detailed comparison of the accuracy and run time of our method with those of other state-of-the-art methods on DS2.

FIGURE 8. Applicability of our method in special scenarios.

and 27 fps. In addition, the table shows that the methods of
Foggia et al. and Lascio et al. have faster run times, reaching
frame rates of 60 fps and 70 fps, respectively. However,
we achieve an accuracy increase of 4.39%-5.35% and a false
positive rate decrease of 4.34%-9.43% by comparison.

B. APPLICABILITY OF OUR METHOD IN SPECIAL
SCENARIOS
The ultimate goal of fire detection is to increase the accuracy
while reducing the rates of false positives and false negatives.
However, the situations depicted in real videos are complex,
including interfering factors such as fire viewed from far
away, artificial lights, red objects and other moving objects,
as shown in Fig. 8. A high false positive rate still occurs
when deep learning models alone are used for fire detection.
Our method of exploiting both motion-flicker-based dynamic
features and deep static features can solve these problems.
First, region-of-interest acquisition is performed based on
dynamic features. Second, fire detection is performed based
on static features.

In the first phase, the acquisition of regions of inter-
est based on dynamic features can enable the extraction
of fires or other moving objects viewed from a long

FIGURE 9. ROC curve for different thresholds in dynamic feature
extraction.

distance, as shown in Fig. 8 (a), enabling us to focus on the
spectral and textural features of such fire regions. Further-
more, the introduction of flicker detection can eliminate some
fire-like interferences from among the candidate moving
objects, such as artificial lights and red objects, as shown in
Fig. 8 (b). However, some items may be still missed during
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TABLE 9. Comparison of detection results with and without the consideration of dynamic features.

FIGURE 10. Examples of the whole evolution of a fire event. (a) Ignition. (b) Development. (c) Fierce burning. (d)
Decay. (e) Extinction.

this first phase of detection in complex video scenarios, for
example, moving fog or a car.

In the second phase, static features are used to further iden-
tify fire, which can eliminate these interferences, as shown in
Fig. 8 (c) and (d). To improve the robustness of the proposed
AL-CNN, different categories of fire images were used in
the training process, thereby improving the accuracy and
reducing the false positive rate for fire detection.

C. ANALYSIS OF DYNAMIC FEATURE EXTRACTION
During dynamic feature extraction, the recall should be as
high as possible to ensure that the AL-CNN model can sub-
sequently be effectively applied for fire detection. Notably,
the recall during dynamic feature extraction depends on the
value chosen for λ (equation (5)). To investigate the impact
of different thresholds on the recall, multiple types of fire
videos, including videos of fires from the burning of solid
fuel, liquid fuel, and gaseous fuel, were used in experiments
to determine the optimal threshold. The receiver operating
characteristic (ROC) curve for region-of-interest acquisition
with different thresholds for the extracted dynamic features

FIGURE 11. Time required for and average accuracy of fire detection for
each video.

are shown in Fig. 9. The preliminary threshold range is set to
0-1, and the step size is 0.05. It can be seen from the figure that
the true positive rate remains the same when the value of
λ is in the range of 0-0.5 and decreases when the value of
λ is increasing in the range of 0.5-1. By contrast, the false
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FIGURE 12. Fire detection accuracy in different stages of fire evolution.

positive rate continuously decreases when the value of λ is
increasing in the range of 0-1. To obtain a high true positive
rate while balancing the true positive rate and false positive
rate, the value of λ is set to 0.5.

To further prove the effectiveness of the dynamic fea-
ture extraction procedure, we performed 4 experiments on
DS2 and DS3 without considering dynamic features (with
only the AL-CNN) and with the consideration of dynamic
features (with background subtraction, flicker detection and
the AL-CNN). The results are shown in Table 9. On both
datasets, better results are achieved by considering dynamic
features. Without dynamic feature extraction, the false posi-
tive rate is increased by 9.1%-11.85%, the false negative rate
is increased by 6.69%-8.79%, and the accuracy is reduced by
8.67%-10.62%. As seen from the above analysis, considering
both the dynamic and static features of fire can effectively
improve the accuracy of fire detection and reduce the rates of
false positives and false negatives.

D. EFFECTIVENESS OF OUR METHOD
Early in the development of a fire is the best time to extinguish
it, and the time elapsed between the ignition of a fire and its
detection is an important factor to consider when evaluating
the ability to achieve early fire detection. Therefore, five fire
videos were divided into five stages in accordance with the
changes in the fire characteristics during the burning process,
i.e., ignition, development, fierce burning, decay, and extinc-
tion, as shown in Fig. 10. These five fire videos represent
different scenarios, including indoor and outdoor scenes.

In addition to the commonly used evaluation criteria of
accuracy and run time, the time from ignition to detection
was recorded. In addition, we recorded the detection accuracy
during the fire evolution process for each video separately,
as shown in Fig. 11. The amounts of elapsed time until fire
detection is achieved for the 5 videos are 2.5 s, 2 s, 1 s, 1.5 s,
and 2 s. The average accuracies are 97.97%, 98.53%, 98.3%,
97.80%, and 98.11%. For all videos, it is possible to detect
the fire within 3 s with high accuracy.

To analyze the detection accuracy of the method for dif-
ferent fire combustion stages, we analyzed the fire detection
accuracy in each of the five stages; the results are shown
in Fig. 12. The average accuracy across all five videos is
97.25%, 99.93%, 100%, 98.93%, and 94.63% for the first
through the fifth stages, respectively. For the ignition stage,
the accuracy is 97.25%, which can meet the needs of early
fire detection. For the development, fierce burning, and decay
stages, the average accuracy results are 99.93%, 100%, and
98.93%, respectively, which are also suitable for achieving
accurate fire detection. During the extinction stage, the accu-
racy is 94.63%. This analysis reveals that the method pro-
posed in this paper can achieve more accurate detection in
the early stages of a fire.

V. CONCLUSION AND FUTURE WORK
In recent years, with the development of computer vision
technology, deep learning has been applied for fire detec-
tion by many researchers. Although such applications are
feasible under certain conditions, their efficiency needs to be
improved, and complex video scenarios must be considered.
Motivated by these considerations, an efficient fire detec-
tion method is proposed in this paper. Our method offers
several advantages over other recent fire detection methods.
First, both motion and flicker features are considered, which
enables us to more effectively extract dynamic features.
In addition, our method relies on an adaptive lightweight neu-
ral network, which can effectively extract deep static features
with a low computational cost. Finally, experimental results
prove that our method achieves state-of-the-art performance
in terms of its accuracy and false alarm rate and that our
method is applicable to complex video scenarios. In general,
our proposed method has better application prospects than
other state-of-the-art methods and is suitable for use in public
safety management systems.

In this study, we concentrated solely on fire detection.
In future work, we will conduct in-depth research on fire
spread prediction and spatial positioning based on existing
research.We hope that our research can support the intelligent
suppression of fire in its early stages and provide improved
fire detection and fire suppression methods for fire manage-
ment in the area of public safety.
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