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ABSTRACT Traffic sign detection is one of the critical technologies in the field of intelligent transportation
systems (ITS). The difficulty of traffic sign detection mainly lies in detecting small objects in a wide and
complex traffic scene quickly and accurately. In this paper, we regard traffic sign detection as a region
classification problem and propose a two-stage CNN-based approach to solve it. At the first stage, we design
an efficient network which is built with improved fire-modules to generate object proposals quickly. The
network up-samples and merges the feature maps of different scales to attain a high-resolution fused feature
map which contains semantically strong features of multi-scale objects. Specially, the prediction is made on
the fuse feature map and based on the novel center-point estimation. With the overall designs, our region
proposal network can achieve high recall value while using low-resolution images. At the second stage,
a separate classification network is proposed. The bottleneck of the classification performance is generally
caused by the greatly similar appearances between traffic signs. Therefore, we further explore local regions
with critical differences between traffic signs to obtain fine-grained local features which help to improve
classification. Finally, we evaluate our method on a challenge benchmark Tsinghua-Tencent 100K which
provides many large images with small traffic sign instances. The experiment result shows that our method
has better performance and faster detection speed than many state-of-the-art traffic sign detection methods.

INDEX TERMS Traffic sign detection, multi-scale, center-point estimation, local features.

I. INTRODUCTION
Traffic sign detection plays an important role in ITS. An accu-
rate and efficient traffic sign detection detector is able to help
human drivers or autonomous driving systems to keep track of
road conditions and gain more time to make correct driving
operations, which can effectively improve the comfort and
safety of driving. However, there are still many problems to
be solved simultaneously in designing a traffic sign detector
that can truly serve practical applications. First of all, in the
images captured by cameras, most of the traffic signs are
very small in size and only occupy a very small proportion of
the images, usually less than 1%. Coupled with the complex
traffic background, it is harder to discover these small size
traffic signs completely. Secondly, traffic signs with the same
super-class are often very similar in appearance. As shown
in Fig.1, some traffic signs may only have slight differences
in shape that are only found in small local regions. To achieve
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FIGURE 1. Some instances of traffic signs. Traffic signs in China are
mainly divided into three super-classes: prohibitory, mandatory and
warning sign. Traffic signs of the same super-class have roughly similar
shape and color. There are smaller variations between traffic signs of
same sub-class.

fine classification, it is necessary to extract features that
reflect the key differences of traffic signs. Furthermore, traffic
sign detectors need to achieve high accuracy while strictly
limit the use of computing and memory resources, in order to
be put into practical use.

Traditional traffic sign detection methods [1]–[4] are
mainly based on color, shape, Histogram of Oriented Gradi-
ents (HOG) [5] or other discriminating hand-craft features,
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and use machine learning methods such as random forest
and support vector machine for classification. However, these
low-level features for specific tasks, not only require inten-
sive labor to design, but are too simple to adapt to change-
able environments and complex backgrounds as well. With
the development of convolutional neural networks (CNNs),
CNN-based methods have gone beyond the traditional ones.
CNNs can extract more complex and robust features through
self-learning, which makes them widely popular and suitable
for object detection tasks. Detection methods [6]–[13] based
on CNNs have attained fruitful achievements in the detection
of generic objects, but few of them can be directly applied to
traffic sign detection. This is mainly because traffic signs are
much smaller than generic objects. Generic object detectors
usually use a series of convolution and max pooling layers to
extract high-level semantic features, but this will also reduce
the resolution of features, resulting in the loss of information
of small objects.

Therefore, many works using CNN-based methods to
detect small traffic signs have been proposed. Zhu et al. [14]
uses segmentation annotations to enrich the information of
small traffic signs. But the segmentation annotations are
harder to obtain because of the complex tagging process.
Yang et al. [15] proposes an Attention Network (AN) to find
more potential Region of Interests (RoIs). Although the AN
runs in parallel with the main network, it consumes more
computing and memory resources. MR-CNN [16] uses the
multi-scale features and the surrounding context informa-
tion of the candidate objects to detect traffic signs, but it
ignores the important local features. FAMN [17] proposes a
feature aggregation multi-path network to build fine-grained
features. It works well, but it is slowed down by additional
operations. Pon et al. [18] designs a new hierarchical struc-
ture, which realizes real-time detection but greatly sacrifices
accuracy. All these methods have improved the performance
and efficiency of traffic sign detection to some extent, but few
of them can solve the problems mentioned above at the same
time. Thus, There is still much room for improvement.

In this paper, we propose a two-stage CNN-based method
to detect small traffic signs in high-resolution images, and
achieves a good balance between accuracy and efficiency.
We divide the detection task into two specific tasks: local-
ization and classification. The former is responsible for gen-
erating region proposals by specifying their locations and
shapes, while the latter is responsible for labeling those region
proposals. Instead of using a deep and complex network,
we use two separate networks to complete the two sub-tasks
separately. In fact, it is difficult to design a single network
that can detect and recognize small objects in a large image
accurately and quickly. Breaking down a complex task into
specific tasks allows us to use different networks designed
for specific tasks and to optimize each network in different
way without affecting the performance of the other ones.
Networks designed for simple tasks also have more room
and flexibility in compression and optimization than those
designed for complex tasks. Although our method fails to be

trained end-to-end, it takes less training time and is faster in
inference because it avoids exhaustively processing per pixel
of full images.

At the stage of localization, we treat all traffic signs as
one category and design an efficient network as a locator to
predict their locations and shapes. In deeper feature maps,
features will be semantically stronger but it also will be
weakened due to the lower resolution. Therefore, the locator
up-samples and merges multi-scale feature maps at different
levels to construct a high-resolution and semantically strong
fused feature map. Better feature expression of objects of
different sizes can be found in the fused feature map. The
backbone of the locator is built with efficient fire-modules
proposed originally by SqueezeNet [19]. We improve the
structure of the fire-module to enhance its feature expression
ability. Inspired by CenterNet [20], our locator generates
object proposals based on center-point estimation which pro-
vides a simpler pipeline for object prediction and is easier to
train than the widely used anchor mechanism [8]. We also
properly downsize the input images to reduce the number of
pixels to process. With the overall designs, our locator can
efficiently achieve a high recall value on locating multi-scale
objects.

At the stage of classification, we propose a relatively com-
plex network as a classifier to accurately classify the object
proposals generated by the locator. We crop these object
proposals from raw images, scale them into the same size and
feed them to the classifier. Objects smaller than the uniform
size will be magnified so that they can be seen more clearly,
while larger objects will be minified but they can still provide
rich feature information while reducing computation. Traffic
signs of the same sub-class are often very similar to each other
in appearance. However, we observe that the patterns of the
interior central parts of traffic signs are generally distinct and
different, that is, these partial region may contain richer and
more essential identification information. Thus, we further
explore the interior central parts of traffic signs specially
with global pooling [21] to attain fine-grain local features for
improving the accuracy of classification.

Finally, we train and evaluate our method on the large,
challenging traffic sign benchmark Tsinghua-Tencent 100K
(TT100K) [14] which provides more high-resolution images
and more traffic sign instances than previous benchmarks.
Our contributions can be summarized as follows:

(1) A CNN-based method for small traffic sign detection
and recognition is proposed which made a good accuracy-
efficiency-tradeoff. The method consists of an efficient net-
work for fast localization and a complex network for accurate
classification. The former is constructed with improved fire-
modules. It fuses feature maps to attain multi-scale features
and uses novel center-point estimation to generate object
proposals. The latter further explores critical local regions to
extract fine-grained features to improve classification accu-
racy.

(2) The proposed method achieves better result than many
state-of-the-art methods with a F1-measure of 91.9% for
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small (area ∈ (0,322]), 96.3% for medium (area ∈ (322,
962]), and 94.5% for large (area ∈ (962, 2002]) size group
in TT100K benchmark while being faster.

II. RELATED WORKS
A. GENERIC OBJECT DETECTION
Generic object detection approaches have made many break-
throughs. RCNN [6] uses Selective Search [22] to gener-
ate RoIs and classifies each of them independently with
a DCN-based region-wise classifier. Fast-RCNN [7] and
SPP [23] improve RCNN by extracting RoIs from feature
map of full image. Faster-RCNN [8] proposes a region pro-
posal network (RPN) for faster generation of object propos-
als and enables end-to-end training. The method dividing
object detection into two steps, firstly generating a set of
category-agnostic object proposals and then classifying them,
is generally considered to be two-stage. YOLO [9] and SSD
[10] are two representative one-stage detection methods that
generate object proposals and classify them simultaneously.
Generally, two-stage detectors have better performance but
slower speed than one-stage detectors.

Although generic object methods have reached an
advanced level in challenging PASCOL VOL [24] and MS
COCO [25], few of them can be directly applied to the
detection traffic signs. Objects in VOC and COCOhavemuch
larger size than traffic signs. Faster-RCNN, YOLO and SSD
are generic object detectors widely used in recent years but
they struggle to detect small objects, mainly because YOLO
and SSD divide images into too large grids, and Faster-RCNN
makes detection on low-resolution feature maps.

FPN [11] designs a feature pyramid to obtain multi-scale
features which is proved to be an effective and efficient strat-
egy to improve detection performance of objects of different
sizes. Under the guidance of FPN, we design a top-down
architecture with lateral connections to construct semanti-
cally strong feature maps of multi scales. As prediction which
is made on low resolution feature map will enlarge the dis-
cretization error of position of the center-point, we use the
finest feature map with the highest resolution to detect all the
objects.

B. KEY-POINT-BASED OBJECT DETECTION
In the current era, object detection methods are mostly
anchor-based [8] which generate bounding boxes by regress-
ing pre-placed anchor boxes to the desire places and shapes.
A large number of anchor boxes are needed to ensure suf-
ficient overlap with the targets, but few of them will end
up aligning with the ground truth bounding boxes, resulting
in a large imbalance between positive and negative samples
that adversely affects performance. In addition, the use of
anchor boxes introduces more hyper-parameters and design
choices, which increases the complexity and difficulty for
training models. Therefore, a novel detection pipeline based
on key-point estimation is proposed to eliminate the need for
anchor boxes.

CornerNet [26] predicts the top-left and bottom-right
corners of objects and then pair up them to generate bound-
ing boxes. CornerNet-Lite [27] proposes two efficient vari-
ants of CornerNet. One is CornerNet-Saccade which uses
an attention mechanism to reduce the number of pixels to
process. But it is not suitable for detecting small size objects.
The other is CornerNet-Squeeze which compacts the net-
work with efficient fire-modules [19] to reduce the amount
of processing per pixel. CenterNet [20] simply detects the
center point of each object which avoids the time-consuming
and error-prone grouping step and performs better than Cor-
nerNet. We integrate the ideas of CornerNet-Squeeze and
CenterNet to design an efficient network which is fast and
is easy to be trained for object localization. In particular,
we improve the structure of the fire-module to enhance its
feature representation while introducing minor overhead.

C. TRAFFIC SIGN DETECTION
Traffic sign datasets play a key role in traffic sign detection.
Too simple datasets will lead to poor generalization and over-
estimation of model performance. However, many widely
used datasets [28]–[31] are small and lack variable scenarios.
For example, German Traffic Sign Detection Benchmark
(GTSDB) [28] contains only 900 images and its scenes are
largely repetitive. To Make up the deficiency of existing
datasets, Zhu et al. [14] provides a larger and richer dataset
TT100K. In TT100K, images have high resolution and traffic
signs are very small, which makes TT100K a more challeng-
ing and suitable benchmark for traffic sign detection.

With the improvement of computing power and the avail-
ability of large datasets, the traffic sign detection methods
based on CNNs have been put forward continuously, and
they perform much better than the traditional ones. Refer-
ences [4], [32], [33] treat the localization and classifica-
tion of traffic signs as two sub-tasks and deal with them
separately. Reference [14] uses segmentation annotations to
obtain more information and enhance supervised guidance.
References [15], [34]–[36] explore attention mechanisms to
improve performance of small traffic signs. References [16],
[17] use multi-scale features which are attained from feature
maps of different levels to achieve scale invariant detection.
References [16], [17], [37] utilize the context information
surrounding objects to increase classification accuracy. Ref-
erences [38], [39] achieve better detection of small objects
by using GAN to generate super-resolved representations
for them. Reference [17] extracts local features to achieve
fine-grained classification. Reference [18] makes an effort to
decrease the delay of inference. Most of the existing works
are based on Faster-RCNN [8], SSD [10] or YOLO [9], and
there are few attempts like ours to use key-point estimation
to solve traffic sign detection.

III. OUR PROPOSED APPROACH
In this paper, we divide detection task into two specific sub-
tasks: localization and classification. We design an efficient
network as a locator for localization and a complex net-
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FIGURE 2. The detection pipeline of our method.

work as a classifier for classification. The locator takes all
traffic signs as one category and generates object locations
that specify the center point position and the shape of each
predicted object. According to the object locations, we crop
the candidate regions from raw images and use the classifier
to label them. Integrating the object locations and the object
labels, we output the final result. An overview of the detection
pipeline of our method is shown in Fig.2.

A. LOCATOR
Since directly processing the high-resolution raw images
(2048 × 2048) is expensive in terms of computation and
memory, we scale down the raw image to 1024 × 1024 and
designed an efficient network for fast localization. Inspired
by FPN [11], we design a feature pyramid for our locator
to attain semantically strong feature maps of multi scales.
The difference is that we only use the feature map of the
maximum scale to detect all objects of different sizes, so as
to introduce less localization deviation. We build our locator
using fire-module which is an efficient alternative to the
standard convolutional layer. We modified the structure of
fire-module to improve localization performance with small
overhead. Following CenterNet [20], we generate bounding
boxes based on the novel center-point estimation, which
makes the network simpler and easier to be trained. The
detailed implementation of our locator is shown in Fig.4.

1) FIRE-MODULE
The fire-module is originally proposed by SqueezeNet [19].
It first squeezes the number of channels of the input feature
with 1 × 1 convolution filters, and then expands it with a
mix of 1 × 1 and 3 × 3 convolution filters. In order to
improve the inference time, CornerNet-Squeeze [27] replaces
the 3×3 convolution filters in the mix with a 3×3 depth-wise
convolution proposed byMobileNets [40]. We expand this by
placing a 1×1 convolution called point-wise convolution [40]
right after the 3 × 3 depth-wise convolution to combine the
output of it in channel-wise. In the case that the input channel
is different from the output channel or the stride is not equal
to 1, we use a 1× 1 convolution to reshape the input feature
to match the output feature, so that they can still be merged to
retain more detail information. An implementation compari-
son of the fire-module that used by CornerNet-Squeeze and
our paper is shown in Fig.3.

FIGURE 3. Structure of the fire-module with input channel c_in, output
channel c_out , stride s and squeeze ratio sr . CBR denotes the
convolution module.

2) FEATURE PYRAMID
As shown in Fig.4, we first preprocess the input image
using one convolution module with stride 1 followed by two
convolution modules with stride 2, which down-samples the
resolution of input by 4 times and increases the number of
feature channel along the way (32, 64, 128). The convolution
module used in our paper consists of a convolution, a batch-
normalization and a ReLU activation layer. We squeeze the
locator according to the following strategies: (1) replacing
convolution modules with fire-modules; (2) replacing 3 × 3
kernels with 1 × 1 kernels; (3) decreasing the kernel num-
ber. Unless otherwise specified, the kernel size(k), stride(s),
padding(p) of convolution modules and fire-modules are 3×
3, 1 and b(k− 1)/2c respectively, and the output channel will
match the input channel.

The bottom-up pathway is responsible for computing a
series of multi-scale feature maps that will be further used
in the top-down pathway to build stronger features. The
bottom-up pathway consists of three blocks and each block
consists of several fire-modules. Except for the last fire-
module, the other fire-modules will not change the shape
of the feature map with stride 1. The last fire-module will
decrease the resolution of the input feature map with stride
2 and may change the channel number. In our locator, each
block contains two fire-modules. After passing through the
three blocks, the resolution of the input feature map will be
reduced 3 times and the number of channels will be increased
along the way (128, 256, 256).

The top-down pathway will attain semantically stronger
multi-scale feature maps by gradually up-sampling the top
feature map while fusing features from the bottom-up path-
way via lateral connections. Each lateral connection block
consists of two fire-modules. For the sake of simplicity and
efficiency, we up-sample the feature maps with interpolate
algorithm. A 1 × 1 convolution is placed after each addition
to fuse features. Corresponding to the bottom-up pathway,
the top feature map will be up-sample 3 times and its channel
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FIGURE 4. Structure of the locator.

number will be decreased along the way (256, 256, 128).
At the end of the top-down pathway, we obtain a semantically
strong fused feature map of high-resolution for predicting
objects.

3) CENTER PREDICTION
Similar to CenterNet [20], we use the fused feature map to
predict one 1-channel heatmap, one 2-channel shape map
and one 2-channel offset map separately with a 1 × 1
convolution-module followed by a 1 × 1 convolution. The
heatmap is used to locate the center point of objects and the
shape map is used to specify the height and width of each pre-
dicted object. The offset map gives the slight adjustment for
each predicted center point to compensate for the precision
loss caused by mapping the center points from input images
to heatmap.

LetC ∈ [0, 1]W×H×1 be the target heatmap of sizeW×H .
The locations of target center points are set to 1 and the rest
are set to 0 in the heatmap. We regress the predicted heatmap
Ĉ ∈ [0, 1]W×H×1 with focal loss [41] during training:

Lc = −
1
N

∑
x,y

{
(1− Ĉx,y)αlog(Ĉx,y) if Cx,y = 1
(1− Cx,y)β (Ĉx,y)αlog(1− Ĉx,y) o.w.

(1)

whereN is the number of target center points in an image, and
α and β are hyper-parameters of focal loss. We use α = 2 and
β = 4 in our experiments, following CornerNet [26].

Given a ground truth bounding box with center point of
pk = (xk , yk ) and shape of sk = (wk , hk ) in the input
image, we correspondingly get its center point location p′k =
bpk/rc and shape of s′k = sk/r in the heatmap, where r
is the down-sampling factor (the r is 4 in our network).
We predict a shape map Ŝ ∈ RW×H×2 to specify the shape
of objects. When we map the location from the input image
to the heatmap, some precision ok = pk/r − p′k may be lost
due to discretization. Thus, we also predict an offset map
Ô ∈ RW×H×2 for each center point to reduce the precision

loss. The prediction error will be enlarge by the factor of r ,
thus we only used the finest fuse featuremapwith the smallest
value of r for prediction. The supervision of shape and offset
acts only at center point locations and the other locations are
ignored. The shape and offset map both are trained with an
L1 loss:

Ls =
1
N

N∑
k=1

|Ŝp′k − s
′
k |. (2)

Lo =
1
N

N∑
k=1

|Ôp′k − ok |. (3)

We use Adam [42] to optimize the overall training objective
and set λs = 0.2, λo = 1:

L = Lc + λsLs + λoLo. (4)

At the inference time, we pick out the top-n peaks in the
heatmap as the predicted center points. Let P̂ = {(xi, yi)}n1
be the set of the n predicted center points we get. For the
predicted center point which lies at (xi, yi), we use Ĉxi,yi as
its confidence score, and we also have Ŝxi,yi = (wi, hi) and
Ôxi,yi = (δxi , δyi ) correspondingly. We produce the predicted
bounding box relate to (xi, yi) in heatmap as follow:

(xi+δxi−wi/2, yi+δyi−hi/2, xi+δxi+wi/2, yi+δyi+hi/2).

(5)

Finally, we remove the less confident proposals which have
a confidence score lower than a threshold θscore, and then use
Non-Maximum Suppression(NMS) to merge the proposals
which have a IoU larger than a threshold θNMS .We set n = 15,
θscore = 0.15 and θMNS = 0.3 in our experiments.

B. CLASSIFIER
The classifier is responsible for classifying the object propos-
als generated by the locator.We first crop the object proposals
from raw image and then scale them into the same size of
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FIGURE 5. Structure of the classifier.

32 × 32. Since the input scale of the classifier is small,
it allows us to design a more complex network to attain higher
accuracy at a low cost.

The network architecture of the classifier is shown
in Fig.5. It has two blocks. Each block consists of three
convolution-modules and a max pooling layer. Traffic signs
belonging to the same category series have similar appear-
ances which makes it difficult to distinguish them. However,
we generally can find differences in their interior central
parts. Thus, it is reasonable to assume that the characteristics
formed by the interior central regions of traffic signs are rel-
atively more important and discriminative. Therefore, we re-
sample the interior central region with size of 8× 8 from the
feature map before the second max pooling layer and use a
global pooling layer to extract the local features. Then we
expand the local features back to the size of 8×8, concatenate
them with the global features and fuse two of them with a
1 × 1 convolution module to get richer feature expression.
Next, the fused features will be flattened and processed by a
dropout layer with probability of 0.5. Finally, the features will
be fed to two fully connected layers, the first has a hidden size
of 2000 with a ReLU activation layer, and the second has a
hidden size of 46 with a softmax activation layer. The output
of 46 class probabilities has 45 for the selected traffic sign cat-
egories and 1 for the background.We use cross-entropy as the
loss function and use the Stochastic Gradient Descent (SGD)
with 0.9 momentum to train the classifier.

In particular, we use global pooling instead of convolu-
tion to extract local features, because using global pooling
provides a wider and better view [21] to extract better fea-
tures efficiently. We do not utilize the context information
surrounding the objects because it will increase computation
and introduce invalid background noise, which will make the
recognition result unstable.

IV. EXPERIMENTS
A. DATASET
We use TT100K benchmark which is provided by Tsinghua
University and Tencent Corporation to train and evaluate

our model. Compared with many previously used datasets,
TT100K provides much more images (6105 for training and
3071 for testing) with higher resolution (2048 × 2048) and
more traffic sign instances belonging to many different cate-
gories. Traffic signs are divided into three groups according
to their size: small (area ∈ (0,322]), medium (area ∈ (322,
962]) and large (area ∈ (962, 2002]) size group. Traffic signs
in TT100K are mainly of very small size, which makes it
more in line with the actual situation and more suitable for
traffic sign detection tasks. However, the class distribution
of traffic signs is extremely unbalanced. Some categories
may have as few as several instances, and some may have
more than a thousand instances. Therefore, like previous
studies, we selected 45 categories of traffic signs with at least
100 instances for the experiment.

B. TRAINING DETAILS
When training the locator, an image sample is an 800 × 800
patch cropped from the downsized image which is attained
by scaling the raw image with a random factor in the range
of [0.5, 0.7]. We augment the data with random color jitter-
ing [26], including adjusting the brightness, saturation and
contrast of an image. Since the traffic signs of two different
categories may be symmetrical, we do not adopt the augmen-
tation strategy of random flipping. We train the locator for 8k
iteration with a batch size of 16. The learning rate starts at
2.0× 10−3 and is dropped 10× at the 4k iteration.
After training the locator, we crop the object proposals

generated by the trained locator from raw images to train the
classifier.We label each object proposal by calculating its IoU
with the ground truth bounding boxes. An object proposal
with a maximum IoU less than 0.5 will be signed as a back-
ground sample. To reduce the imbalance among categories,
we re-sample the categories with less than 1000 instances
and ensure that each category has at least 1000 instances.
The samples will be resized to a uniform size 32 × 32 both
during training and inference period. We train the classifier
for 10 epoch with a batch size of 32. The learning rate is
initialized as 1.0× 10−2 and is dropped 10× at the 5 epoch.
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FIGURE 6. Precision-Recall curves for three size groups.

FIGURE 7. Visualization of the detection results attained by our method.

C. DETECTION PERFORMANCE AND EFFICIENCY
We evaluate the performance of traffic sign detection meth-
ods with the regular detection metrics, precision and recall
which are the same as those used in the previous study [14].
F1-measure is also used as an additional metric for more intu-
itive comparisons which considers both precision and recall.
We compare our method with three representative generic
object detectors Faster-RCNN [8], SSD [10] and FPN [11]
and four state-of-the-art traffic sign detectors Zhu et al. [14],
MR-CNN [16], pGAN [38] and FAMN [17]. Tab.1 shows the

detection performance of our and the other seven methods in
the three size groups.

We find that Faster-RCNN [8] cannot obtain satisfactory
results in small traffic sign detection. It only achieves a low
precision at 24.1% and a low recall at 49.8% for small size
group. Although SSD [10] has an advantage in speed, it is
the worst. Owing to using multi-scale features, FPN [11]
performs much better than Faster-RCNN and SSD but there
is still much room for improvement. This proved that the
generic object detectors for large objects are generally not
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TABLE 1. Comparison of detection performance for there size groups
(in %).

suitable for small objects. Thus, the study of CNN-based
detection methods targeting traffic signs is necessary and
valuable.

The F1-measure obtained by our method is 91.9% for
small, 96.3% for medium and 94.5% for large size group.
It greatly outperforms Zhu et al. [14] by 7.4%, 4.1% and
5.4%, MR-CNN by 5.9%, 2.8%, and 4.4% and pGAN [38]
by 5.5%, 2.9% and 4.5% for small, medium, and large size
groups respectively. Since pGAN has no open code, we use
results given in [38] directly. Large size is defined as (962,
+∞) in pGAN, which is different from ours (962, 2002], but
the impact is small because there are few traffic signs have
an area greater than 2002. Compared with FAMN [17] using
a resolution of 2048 × 2048, our method has a lower recall
rate in medium and large groups, but has the best accuracy
and slightly better f1-measure. Compared with FAMN using
a resolution of 1024× 1024, our method shows a significant
advantage in small and medium size groups with improve-
ments of 7.7% and 1.7% respectively. Using images with
the lowest resolution, our method outperformed all the other
methods in small size group at all aspects which validated the
effectiveness of our method in detecting small objects.

Tab.2 provides a detailed F1-measure comparison of each
selected traffic sign category. The FAMNhere uses resolution
of 2048 × 2048. From the table, our method achieves the
best results in 34 of the 45 classes, and makes a significant
improvement in detecting the traffic signs that look simi-
lar. For example, ’pl5’, ’pl20’, ’pl30’, ’pl40’, ’pl50’, ’pl60’,
’pl70’, ’pl80’, ’pl100’ and ’pl120’ are 10 traffic signs belong-
ing to speed limit traffic signs which are similar in appearance

and only have slight differences in speed values, as shown in
the right-most column of the Fig.1(a). For these 10 classes,
our method achieves higher F1-measures than the best results
obtained by the other methods, with an average improvement
of 2.4%. The result demonstrates that the local features are
able to distinguish subtle difference between traffic signs
which can effectively improve classification performance.

Fig.6 illustrates the precision-recall curves of our and the
other methods for three size groups. The precision-recall
curve is a commonmeasure to evaluate performance of object
detectors. The larger the area under the precision-recall curve,
the better the performance. From the figure, our method has
an obviously larger area than the other six methods [8], [10],
[11], [14], [16], [38] in all size groups. As for FAMN [17]
using resolution of 2048×2048, our method still outperforms
it in small size group and attains comparable results in middle
and large size groups. Considering using a much lower reso-
lution of 1024 × 1024, our method is still competitive from
precision-recall curve perspective.

To visualize the detection performance, we select some
representative results and present them in Fig.7. To facili-
tate observation, we outline the recognition results in yellow
rectangles, and zoom in on them at the bottom-right sub-
figures. The ground truth bounding boxes are in green and the
detection results are in red. From the figure, we can see that
most of traffic signs are very small and the traffic scenes are
complex in wild. As shown in Fig.7, our method is effective
for accurate localization and classification of traffic signs.
The first row of Fig.7 shows the detection results of highly
similar traffic signs such as speed limit traffic signs includ-
ing ’pl40’, ’pl80’, ’pl100’, etc, the second row shows the
detection results of multi-scale objects under adverse lighting
conditions and the last row shows the detection results of
extremely small objects.

It is worth noting that our method is not only compet-
itive in detection performance but also in detection speed.
To ensure a fair comparison, we measure the inference speed
on a same platform, a Linux PC with an Intel L5420 CPU
and a NVIDIA 1060 GPU. As for the measure of inference
time, we start the timer as soon as it finishes loading the
image and stop the timer immediately after it outputting the
final prediction result. It takes Faster-RCNN [8] 591ms to
detect an image of 2048 × 2048, which uses VGG-16 as
the feature extractor. Our method costs 110ms to detect an
image of 1024 × 1024, 106ms for localization and 4ms
for classification, which is 5.4× faster than Faster-RCNN.
Methods based on Faster-RCNN usually introduce additional
process to enhance the ability of detecting and recognizing
small objects which also make them slower.

D. ABLATION ANALYSIS
The improved fire-module and local features are two
important components of our model. To analyze the contri-
bution of them, an ablation study is given here. All exper-
iments are conducted on TT100K dataset with a resolution
of 1024 × 1024 and the same configuration of parameters
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TABLE 2. Comparison of F1-measure of 45 selected categories in TT-100K (in %).

unless otherwise specified. In this section, we use the APs
proposed in MS COCO [25] to measure performance for a
more intuitive comparison of results. In the baseline model of
ablation study, the locator is built with fire-module proposed
by CornerNet-Squeeze and the classifier ignores the local
features branch. We then add two components to the baseline
one by one and make analysis separately. We also analyze
some design choices for our method later in this section.

1) THE IMPACT OF IMPROVED FIRE-MODULE
The improvement of fire-module is a strategy to increase
the network complexity by improving basic block structure
rather than increasing the depth of the network. A more
complex network potentially has greater feature expression
ability, which helps to achieve better performance. In order
to demonstrate the effectiveness of our improved fire-module,
we compare it with the one CornerNet-Squeeze used.

As shown in Tab.3, the improved fire-module brings sig-
nificantly improvement of localization performance with a
1.7%, 2.4% and 0.6% increase for AP, AP75 and AP50 respec-
tively and it is helpful for objects of all sizes, improving APs
for small, medium and large size groups by 0.9%, 2.1% and
5.1% respectively. However, using improved fire-modules
adds only 2ms to the inference time of the locator. Besides,
the improved fire-module is independent of network structure
which can be easily plugged into other networks.

2) THE IMPACT OF LOCAL FEATURES
Here, we study the influence of local features extracted from
the interior central region with different scales of traffic

TABLE 3. Ablation on improved fire-module.

TABLE 4. Ablation on local features.

signs. As shown in Tab.4, local features of different scale all
have positive effects on the performance. We find that the
interior central region with scale 0.5 can bring the maximum
performance gain. Thus our classifier selects it to obtain
local features. Compared with a 3 × 3 convolution module,
the global pooling achieves more improvements as shown
in Tab.5.

3) ANALYSIS OF DESIGN CHOICES
We compared the impact of L1 loss on shape and offset
regression with Smooth L1 loss. As shown in the first two
rows of Tab.6, L1 loss generally gives a better localization
result. Using L1 loss, we also evaluate the sensitivity of the
locator to the shape loss weight λs. As shown in the last two
rows of Tab.6, weight value of 0.2 is better than 0.1.
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TABLE 5. Ablation on global pooling.

TABLE 6. Ablation on loss function and loss weight of shape.

V. CONCLUSION
In this paper, we propose a two-stage CNN based method to
detect small traffic signs in high-resolution images quickly
and accurately. Our method contributes two separate convo-
lutional networks, one (locator) for fast localization and the
other one (classifier) for accurate classification. The loca-
tor integrates the ideas of the multi-scale features of FPN,
the fire-module of CornerNet-Squeeze and the center-point
estimation of Centernet, which achieved high recall on traf-
fic signs of different sizes. The classifier is able to extract
fine-grained local features which improved the accuracy of
classification effectively. Through the overall designs, our
method can use images of lower resolution 1024 × 1024 to
attain a comparable or even better performance than many
state-of-the-art methods using higher in TT100K dataset.
In the future, we will continue to speed up our model while
maintaining high accuracy, and explore more discriminative
and richer features to improve fine-grained classification.

REFERENCES
[1] Y. Chen, Y. Xie, and Y. Wang, ‘‘Detection and recognition of traffic signs

based on HSV vision model and shape features,’’ J. Comput., vol. 8, no. 5,
pp. 1366–1370, 2013.

[2] I. M. Creusen, R. G. J. Wijnhoven, E. Herbschleb, and P. H. N. de With,
‘‘Color exploitation in hog-based traffic sign detection,’’ in Proc. IEEE Int.
Conf. Image Process., Sep. 2010, pp. 2669–2672.

[3] A. Ellahyani, M. E. Ansari, and I. E. Jaafari, ‘‘Traffic sign detection
and recognition based on random forests,’’ Appl. Soft Comput., vol. 46,
pp. 805–815, Sep. 2016.

[4] H. Ngoc Do, M.-T. Vo, H. Quoc Luong, A. Hoang Nguyen, K. Trang,
and L. T. K. Vu, ‘‘Speed limit traffic sign detection and recognition based
on support vector machines,’’ in Proc. Int. Conf. Adv. Technol. Commun.
(ATC), Oct. 2017, pp. 274–278.

[5] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, ‘‘HOGgles:
Visualizing object detection features,’’ in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2013, pp. 1–8.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[7] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[8] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Springer, 2016, pp. 21–37.

[11] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[12] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via region-
based fully convolutional networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 379–387.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2961–2969.

[14] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, ‘‘Traffic-sign
detection and classification in the wild,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 2110–2118.

[15] T. Yang, X. Long, A. K. Sangaiah, Z. Zheng, and C. Tong, ‘‘Deep detection
network for real-life traffic sign in vehicular networks,’’ Comput. Netw.,
vol. 136, pp. 95–104, May 2018.

[16] Z. Liu, J. Du, F. Tian, and J. Wen, ‘‘MR-CNN: A multi-scale region-based
convolutional neural network for small traffic sign recognition,’’ IEEE
Access, vol. 7, pp. 57120–57128, 2019.

[17] Z. Ou, F. Xiao, B. Xiong, S. Shi, and M. Song, ‘‘FAMN: Feature aggre-
gation multipath network for small traffic sign detection,’’ IEEE Access,
vol. 7, pp. 178798–178810, 2019.

[18] A. Pon, O. Adrienko, A. Harakeh, and S. L. Waslander, ‘‘A hierarchical
deep architecture and mini-batch selection method for joint traffic sign and
light detection,’’ in Proc. 15th Conf. Comput. Robot Vis. (CRV), May 2018,
pp. 102–109.

[19] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and< 0.5 model size,’’ 2016, arXiv:1602.07360. [Online]. Available:
http://arxiv.org/abs/1602.07360

[20] X. Zhou, D. Wang, and P. Krähenbühl, ‘‘Objects as points,’’ 2019,
arXiv:1904.07850. [Online]. Available: http://arxiv.org/abs/1904.07850

[21] W. Liu, A. Rabinovich, and A. C. Berg, ‘‘ParseNet: Looking
wider to see better,’’ 2015, arXiv:1506.04579. [Online]. Available:
http://arxiv.org/abs/1506.04579

[22] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, ‘‘Selective search for object recognition,’’ Int.
J. Comput. Vis., vol. 104, no. 2, pp. 154–171, Sep. 2013.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[24] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

[25] T.-Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis. Springer, 2014, pp. 740–755.

[26] H. Law and J. Deng, ‘‘Cornernet: Detecting objects as paired keypoints,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.

[27] H. Law, Y. Teng, O. Russakovsky, and J. Deng, ‘‘CornerNet-lite: Effi-
cient keypoint based object detection,’’ 2019, arXiv:1904.08900. [Online].
Available: http://arxiv.org/abs/1904.08900

[28] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ‘‘The German traffic
sign recognition benchmark: A multi-class classification competition,’’ in
Proc. Int. Joint Conf. Neural Netw., Jul. 2011, pp. 1453–1460.

[29] R. Belaroussi, P. Foucher, J.-P. Tarel, B. Soheilian, P. Charbonnier, and
N. Paparoditis, ‘‘Road sign detection in images: A case study,’’ in Proc.
20th Int. Conf. Pattern Recognit., Aug. 2010, pp. 484–488.

[30] F. Larsson and M. Felsberg, ‘‘Using Fourier descriptors and spatial models
for traffic sign recognition,’’ in Proc. Scandin. Conf. Image Anal. Springer,
2011, pp. 238–249.

[31] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, ‘‘Vision-based traffic
sign detection and analysis for intelligent driver assistance systems: Per-
spectives and survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4,
pp. 1484–1497, Dec. 2012.

[32] U. Kamal, T. I. Tonmoy, S. Das, and M. K. Hasan, ‘‘Automatic traffic
sign detection and recognition using SegU-net and a modified tversky loss
function with L1-constraint,’’ IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1467–1479, Apr. 2020.

[33] D. Zang, J. Zhang, D. Zhang, M. Bao, J. Cheng, and K. Tang, ‘‘Traffic
sign detection based on cascaded convolutional neural networks,’’ in Proc.
17th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput. (SNPD), May 2016, pp. 201–206.

83620 VOLUME 8, 2020



L. Wei et al.: Traffic Sign Detection and Recognition Using Novel Center-Point Estimation and Local Features

[34] Y. Tian, J. Gelernter, X. Wang, J. Li, and Y. Yu, ‘‘Traffic sign detec-
tion using a multi-scale recurrent attention network,’’ IEEE Trans. Intell.
Transp. Syst., vol. 20, no. 12, pp. 4466–4475, Dec. 2019.

[35] Y. Lu, J. Lu, S. Zhang, and P. Hall, ‘‘Traffic signal detection and classifica-
tion in street views using an attention model,’’ Comput. Vis. Media, vol. 4,
no. 3, pp. 253–266, Sep. 2018.

[36] J. Zhang, L. Hui, J. Lu, and Y. Zhu, ‘‘Attention-based neural network for
traffic sign detection,’’ in Proc. 24th Int. Conf. Pattern Recognit. (ICPR),
Aug. 2018, pp. 1839–1844.

[37] C. Peng, L. Wu, Y. Zhang, and H. Ma, ‘‘Loco: Local context based faster
R-CNN for small traffic sign detection,’’ in Proc. Int. Conf. Multimedia
Modeling, 2018, pp. 329–341.

[38] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, ‘‘Perceptual generative
adversarial networks for small object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1222–1230.

[39] W. Huang, M. Huang, and Y. Zhang, ‘‘Detection of traffic signs based on
combination of GAN and faster-RCNN,’’ J. Phys., Conf. Ser., vol. 1069,
no. 1, Aug. 2018, Art. no. 012159.

[40] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[41] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for
dense object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 2980–2988.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

LIJING WEI was born in Guangxi, China, in 1995.
She received the B.S. degree in intelligence sci-
ence and technology from Hunan University,
in 2017, where she is currently pursuing the
M.S. degree in computer science and technology.
Her main research interests include deep learn-
ing, computer vision, and especially the object
detection.

CHENG XU was born in 1962. He received the
Ph.D. degree in computer science and engineer-
ing from the Wuhan University of Technology,
in 2006. He is currently a Professor and a Ph.D.
Supervisor with the College of Computer Science
and Electronic Engineering, Hunan University.
He has published 28 articles and hosted several
national and provincial nature fund projects. His
main research interests include embedded sys-
tems, digital video processing, and automated test

and control. He is a member of the China Computer Federation.

SIQI LI received the B.S degree in physics and the
M.S degree in control engineering from Shandong
University, in 2012 and 2015, respectively. He is
currently pursuing the Ph.D. degree in computer
science and technology with Hunan University.
His academic interests include artificial intelli-
gence, reinforcement learning, and robotics.

XIAOHAN TU received the M.S degree in com-
puter science and technology from Hunan Uni-
versity, Changsha, China, in 2017, where she is
currently pursuing the Ph.D. degree with the Key
Laboratory for Embedded and Network Com-
puting of Hunan Province. She is participating
in the project of the National Natural Science
Foundation of China: CPS Instantiation-Research
on the Smart Inspection Robot of Catenary. Her
research interests include cyber-physical systems,

computer vision, and machine learning. She is currently the Reviewer of
IEEE ACCESS.

VOLUME 8, 2020 83621


