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ABSTRACT Many production vehicles are now equipped with both cameras and radar in order to provide
various driver-assistance systems (DAS) with position information of surrounding objects. These sensors,
however, cannot provide position information accurate enough to realize highly automated driving functions
and other advanced driver-assistance systems (ADAS). Sensor fusion methods were proposed to overcome
these limitations, but they tend to show limited detection performance gain in terms of accuracy and
robustness. In this study, we propose a camera-radar sensor fusion framework for robust vehicle localization
based on vehicle part (rear corner) detection and localization. The main idea of the proposed method is to
reinforce the azimuth angle accuracy of the radar information by detecting and localizing the rear corner part
of the target vehicle from an image. This part-based fusion approach enables accurate vehicle localization as
well as robust performance with respect to occlusions. For efficient part detection, several candidate points
are generated around the initial radar point. Then, a widely adopted deep learning approach is used to detect
and localize the left and right corners of target vehicles. The corner detection network outputs their reliability
score based on the localization uncertainty of the center point in corner parts. Using these position reliability
scores along with a particle filter, the most probable rear corner positions are estimated. Estimated positions
(pixel coordinate) are translated into angular data, and the surrounding vehicle is localized with respect to
the ego-vehicle by combining the angular data of the rear corner and the radar’s range data in the lateral and
longitudinal direction. The experimental test results show that the proposed method provides significantly
better localization performance in the lateral direction, with greatly reduced maximum errors (radar: 3.02m,
proposed method: 0.66m) and root mean squared errors (radar: 0.57m, proposed method: 0.18m).

INDEX TERMS Bird’s-eye view, vehicle localization, sensor fusion, lane change prediction, trajectory

prediction, particle filter.

I. INTRODUCTION

A key enabler of recent DAS technologies is the drastically
improved perception technologies owing to vision and radar
sensors. These sensors have their own strengths and weak-
nesses. Table 1 summarizes the strengths and weaknesses
of three popular sensors in terms of performance, cost, and
robustness to environmental effects. For mass-production
vehicles, cost is usually the dominant factor behind the sensor
choice, and thus Lidar is rarely used for production cars
despite its superior performance. Instead, radar and camera
sensors are the two most widely used sensor choices. These

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Ayoub Khan

VOLUME 8, 2020

two sensors work adequately when they are applied in a
well-conditioned environment for low-level automated driv-
ing systems. However, in order to develop highly-advanced
DAS such as a highly automated driving system, accurate
position information is essential to predict the future motions
of surrounding vehicles and to take appropriate actions while
avoiding faulty ones [1], [2]. Unfortunately, radar and camera
sensors do not provide sufficiently accurate position informa-
tion when used individually.

The research on cameras in DAS has focused mainly on
vehicle detection with a lighter calculation load and greater
robustness to external environmental changes [3]-[12].
A few recent studies investigated the distance estimation
problem [13]—[20]. These studies use a method that estimates
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TABLE 1. Comparison of sensor characteristic.

Range accuracy

Sensor — Cost Environmental
: affect
Radial Lateral
Radar O 0 A A
Camera O O o 0
Lidar O 'e) 0 n

O: Good, A: Normal, []: Bad

the distance between a vehicle with ADAS installed, called an
“ego-vehicle”, and surrounding vehicles through geometric
relationships. When using this method, a distance estimation
error often occurs because the vehicle detection bounding
box cannot always be fitted suitably. A detected vehicle is
represented as a bounding box in an image, and the contact
point is defined as the point that overlaps both the bounding
box and the road plane in the image. The distance is then esti-
mated using the geometric relationship between this contact
point and a camera installed on the vehicle. However, since
a camera has low resolution in the longitudinal direction, a
slight position error of the bounding box causes large longi-
tudinal distance variation. Additionally, due to the variation
of the camera optical axis as the vehicle is driven, estimation
errors based on geometric relationships are inevitable. Con-
sequently, existing distance estimation methods using only a
camera cannot represent the position of the vehicle precisely.

Radar also cannot always accurately provide precise posi-
tion information. As summarized in Table 1, radar shows
good range accuracy in the radial direction but poor per-
formance in the lateral direction. Some studies on radar
related to improving accuracy in lateral direction have been
conducted [21]-[29]. However, limitations due to inherent
characteristics still exist. Basically, a radar uses measured
phase difference from more than two Rx antennas to estimate
the angle of arrival of the object. The relationship between
the phase and angle is nonlinear, and the sensitivity of the
phase to angle degrades as the angle increases. Accordingly,
when the angle is estimated using only radar, an error tends
to occur as the angle increases. And since the position of
peak reflectivity of the object is continuously changing in the
tracking process, the resulting angle error also exists. Also,
as shown in Fig. 1, radar is still limited when classifying the
vehicle’s corner part, which is needed to accurately localize
the vehicle onto bird’s-eye-view coordinates.

In order to complement the limitations of radar and
cameras, the radar and camera sensor fusion algorithm
has been studied. However, since most sensor fusion stud-
ies have focused on improving detection performance
through cross-validation or reducing computation load,
the weaknesses of each sensor are still not completely
solved [30]-[37].
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FIGURE 1. Problem of radar regarding vehicle localization in a bird’'s-eye
view.

To achieve better localization performance, a few sen-
sor fusion techniques have been proposed [34], [38]-[40].
In a prior study, a simple radar and camera coordinate trans-
formation calibration method was proposed as a type of sen-
sor fusion and has served as preliminary work for radar and
camera sensor fusion studies [34]. In another study, to rep-
resent the position of the vehicle, the position information
from each sensor is displayed on a grid cell in a bird’s-eye-
view and the vehicle position is derived by superimposing this
information [38]. Because the vehicle position is displayed
over several adjacent grids, uncertainty arises. In order to
reduce uncertainty in vehicle localization and maintain con-
tinuity of the localization results, a Kalman filter is used to
fuse both the radar and camera data [39]. This results in better
performance, effectively reducing the noisy distance estima-
tion data of each sensor in the radial direction. Moreover,
other work sought to complement the high lateral position
variance due to radar using the symmetry of the rear parts
of the vehicle [40]. This approach can provide a relatively
accurate lateral position in the case of a vehicle moving
forward. However, it is limited when the vehicle is partially
visible, as it relies on the symmetry of the rear contour of the
vehicle. In a close-up case, unlike when a vehicle is moving
forward, it is also difficult to apply symmetry detection due
to the varying viewpoints. Overall, existing sensor fusion
methods are effectively used only as the cross validation
to increase detection accuracy, but there is a limitation to
robustly localizing a vehicle in diverse driving environments
including occlusion.

Therefore, in this study, we present a sensor fusion method
which reinforces the azimuth angle accuracy of the radar data
by localizing a vehicle’s rear corner part using a camera. For
vehicle part localization, the center position of the vehicle’s
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FIGURE 2. Overall work flow of this study.

rear corner is estimated and tracked based on a particle filter
framework. Thus, through this part-based fusion approach,
we can provide accurate vehicle localization as well as robust
performance with respect to occlusions. In this way, the short-
comings of each sensor are compensated for and surrounding
vehicles are localized accurately onto a bird’s-eye view in
actual driving environments.

The main contributions in this study can be summarized as
follows:

First, our method shows accurate localization performance
by estimating a vehicle’s rear corner part robustly. The vehi-
cle’s rear corner part is classified robustly via a proposed
vehicle part classification model and using these classi-
fied corner parts, the most probable position of the vehi-
cle’s rear corner is estimated accurately through a particle
filter.

Second, our method shows reliable results when localizing
the relative positions of surrounding vehicles under diverse
driving conditions. Through tracking each vehicle’s rear cor-
ner part separately based on particle filter framework, our
method copes well with sudden partial observation driving
situations such as cut-in, cut-out driving.

The overall workflow of this study is described in Fig. 2.
and consists of the following three steps.

Step 1: Preliminarily candidate point generation
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The radar data is translated to the image plane and prelim-
inarily candidate points for classifying a vehicle’s rear corner
part are generated around the initially translated radar data.

Step 2: Vehicle rear corner part localization

Each corner part of the vehicle is classified from the candi-
date points, after which the most probable corner part position
is estimated using the classified candidate points. Once the
corner part position is estimated, the position is continuously
tracked around the prior estimated position through an itera-
tive process.

Step 3: Bird’s-eye-view localization

Both estimated rear corner part positions in an image plane
are combined with the range and angle data from the radar
system, which is then translated to the coordinates of the
vehicle’s rear corner part in a bird’s-eye-view.

The remaining sections covered in this paper are as follows.
The vehicle’s rear corner part localization on the image plane
is described in Section II. In this section, an overview of
the corner part localization method, the vehicle rear cor-
ner classification model, candidate point generation and the
particle-filter—based framework for the extraction and track-
ing of the vehicle rear corner part position are explained
in detail. In Section III, adding vehicle localization into a
bird’s-eye view is explained using both radar data and camera
data. Section IV describes the test environment and presents

75225



IEEE Access

D. Kang, D. Kum: Camera and Radar Sensor Fusion for Robust Vehicle Localization via Vehicle Part Localization

R : range data (RADAR)
0 :angle data (RADAR)
| RADAR data I Image U : pixel coordinate
sequence V : pixel coordinate
O A . Hypothesisgeneration:

:: Initial RADAR point ~ [(U,V)]I

5 * i

Candidate points generation ~ [unif{-8,+ 8}]

"""""""""""""" 4 Hypothesis verification!

Corner parts classification model matching

i ]

— Detect comer part?

—PI Weight normalization using classification score I

y

I Particlefilter I

y

1
1
1
1
1
1
1
1
1
1
1
|
i Most probable comer position estimation ~[ (U, Vi) (U, Vy) ]
1
1
1
1
1
1
1
1
1
1
1
1
1
1

y

Neighboring candidate region generation

y

Corner part classification

FIGURE 3. Both rear corner part localization sequence.

experimental results on the accuracy of the surrounding vehi-
cle localization process. Finally, the conclusion and future
works are presented in Section V.

Il. VEHICLE REAR CORNER PART LOCALIZATION

A. OVERVIEW

During the second step shown in Fig. 2, both rear corner
part positions are estimated and tracked on an image plane
in order to localize the vehicle in the lateral direction with
respect to the relative coordinates of the ego-vehicle. Even
when either the left or right corner part is not visible due to
occlusion, one corner part is continuously tracked to real-
ize a close approximation of the position of the vehicle.
For part localization, transformation of the radar data to
the image plane should take precedence. Subsequently, the
candidate points are generated around the initial radar point
with a uniform distribution to classify both rear side parts of
the vehicle, efficiently reducing the processing time. From
among the candidate points, the vehicle’s rear corner parts
on the left and right are identified through a classification
model pre-trained on both corner parts, with the classified
points having their weights assigned from their correspond-
ing classification scores. Using the position and weight of
the classified points, the most probable left and right side
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FIGURE 4. Training image samples in this study.
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positions are estimated. Once the probable position is esti-
mated, the candidate points are regenerated around the prior
estimated position to track both rear corner parts of a vehicle,
and each corner part is tracked through an iterative process.
The surrounding vehicles then localized onto a bird’s eye
view based on the rear corner parts of the tracked vehicle.
The workflow to track the most probable left and right side
positions of the surrounding vehicles in the image sequences
is described in Fig. 3.

B. DEEP LEARNING-BASED VEHICLE PART
CLASSIFICATION MODEL

1) TRAINING DATASET

In order to classify a vehicle’s rear corner part, we must
establish a dataset which is composed of various classes.
Thus, we define five classes including other parts of the
vehicle in the vicinity of the corner. Each of these classes
is defined in Fig 4. In total, 29,185 images of vehicles are
included in the dataset: some of them from Stanford which
contains 16,185 images of vehicles [41]. Using those images,
we define the class of the vehicle part and train it to classify
the rear corner.

2) DEEP LEARNING MODEL FOR REAR CORNER
CLASSIFICATION

A pre-trained model is used to train a vehicle rear corner part
classification model. In this study, we use the VGG16 net-
work [42] as a pre-trained model, which is simple but shows
good performance in many applications of image classifi-
cation. Since our defined dataset has five classes, we have
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TABLE 2. Confusion matrix for test dataset.

Target Class 1 Class 2 Class 3 Class 4 Class 5 Accuracy
Output (Middle part)  (Left corner part) (Right corner part) (Wheel) (Background)
Class 1
(Middle part) 425 4 3 2 0 97.9
Class 2
(Left corner part) 0 296 0 4 0 98.7
Class 3
(Right corner part) 5 3 235 1 0 96.3
Class 4
(Wheel) 0 2 2 198 2 97.1
Class 5
(Background) 0 0 0 0 212 100
Accuracy 98.8 97 97.9 96.6 99.1 98
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FIGURE 5. Pre-trained classification model for vehicle rear corner
classification.

to replace the output layer of VGG16 to customize it to the
dataset. Therefore, for customizing we replace the classifier
of the VGG16 network to the newly added classifier as shown
in Fig 5. Finally, to confirm the performance of the trained
detection model, classification is carried out throughout the
test dataset. The total simulation result shows 98 percent
classification accuracy for the test dataset. The accuracy of
each class classification as a confusion matrix in the test
dataset is shown in Table 2.

C. CANDIDATE POINT GENERATION FOR REAR CORNER
POINTS BASED ON RADAR DATA

1) DATA TRANSFORMATION

a: GENERALIZED DIRECT LINEAR TRANSFORM

In order to use the radar data in an image, appropriate coor-
dinate transformation must be done initially. Thus, the direct
linear transform (DLT) method is employed to translate the
radar point to the corresponding point on the image plane.
The radar and image coordinate systems are defined in Fig. 6,
where the transformation matrix between two coordinate
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FIGURE 6. The relationship between the camera coordinates and radar
coordinates.

systems is defined as (1).

Xi hll K12 h13  hl4 Yi
yi | =| k21 h22 h23 K24 Zl. (1)
wi h31  h32 K33 h34 11

where [x;, yi, wi] is the set of homogeneous coordinates for
the image point; [A11, ..., h34] is an element of the camera
matrix; [X;, Y, Z;, 1] is the set of homogeneous coordinates
for the radar point. Assuming that all radar points are on the
plane (Z = 0), the transformation matrix can be represented
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as projective transformation (H) as (2).

xi Rl K12 R3] [ Xi
vi |=|m1 m2 m3||w )
wi Bl m32 w33 || 1

This can be rearranged as (3) for the pixel coordinates u
and v.

xRk Xi+h12x% Vit hi3
e i T M3l Xi+ h32 % Yi+ 133
xi  hl11%Xi+h12Yi+hl3

VT i T M3l % Xi+ 32 Yi+ 133

3

For each point i, (3) can be rewritten as a polynomial with
respect to A, as shown in (4).

[ A1y
hi2
hi3
hat
[=X; =Y, —100 0 u;X; u;Yi uj] | hop
hy3
h31
h3
h33

—Alh=0

h11

000 —X; =Y, —1 viX;viYivi]l | hao —>Bl~Th=0

“

In conclusion, to obtain each element 4 of the homography
matrix, the equation can be defined as a least square problem,
as shown in (5).

ar
Bf
... |h=Ph=w, For eachdatapoint(i...k)
AT
k
B;
h = argminy, wlw (@)

b: CALIBRATION DATASET

In order to solve the least square problem for the homography
matrix defined as (5), the distance from the radar sensor to
the object (corner reflector) was measured and the data was
matched manually with the pixel coordinates of the object
in an image. A test sample image for the calibration dataset
is shown in Fig. 7. Like Fig. 7, data was collected from
19 separate points which are arranged in Table 3.
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FIGURE 7. Sample image of the calibration dataset.

TABLE 3. Radar and camera calibration dataset.

Sample .Y . U V
. lateral longitudinal pixel pixel
pomnt direction(m) direction(m) coordinate coordinate
1 -3.113 6.227 86 570
2 -1.121 6.351 435 567
18 3.238 32.255 776 445
19 7.597 32.006 964 454

2) REAR CORNER CANDIDATE POINT GENERATION

The initial candidate points for classifying the rear corner
parts of the surrounding vehicles are generated around the
initial radar points. Each initial radar point is converted
into pixel coordinates in an image through the homogra-
phy matrix, calibrated using the process described above.
The candidate points are then generated around the pixel
coordinates of the radar points with a uniform distribution.
In each case, the mean of the uniform distribution is the pixel
coordinate of the radar point and the size of the interval in
the uniform distribution is dependent on pixel coordinate v
in the image plane, as defined in (6). In accordance with this
process, generated candidate points around the initial radar
point are shown in Fig. 8.

S ={S1,52,...,5n)

S(i) = S@) —k, if S(i) > size of image frame
b= unif (im—o, m+o), otherwise
c=a-v+p (©)

where, S(7) is a candidate point; m is the mean of the uniform
distribution; o is the interval size of the uniform distribution
which is set differently according to the v pixel coordinate;
o, B and k are hyper parameters which are adjusted to the
image frame size; The small n represents sample numbers that
is defined as 30 in this study.

D. REAR CORNER PART CLASSIFICATION FROM
CANDIDATE POINTS

Once the candidate points are generated according to the
initial radar point, the trained vehicle rear corner part classifi-
cation model is allocated to a window box with a rectangular
shape centered on the candidate points. Because the closer
vehicle is located in the lower region of an image, the size of
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FIGURE 9. Classification result for both vehicle rear corner parts.

the window box for classification depends on the position of
the candidate points. The classification score for the window
box is then calculated through the allocated classification
model to find the rear left and right corner parts of the
vehicle. Despite the fact that these parts may be classified as
a corner part initially, they are regarded as false positives if
the classification score is lower than a predefined threshold
value. Through the procedures described above, vehicle rear
corner parts are classified for the right and left part in each
respective case among the candidate points. Figure 9 shows
the classified rear left and right corner parts of the vehicle.
Among the generated candidate points, the green ‘star’ rep-
resents the points classified as left corner parts and the red
‘circle’ represents the points classified as right corner parts.

E. TRACKING THE REAR CORNER POINT USING A
PARTICLE FILTER

In order to extract the best possible position of the rear corner
among the classified rear corner parts, a particle filter frame-
work is employed. A point regarded as the left or right corner
among all candidate points has its weight assigned from the
classification score based on the classification model. The
weights are normalized and an arbitrary probability distri-
bution is generated based on these values. Thus, the most
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Algorithm 1: Rear corner part position tracking algorithm

Input: X = {< xU! wll >} (Paricle set)

Output: P (Estimated vehicle rear side part position), X
1. P=0

2: forj=1toJ do

3 1 _ w)!

4: R:F,+ch]-plm

5: endfor

6: return P, X, =@

7. fork =1toK do

8: sample x;41 Kl ~ N(P;, 62)

9: wi 1 ~ classification score of k'™ sample
10: Ith—H[k] to Xt—i—l[k]

11: draw k with probability w, ¥}
12: add x; 1™ to X; 1

13:  endif

14 Xy =X+ < xt+1[k], Wt+1[k] >
15: endfor

16: return X;4+1

suitable left and right corner part positions are estimated
based on the generated arbitrary probability distribution. In
order to keep track of more suitable positions in consec-
utive frames, the search points are regenerated around the
estimated position of the prior frame and the best possible
position is estimated through an iterative process among the
customized regions. The position estimation and tracking
process based on the particle filter framework for vehicle rear
corner parts is described in Algorithm 1.

Through Algorithm 1, the positions [(Ur, V), (Ur, VRr)]
of both vehicle rear corner parts can be extracted and tracked,
as shown in Fig. 10. By tracking the position of each corner
part of a vehicle in this way, it becomes possible to estimate
the position of the vehicle even when only a part of the vehicle
is visible due to the camera’s field of view or occlusion. More-
over, by rapidly reducing the search regions to the estimated
position, the computing load can be greatly reduced. If there
is no region detected as the left and right-side parts in the
initial candidate group, it is initialized as the first time and is
searched again in the candidate regions generated based on
the next radar data input.

Ill. VEHICLE LOCALIZATION

A. ASSUMPTION IN THE RADAR DATA

Figure 11 demonstrates the limitation of the commercial radar
output data. Commercial radar transmits the output data in the
form of points, including a radial range and angle informa-
tion; however, it does not include information about where the
point is on the vehicle, as shown in Fig. 11. Therefore, in this
study we assume that the point lies between the left corner
and the right corner of the vehicle rear part. In this case, even
if the radar angle shows a large deviation, the vehicle position
in the longitudinal direction is kept constant (R * cos (6)).
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__T' ing corner part /
Frame #42
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FIGURE 10. Most probable position estimation and tracking: (a) pixel
coordinates of rear left & right side parts, and (b) tracking for the rear left
and right corner parts.

Frme #41

Where, R is the relative distance between an ego-vehicle
and surrounding vehicles with respect to the radial direction;
0 is the relative angle between an ego-vehicle and surround-
ing vehicles with reference to the center front of the ego-
vehicle.

B. LOCALIZATION USING RADAR AND CAMERA DATA

The vehicle position with respect to the ego-vehicle is calcu-
lated based on both the radar output data and the spatial reso-
lution of the camera. The vehicle position in the longitudinal
direction is calculated from the radar output data directly, and
is combined with the angular data of the rear corner part to
calculate the vehicle’s lateral position.

The pixel coordinates from the estimation of the vehicle
rear corner part position on the image plane are translated
into angular data with respect to the optical axis, as shown
in Fig. 11(a). Because the radar and camera are aligned in the
same direction, the longitudinal position of the vehicle with
respect to the camera can be calculated simply by adding the
difference in the length (T) between the radar and the camera,
as shown in Fig. 11. Accordingly, the vehicle position in the
lateral direction is calculated as shown in Fig. 11(b).

IV. PERFORMANCE EVALUATION

A. TEST SCENARIO

In this study, the performance of the proposed method is
evaluated in terms of the accuracy of the relative position
between the ego-vehicle and the target vehicle. The radar
system used as the main part of the sensor system in a typical
ADAS offers mainly poor performance, especially regarding
the 2D reconstruction of all edges of the surrounding vehi-
cles. In order to solve this problem, we developed a relative
position estimation method for the surrounding vehicles using
sensor fusion based on mono-vision and radar. To evaluate the
proposed method, datasets were generated through test driv-
ing. In the test datasets, surrounding vehicles were positioned
under diverse conditions, such as in the left lane, middle
lane, and right lane, to reflect the relative locations of the
surrounding vehicles sufficiently in an actual driving envi-
ronment. An occlusion case is also included which consists
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FIGURE 11. Bird's-eye-view localization using radar and a camera:
(a) translation pixel coordinates to angular data, and (b) calculation of
the lateral position.

of observations of partial occlusions due to the camera’s field
of view and other vehicles.

B. TEST ENVIRONMENT CONFIGURATION

In order to obtain the reference data (ground truth) for a
performance evaluation of the proposed method, three vehi-
cles (one ego-vehicle and two target vehicles) with systems
installed (RT3002 and RT-Range (Oxford Technology Sys-
tem)) were set up, as shown in Fig. 12. The data from RT was
calibrated based on the center of the front bumper of the ego-
vehicle, which is the origin coordinate of the radar system as
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FIGURE 12. Test vehicle with RT3002 and RT-Range.

[Y]

[0,0]
4
[RT3002 and RT-Range calibration]

[Ego_vehide]

[Reference data]
[Y]

(Track2)

(Trackl)

[RT3002 and RT-Range]

[Ego_vehicde]
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FIGURE 13. The reference data calibration and acquisition from RT
equipment.

described in Fig. 13. The data accuracy of the RT equipment
regarding the relative position of the target vehicle is 0.03m
in the longitudinal, lateral range. Through the RT3002 and
RT-Range systems, the relative position data between the ego-
vehicle and the target vehicles can be measured as shown
in Fig. 13. In order to evaluate the proposed method compared
to reference data, the ego-vehicle was equipped with a radar
system (Delphi ESR), a camera and the RT-equipment as
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[RT Range] [Camera] [Radar]

SR -

[RT3002]

FIGURE 14. Ego-vehicle sensor configuration.

[RT Range]

Track 1 (Relati ve lateral, longitudinal position)
Track 2 (Relative lateral, longitudinal position ) ;
' v

[Radar]

Track 1 (Range, Angle)
Track 2 (Range, Angle)

[MicroAutoBox Embe dded Sensor Processing]

FIGURE 15. The data interface of each sensor.

shown in Fig. 14. The data interface of each sensor and sensor
data processing unit are described in Fig. 15.

For data synchronization between heterogeneous devices
with different data update and output times, the default data
logging time is set to 20Hz (50ms), which is the minimum
update interval value of radar. Because the RT signal is
received via CAN communication, it is matched to the radar
signal through the receiving period. For the vision data,
the time reference is transmitted to the image processing
board through the CAN signal every 50ms, which is the
logging time of the radar data, and data synchronization is
performed.

C. SURROUNDING VEHICLES LOCALIZATION
PERFORMANCE

The surrounding vehicles are shown as track 1 and track 2 and
are classified as the left lane, middle lane, and right lane

75231



IEEE Access

D. Kang, D. Kum: Camera and Radar Sensor Fusion for Robust Vehicle Localization via Vehicle Part Localization

- Green:left corner
_-Red: right corner

Vehicle localization, Radar(Red) vs GT(Black)

(a)

Vehide localization, Proposed method(Blue) vs GT(Black)

W
n
T
1

]

Y ] W
= h =
T T T

(w4 ‘ueISp NPy

-
n
T

10 |

T |

40

30

20

10

: _

| i

(b)

" N "
10 15 20

=20 5
Relative distance, x(m)

-15 -10 20

FIGURE 16. Vehicles are in the middle and right lanes: (a) both left and right corner part tracking, (b) bird’s-eye view vehicle localization (radar vs
proposed method) (left: radar (red), right: proposed method (blue)), ground truth (black).
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FIGURE 17. Distance error in lateral direction in 1) (Middle lane, Right lane), (Red: Radar, Blue: Proposed method).

depending on their position relative to the ego-vehicle.
In each test case, bird’s-eye view localization outcomes using
both the proposed method and the radar tracking data are
compared with the ground truth. Moreover, each lateral posi-
tion error with respect to the ground truth is shown through
bird’s-eye view localization. When localizing surrounding
vehicles onto the bird’s-eye view, it is assumed that the radar
tracking data is centered on the rear part of the vehicle and
that the width of the vehicle is known.

The test results of 1), 2), and 3) below have been uploaded
to YouTube [43].
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1) MIDDLE LANE, RIGHT LANE (NORMAL DRIVING
SITUATION)

In a normal driving situation without vehicle occlusion,
it is confirmed that the proposed method tracks both cor-
ner parts of the vehicle, as shown in Fig. 14(a). Bird’s-
eye view vehicle localization based on this rear corner part
tracking significantly reduces lateral position errors com-
pared to the tracking data of the radar system. In Fig. 15,
the radar tracking data (track 2) shows a maximum error
of 1.5m, which could lead to a serious malfunction in
an ADAS.
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FIGURE 18. Vehicles are in the right lane: (a) both left and right corner part tracking, and (b) bird's-eye view vehicle localization (radar vs proposed
method) (left: radar (red), right: proposed method (blue)), ground truth (black).
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FIGURE 19. Distance error in the lateral direction in 2) (right lane), (red: radar, blue: proposed method).

2) RIGHT LANE (OCCLUSION DUE TO THE CAMERA FIELD
OF VIEW)

For an adjacent vehicle in the right lane or left lane, it must
be localized more precisely for an ADAS to make the cor-
rect decision. However, as shown in Fig. 17, the radar data
for an adjacent vehicle (track 2) shows a large variation
about —1.5m to 1m in the lateral direction. This large vari-
ation makes the ego-vehicle unable to distinguish which
lane the adjacent vehicle is in. On the other hand, the pro-
posed method shows a small variation regarding an adjacent
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vehicle (track 2) of about -0.2m to 0.1m in the lateral direc-
tion. It works well for either left or right corner part tracking
even when the vehicle is partially visible due to the camera’s
field of view, as shown in Fig. 16(a). In this case, the left
corner part is tracked, as represented by the green ‘star’
in Fig. 16(a). Using this corner part localization, bird’s-eye
view vehicle localization is carried out. Because the left and
right corner parts are classified during the tracking process,
surrounding vehicles can be localized precisely onto the
bird’s-eye view via one corner part localization.
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FIGURE 20. Vehicles are in the left lane: (a) both left and right corner part tracking, and (b) bird’s-eye view vehicle localization (radar vs proposed
method) (left: radar (red), right: proposed method (blue)), ground truth (black).
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FIGURE 21. Distance error in the lateral direction in 3) (left lane), (red: radar, blue: proposed method).

3) LEFT LANE (OCCLUSION DUE TO OTHER VEHICLE)
Similarly, for the surrounding vehicles in the left lane,
as described in the previous case, the right corner part is
classified and tracked for the occluded vehicle (track 1),
as represented by the red ‘circle’ in Fig. 18(a), even when
the vehicle is partially visible due to other vehicles. The
occluded vehicle (track 1) is localized precisely onto the
bird’s-eye view via the localization of this one corner part.
In Fig. 19, the proposed method shows an estimation distance
error for track 1 of approximately —0.15m to 0.1m in the
lateral direction. However, the radar tracking data shows a
large variation for track 1 of about —1.25m to 1.4m in the
lateral direction.

75234

4) RESULTS OF AN ANALYSIS ACCORDING TO THE RELATIVE
POSITIONS OF SURROUNDING VEHICLES

In order to analyze the position estimation results according
to the relative position of the surrounding vehicles, the rel-
ative positions of the surrounding vehicles in the test cases
are summarized by lane, with the lateral position accuracy
results depending on the lane, as shown in Fig. 20 and
Table 4. As indicated by the test results, the radar data with
a maximum lateral position error of 2.3~3.02m may cause a
crucial fault because it cannot detect the lane of the surround-
ing vehicle. Also, as shown by the total Root Mean Square
Error (RMSE, 0.5773), application is difficult to the lateral
control system in the ADAS due to the consecutive position
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localization according to the lane: (a) RMSE, and (b) max error (m).

TABLE 4. Lateral position accuracy in Bird's-eye view vehicle localization
according to the lane.

Bird’s-eye view

Case localization method RMSE Max error(m)
Left lane Radar 0.6211 3.02
Proposed method 0.1924 0.66
Middle Radar 0.4221 2.6
lane Proposed method 0.1822 0.63
Right lane Radar 0.5614 2.33
Proposed method 0.1733 0.4
Total Radar 0.5773 3.02
Proposed method 0.1831 0.66

fluctuations of the surrounding vehicles. The maximum error
and total RMSE of the proposed method are 0.66m and
0.1831, respectively. It is confirmed that the lanes of the sur-
rounding vehicles can be accurately discriminated regardless
of the relative positions of the surrounding vehicles. In addi-
tion, because the rear left and right corners of the vehicle
are classified and separately extracted through the proposed
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method, it is possible to estimate the positions regardless of
partial occlusion when driving.

V. CONCLUSION AND FUTURE WORKS

The relative position estimation of surrounding vehicles
around an ego-vehicle are important for the safety of an
ADAS and automated vehicles. In order to develop a highly
automated driving system, not a semi-automated driving sys-
tem, accurate localization of surrounding vehicles is essen-
tial. Accurate relative position estimations can allow motion
predictions of the surrounding vehicles to help an automated
vehicle prevent accidents due to unexpected situations. How-
ever, a sensor system using radar and camera has limita-
tions when accurately localizing surrounding vehicles onto
a bird’s-eye view in the actual driving environment. In that
sense, the proposed method shows accurate and reliable local-
ization performance with diverse driving test condition con-
sidering actual driving environment, not the processed virtual
dataset from a conventional dataset. The outcomes here can
also be sufficiently extended to solve problems concerning
motion predictions of surrounding vehicles and the coordi-
nated signal control system using it [44]. However, addi-
tional research on relative position estimations of surrounding
vehicles should be carried out for robust estimations. Issues
related sensor fusion should also be assessed regarding the
occurrence of radar range data errors. If there is an error of
radar range data, the localization performance corresponding
to both longitudinal and lateral direction will be degraded.
Therefore, additional research is needed to cope with this
error.
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