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ABSTRACT The three-dimensional time domain parabolic equation (3D-TDPE) is derived to simulate the
EM pulse propagation in straight, curved tunnels. Then the finite differential (FD) method is applied to
accurately and flexibly describe the fine structures in the tunnel, such as cars. By using the alternating
direction implicit (ADI) scheme to the spatial unknowns, the TDPE can be solved line by line in each
transverse plane at any time step. More specifically, the computational efficiency can be improved signif-
icantly since a three-dimensional problem is changed into several one-dimensional problems. Moreover,
both the Dirichlet and Neumann boundary conditions are used to estimate the transmission loss in tunnels.
The rigorous numerical method, finite difference time domain (FDTD), is applied to verify the accuracy
and efficiency of the proposed method. Numerical results are given to demonstrate that the proposed
3D-ADI-TDPE method can be used as an efficient tool to predict EM pulse propagation in tunnels including
fine barriers.

INDEX TERMS Time domain parabolic equation, electromagnetic pulse propagating, alternating direction
implicit, finite differential method.

I. INTRODUCTION
The accurate propagation modeling in tunnels for wide band
plays an essential role in wireless communication systems.
It is difficult to predict the EM pulse wave propagation
in realistic environments since the rigorous solution of the
Maxwell’s equation is hard to be obtained for its insuffer-
able computational resources. As a result, several asymptotic
approaches were used to solve the wave propagation prob-
lems [1]–[3], namely geometric optics (GO), physical optics
(PO), geometrical theory of diffraction (GTD) and empirical
models. However, these techniques cannot provide accurate
results since both the reflection and diffraction effects cannot
be fully considered in the in-homogeneous atmosphere. The
parabolic equation (PE), an approximation of wave equation,
is extremely attractive for its stability and easily implemen-
tation. It should be noted that the effects of atmospheric
refraction, diffraction, and reflection can be modeled by the
PE method. However, it is time consuming to analyze broad-
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band EM pulse propagation problems with the frequency-
domainmethods. Therefore, the development of time-domain
parabolic equation (TDPE) has a great significance.

The frequency domain PE method has been long used
to model the radio wave propagation for irregular surface
[4]–[6], sea including hilly island [7], [8], city environment
[9], [10], expressway [11], and tunnel propagation [12]–[14].
In recent years, the PE method is also introduced to the
scattering problems [15]–[18]. In 1985, Murphy proposed
a 2D-TDPE to predict the ocean acoustic propagation [19].
Then it was introduced to analyze EM pulse propagation
for irregular terrains [20], [21]. In the last decades, the
2D-TDPE was widely used to calculate the pulse propaga-
tion in the tunnels [22] and troposphere [23]. Based on the
traditional 2D-TDPE method, some modified techniques are
proposed to improve its accuracy, such as the two-way TDPE
method [24], [25] and higher order TDPE method [26], [27].
More specifically, the two-way TDPE method can take both
the forward and backward propagating effects into con-
sideration. And the higher order TDPE method can pro-
vide accurate results at wider angles by employing high
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order Padé expansion. All these studies were concerned on
two-dimensional cases. More recently, Apaydin proposed a
3D finite-element and split-step Fourier-based two-way PE
(3D-2W-SSPE) method to obtain the propagation in wave-
guide in frequency domain [28]. Then a hybrid TDPE/FDTD
method was derived to model O2I radio wave propaga-
tion [29]. Moreover, we have investigated the 3D-TDPE
to analyze the wide-band scattering from electrically large
targets [30], [31]. All in all, the Fourier split-step (FSS)
method is widely used to solve the propagation problems
while the finite difference (FD) method is applied to the
scattering problems. However, the FSSmethod cannot handle
tunnels including barriers for its lack flexibility of compli-
cated boundary modelling.

In this paper, the 3D-TDPE is derived to model the EM
pulse propagation in tunnels. Both the straight and curved
tunnels can be taken into consideration by modifying the
TDPE. The algorithm starts with applying FD method along
the paraxial direction and time step, thus the calculation can
be taken in a marching manner at each time step. Then the
alternating direction implicit (ADI) scheme is used in each
transverse plane. In this way, the calculation can be further
accelerated since the unknowns can be calculated line by
line. It should be noted that the FD method is used for
better description of complicated boundary. At last, a series of
numerical results are presented and compared with the finite
difference time domain (FDTD) method.

II. THEORY AND FORMULATION
A. STRAIGHT TUNNEL PROPAGATION MODEL
OF 3D ADI-TDPE
The scalar three-dimensional wave equation can be derived
as

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ k2n2ψ = 0 (1)

in which k is wave number, ψ is field component and n is the
complex refractive index.

By introducing the wave function u = e−ikxψ(suppose
the wave propagates along the paraxial direction x) to equa-
tion (1), then the following equation can be obtained

∂2u
∂x2
+ 2ik

∂u
∂x
+
∂2u
∂y2
+
∂2u
∂z2
+ k2

(
n2 − 1

)
u = 0 (2)

The factorization method is applied in equation (2), then
the wave equation can be rewritten as[(

∂

∂x
+ ik

)
− ik

√
Q
] [(

∂

∂x
+ ik

)
+ ik

√
Q
]
u = 0 (3)

Then the forward parabolic wave can be obtained as[(
∂

∂x
+ ik

)
− ik

√
Q
]
u = 0 (4)

in which Q = 1
k2

(
∂2

∂y2
+

∂2

∂z2

)
+ n2.

Use the first order Taylor series to approximate the differ-
ential operator Q, which yields as√

Q = 1+
Q− 1
2
−
(Q− 1)2

8
+ · · · ≈ 1+

Q− 1
2

(5)

Then the standard forward parabolic equation can be
expressed as

∂u
∂x
=
ik
2

[
1
k2

(
∂2

∂y2
+
∂2

∂z2

)
+ n2 − 1

]
u (6)

Define the Fourier transform

5(x, y, z, s) =
1
2π

∫
∞

−∞

F̃ (k) u (x, y, z, k) e−iksdk (7)

in which F̃ (k) =
∫
∞

0 E ieiωtdt is a spectrum function.
s = ct − x describes the distance from the source to the
observed point.

Using formula (7) to take the Fourier transform in (6) and
consider free space satisfies n = 1, then the 3D TDPE can be
rewritten as

∂25

∂y2
+
∂25

∂z2
− 2

∂25

∂x∂s
= 0 (8)

By using the central finite difference scheme, the 3D
CN-TDPE can be derived as [30]

8
1s1x

(
5m+1,l+1 −5m,l+1 −5m+1,l +5m,l

)
=

1
1y2
∇

2
y
(
5m+1,l+1 +5m,l+1 +5m+1,l +5m,l

)
+

1
1z2
∇

2
z
(
5m+1,l+1+5m,l+1+5m+1,l+5m,l

)
(9)

in which, 5m,l is the unknown transient fields of the mth
transverse plane at lth time step, 1x,1y,1z are the spatial
steps and ∇y,∇z are the differential operators in space.
At last, the 3D ADI-TDPE is used to enhance the compu-

tational efficiency. As shown in Fig. 1, the iteration diagram
of the ADI scheme is given. The fields at the (m+1/2)th
marching plane can be calculated column by column by
the fields at the mth marching plane. Then the fields at the

FIGURE 1. The iteration diagram of ADI scheme.
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(m+1)thmarching plane can be calculated row by row by the
fields at the (m+1/2)th marching plane. By using the ADI
scheme, the 3D ADI-TDPE can be derived as

[
−
1s1x
81y2

1+
1s1x
41y2

−
1s1x
81y2

]5
p−1,q
m+1/2,l+1

5
p,q
m+1/2,l+1

5
p+1,q
m+1/2,l+1


=

[
1s1x
81z2

1−
1s1x
41z2

1s1x
81z2

]5
p,q−1
m,l+1 +5

p,q−1
m,l

5
p,q
m,l+1 +5

p,q
m,l

5
p,q+1
m,l+1 +5

p,q+1
m,l


−

[
−
1s1x
81y2

1+
1s1x
41y2

−
1s1x
81y2

]5
p−1,q
m+1/2,l

5
p,q
m+1/2,l

5
p+1,q
m+1/2,l


− 25p,q

m,l + 25p,q
m+1/2,l (10)[

−
1s1x
81z2

1+
1s1x
41z2

−
1s1x
81z2

]5
p,q−1
m+1,l+1

5
p,q
m+1,l+1

5
p,q+1
m+1,l+1


=

[
1s1x
81y2

1−
1s1x
41y2

1s1x
81y2

]

×

5
p−1,q
m+1/2,l+1 +5

p−1,q
m+1/2,l

5
p,q
m+1/2,l+1 +5

p,q
m+1/2,l

5
p+1,q
m+1/2,l+1 +5

p+1,q
m+1/2,l


−

[
−
1s1x
81z2

1+
1s1x
41z2

−
1s1x
81z2

]5
p,q−1
m+1,l

5
p,q
m+1,l

5
p,q+1
m+1,l


− 25p,q

m+1/2,l + 25p,q
m+1,l (11)

inwhich, formula (10) represents the calculation from themth
transverse plane to (m+1/2)th plane, while formula (11) rep-
resents the calculation from the (m+1/2)th transverse plane
to (m +1)th plane. 5p,q

m,l is unknown transient field of mth
transverse plane at lth time step at y = p1y, z = q1z.

B. CURVED TUNNEL PROPAGATION MODEL OF 3D
ADI-TDPE
Actually, the tunnel is curved in real life. According to [13],
the 3D ADI-FDPE in curved tunnels can be written as(

1− a
δy

Anp

)
um+1/2p,q =

(
1+ b

δz

Anp

)
ump,q (12)

Anp

(
1− b

δz

Anp

)
um+1p,q = Bnp

(
1+ a

δy

Bnp

)
um+1/2p,q (13)

in which, a = i1x
4k1y2

, b = i1x
4k1z2

, δy, δz is the differential
operator in y, z direction. Anp,B

n
p describe the curved tunnel

and their expressions are given as

Anp =
(
1+

ip1yk1x
2R (sn)

)
(14)

Bnp =
(
1−

ip1yk1x
2R (sn)

)
(15)

It should be noted that when dealing with formula (12),
an approximation is introduced. The formula (12) could be
expanded as(
1−

R (sn) iry
2k (2R (sn)+ ip1yk1x)

δy

)
um+1/2p,q

=

(
1+

R (sn) irz
2k (2R (sn)− ip1yk1x)

δz

)
ump,q (16)

in which

R (sn) iry
2k (2R (sn)+ iq1yk1x)

=
R2 (sn) iry

k
(
4R2 (sn)+ (q1yk1x)2

)
+

R (sn) ryq1y1x

2
(
4R2 (sn)+ (q1yk1x)2

) (17)

Assuming that the realistic curvature radius of tunnel is
usually large enough. Thus the (q1yk1x)2 can be ignored.
Then the formula (17) can be approximated to

R (sn) iry
2k (2R (sn)+ iq1yk1x)

≈
iry
4k
+

ryq1y
8R (sn)

(18)

Supposing the correction factors A,B,C are set as

A = −
(q1y) (1x)2

8R (sn) (1y)2

B = −
(q1y) (1x)2

8R (sn) (1z)2

C =
(q1y) (1x)
2R (sn)1s

(19)

Then using the Fourier transform to equation (12) and (13),
the equation can be rewritten in the following matrix form.[
−
1s1x
81y2

+ A 1+
1s1x
41y2

− 2A −
1s1x
81y2

+ A
]

×

5
p−1,q
m+1/2,l+1

5
p,q
m+1/2,l+1

5
p+1,q
m+1/2,l+1


=

[
1s1x
81z2

− B 1−
1s1x
41z2

+ 2B
1s1x
81z2

− B
]

×

5
p,q−1
m,l

5
p.q
m,l

5
p,q+1
m,l


+

[
1s1x
81z2

+ B 1−
1s1x
41z2

− 2B
1s1x
81z2

+ B
]

×

5
p,q−1
m,l+1

5
p,q
m,l+1

5
p,q+1
m,l+1


−

[
−
1s1x
81y2

− A 1+
1s1x
41y2

+ 2A −
1s1x
81y2

− A
]
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×

5
p−1,q
m+1/2,l

5
p,q
m+1/2,l

5
p+1,q
m+1/2,l


+ 25p,q

m+1/2,l − 25p,q
m,l (20)[

−
1s1x
81z2

1+
1s1x
41z2

− C −
1s1x
81z2

]5
p,q−1
m+1,l+1

5
p,q
m+1,l+1

5
p,q+1
m+1,l+1


=

[
1s1x
81y2

1−
1s1x
41y2

− 2C
1s1x
81y2

]

×

5
p−1,q
m+1/2,l

5
p,q
m+1/2,l

5
p+1,q
m+1/2,l


+

[
1s1x
81y2

1−
1s1x
41y2

+ C
1s1x
81y2

]

×

5
p−1,q
m+1/2,l+1

5
p,q
m+1/2,l+1

5
p+1,q
m+1/2,l+1


−

[
−
1s1x
81z2

1+
1s1x
41z2

+ 2C −
1s1x
81z2

]

×

5
p,q−1
m+1,l

5
p,q
m+1,l

5
p,q+1
m+1,l


+ 25p,q

m+1,l − 25p,q
m+1/2,l + C5

p,q
m+1,l−1 + C5

p,q
m+1/2,l−1

(21)

C. BOUNDARY CONDITIONS
The boundary conditions of the tunnels are set as two types,
namelyDirichlet boundary condition andNeumann boundary
condition. The expressions for the Dirichlet and Neumann
boundary conditions in time domain are written as follows

5=0 · · · · · · Dirichlet ∂5/∂n=0 · · · · · · Neumann (22)

It should be noted that the boundary conditions of vehicles
in tunnels are set as Dirichlet boundary condition. Moreover,
the proposed method can be extended to realistic lossy tunnel
or obstacle boundaries by using the impedance boundary
conditions.

D. EXCITATION SOURCE
In this paper, all examples use modulated Gaussian pulse
as excitation source. Assume that the center frequency of
Gaussian pulse is f (GHz) and pulse width is τ (ns), the
expression of the excitation source is given

Ein (t)=exp

[
−π

(
t−3η
η

)2
]
sin [2π f × (t − 3η)] (23)

in which η = τ
/
3 and the unit of η, t are nanosecond.

However, the disperse in time-domain must satisfy
Courant-Friedrichs-Lewy (CFL) condition, that is

1
1t
≥ c0

√
1
1x2
+

1
1y2
+

1
1z2

(24)

E. IMPLEMENTATION OF THE PROPOSED 3D ADI-TDPE
METHOD
The source is located at the first transverse plane and bound-
ary conditions are added at the surface of automobile and
tunnels. It should be noted that the mesh size is usually set
as one-tenth of a wavelength or less. As a result, the out-
line of the automobiles can be described with higher accu-
racy. By using the Fast Fourier Transform (FFT) algorithm,
the field components distributions can be obtained within a
certain bandwidth. However, the proposed 3D ADI-TDPE
method can only model the forward propagation problems
for electrically large convex objects.

F. CONVERGENCE AND ERROR ANALYSIS
The stability and dispersion error are analyzed in this part.
Suppose the transient wave function 5l can be expanded
with the form of the Fourier pattern at the lth time
step.

5l =

+∞∑
m=−∞

+∞∑
p=−∞

+∞∑
q=−∞

�l
x,y,ze

−ikxm1xe−ikyp1ye−ikzq1z

(25)

in which kx = mπ
/
1x, ky = pπ

/
1y, kz = qπ

/
1z.

Then substitute equation (25) into the former marching
equation (20) with 1x = 1y = 1z. Moreover, suppose the
electromagnetic wave mainly propagates along the x direc-
tion, such that kx ≈ k, ky ≈ 0, kz ≈ 0. Then equation (20)
can be rewritten as(
e−i(1/2k)1x − 1

)
�l+1
x,y,z =

[
e−i(1/2k)1x − 1

]
�l
x,y,z (26)

The growth factor can be obtained

g =

∣∣∣∣∣�l+1
x,y,z

�l
x,y,z

∣∣∣∣∣ = 1 (27)

Therefore, the proposed 3D ADI-TDPE for the former
marching equation is unconditionally stable. Similarly,
the latter marching equation can be proved to be uncondi-
tionally stable. To get the numerical dispersion error of the
proposed method, the time-harmonic electric field can be
expressed as

E (x, y, z, t) = Re
[
E0e
−i
(
ωt−k̃xx−k̃yy−k̃zz

)]
(28)

By using the relationship between E and 5, substitute
equation (28) into the former marching equation (20), then
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the following equation can be obtained

cos
[
χ+k1s+

(
k−k̃x

)
(1/2)1x

] [
1+

1x1s
21y2

sin2
k̃y1y
2

]

= cos [χ ]

[
−1−

(
1x1s
21z2

)
sin2

k̃z1z
2

]

+ cos [χ + k1s]

[
1−

1x1s
21z2

sin2
k̃z1z
2

]

+ cos
[
χ+

(
k−k̃x

)
(1/2)1x

] [
1−

1x1s
21y2

sin2
k̃y1y
2

]
(29)

in which χ = kl1s+
(
k − k̃x

)
m1x − k̃yp1y− k̃zq1z. Let

k̃x ≈ k̃ cos θ , k̃y ≈ k̃ sin θ cosϕ, k̃z ≈ k̃ sin θ sinϕ, then
the equation (29) can be simplified to

cos
(
χ+

k1s
2

)[
1s
4
k̃2 sin2 θ−tan

(
k1s
2

)(
k−k̃ cos θ

)]
=
1x1s

8
sin
(
χ +

k1s
2

)(
k − k̃ cos θ

)
k̃2 sin2 θ sin2 ϕ

(30)

Assume that σ = k − k̃ , in which k is the real wave
number while k̃ is the calculated wave number. By ignoring
the high-order error term of σ 2, equation (30) can be rewritten
as

σ

k
=

1x1s
8 tan

(
χ + k1s

2

)
k2 (1− cos θ) sin2 θ sin2 ϕ

−
1s
4 k sin

2 θ + tan
( k1s

2

)
(1−cos θ)

−
1s
2 k sin

2 θ − tan
( k1s

2

)
cos θ

−
1x1s

8 tan
(
χ + k1s

2

) (
3k2 cos θ − 2k2

)
sin2 θ sin2 ϕ

(31)

Similarly, the dispersion error of the latter marching equa-
tion can be obtained as

σ

k
=

1x1s
8 tan

(
χ + k1s

2

)
k2 (1− cos θ) sin2 θ cos2 ϕ

−
1s
4 k sin

2 θ+tan
( k1s

2

)
(1− cos θ)

−
1s
2 k sin

2 θ − tan
( k1s

2

)
cos θ

−
1x1s

8 tan
(
χ+ k1s

2

) (
3k2 cos θ − 2k2

)
sin2 θ cos2 ϕ

(32)

It can be concluded that the dispersion error of the pro-
posed method is approximate to zero when the wave propa-
gates along the paraxial direction (θ ≈ 0).

III. NUMERICAL EXAMPLES
The computer of Intel Xeon E7-4850 CPU equipped with
8GB RAM is used to simulate all the numerical results. For
the tunnel models, the modulated Gaussian pulse is used as
the incident plane wave and it can be defined as

5z (0, y, z, t) = Ein (t)× exp
(
−
y′ 2

ηy

)
× exp

(
−
z′ 2

ηz

)
(33)

where y′ = y−y0 and z′ = z−z0. ηy and ηz are the parameter
to limit the energy ofGaussian distribution, and can bewritten
as ηy = σ 2

y

/
ln 10, ηz = σ 2

z
/
ln 10.

Firstly, the time-domain response of a rectangular waveg-
uide is simulated to validate the accuracy and efficiency of the
proposed method. The geometry of the rectangular waveg-
uide is shown in Fig. 2. Wave port is used as the excitation,
and only the TE10 is considered. Meanwhile the observation
point is set at (20m, 0m, 1.5m). As shown in Fig. 3, both the
FDTD andADI-TDPEmethods are used to simulate the time-
domain response of the rectangular waveguide. Here, the
FDTD results are obtained by our own coding. FDTD is a full-
wave numerical method of wave equation, which can be used
as the benchmark. In this paper, the comparisons are made
between the FDTD and the proposed 3DADI-TDPEmethods
to demonstrate the accuracy of the proposed method. On the

FIGURE 2. Model of a rectangular waveguide: (a) A cosine function is set
at the left surface as the source. The observation point is set at
(20m,0m,1.5m); (b) Cross section of the waveguide.

FIGURE 3. Time-domain response of a rectangular waveguide for FDTD
and ADI-TDPE methods. There are three different mesh sizes are used for
the FDTD method, namely 0.1m, 0.05m and 0.02m.
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other hand, the parabolic equation is an approximation of the
wave equation, which can be solve in a marching manner
along the paraxial direction. As a result, a 3D problem can
be converted to a series of 2D problems along the paraxial
direction and the computational resources can be reduced
significantly. By using theADI scheme, the unknowns in each
transverse plane can be calculated line by line. In other words,
a 3D problem can be converted to a series of 1D problems.

TABLE 1. Computational resources comparison.

FIGURE 4. Time-domain response of magnetic field intensity for a
rectangular waveguide for FDTD and ADI-TDPE methods.

FIGURE 5. Field components distributions of yoz plane: (a) Dirichlet
boundary at 462MHz; (b) Neumann boundary at 462MHz; (c) Dirichlet
boundary at 698MHz; (d) Neumann boundary at 698MHz;
(e) Dirichlet boundary at 1.2GHz; (f) Neumann boundary at 1.2GHz.

FIGURE 6. Time-domain response of straight and curved rectangular
tunnels: (a) at 25m in Dirichlet boundary; (b) at 50m in Dirichlet boundary;
(c) at 25m in Neumann boundary; (d) at 50m in Neumann boundary.

Therefore, both the CPU time and memory requirement can
be saved significantly. There are three different mesh sizes
are used for the FDTD method, namely 0.1m, 0.05m and

85032 VOLUME 8, 2020



Y. S. Li et al.: EM Pulse Propagation Modeling for Tunnels by Three-Dimensional ADI-TDPE Method

FIGURE 7. The field components distributions of yoz plane in Dirichlet
boundary: (a) for straight tunnel at 300MHz; (b) for curved tunnel at
300MHz; (c) for straight tunnel at 400MHz; (d) for curved tunnel at
400MHz; (e) for straight tunnel at 500MHz; (f) for curved tunnel
at 500MHz.

FIGURE 8. The field components distributions of yoz plane in Neumann
boundary: for straight tunnel at 300MHz; (b) for curved tunnel at
300MHz; (c) for straight tunnel at 400MHz; (d) for curved tunnel 400MHz;
(e) for straight tunnel at 500MHz; (f) for curved tunnel at 500MHz.

0.02m. More specifically, the results can be convergent for the
mesh size of 0.02m. It can be seen that the proposed TDPE
method with the mesh size of 0.1m can agree with the results

FIGURE 9. The PF along y direction for x = 50m and z = 2m in Dirichlet
boundary: (a) at 300MHz; (b) at 400MHz; (c) at 500MHz.

of FDTD method for 0.02m. Since the dispersion error of
the proposed 3D ADI-TDPE method is small enough when
the wave propagated along the paraxial direction, the conver-
gence of the time-domain response for the proposed method
performs better than the FDTD method. Moreover, the com-
puting resources are compared between these two methods.
As shown in Table 1, both the CPU time and the memory
requirement can be reduced significantly for the proposed
ADI-TDPE method when compared with the FDTD method.
Since the unknowns can be calculated line by line in each
transverse plane at any time step by the proposed method,
the proposed ADI-TDPE will achieve higher efficiency than
the FDTD method. The time-domain reponse of magnetic
field can be obtained by the solving the differential form
of Maxwells’ equation. As shown in Fig.4, the time domain
response of magnetic field calculated by both the FDTD and
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FIGURE 10. The PF along y direction for x = 50m and z = 2m in Neumann
boundary: (a) at 300MHz; (b) at 400MHz; (c) at 500MHz.

FIGURE 11. Model of a vaulted waveguide: (a) A modulated Gaussian
function is set at the left surface as the source. The observation point is
set at (50m,0m,3m); (b) Cross section of the waveguide.

ADI-TDPE methods are given. It should be noted that the
source is located at the left surface and can be written as

5z (0, y, z, t) = Ein (t)× cos
(

y
ylength

×
π

2

)
(34)

FIGURE 12. The real sizes of three automobile models: (a) left view of
car; (b) front view of car; (c) left view of minibus; (d) front view of
minibus; (e) left view of truck; (f) front view of truck.

FIGURE 13. Time-domain response of curved arched tunnels in Dirichlet
boundary with or without automobiles: (a) at 50m; (b) at 100m.

in which ylength is the length of waveguide in y direction and
its value is 4m. The range of y is [−2m, 2m].
Secondly, we consider a rectangular tunnel with the cross-

section size of 6.0m×4.0m. A Gaussian source of excitation
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FIGURE 14. Field distribution in arched tunnels for Dirichlet boundary with or without automobiles for different distances at serveral frequencies.

is set at the center of the first plane. The parameters in
formula (33) are set as ηy = 1.2m, ηz = 0.8m, y0 = 0m and
z0 = 2m. The center frequency of Gaussian pulse is 0.8GHz
and pulse width is 5ns. Both the Dirichlet and Neumann
boundary conditions are used. Fig.5 shows the field distri-
butions at the frequencies of 462MHz, 698MHz and 1.2GHz
for two kinds of boundary conditions.

In addition, we compare the field distribution between
straight and curved tunnel based on the previous tunnel

model. The model parameter is set similarly. Both the straight
and curved cases are simulated by the proposed method and
the curvature radius is set as 1000m. The center frequency of
Gaussian pulse is 0.5GHz and pulse width is 10ns. As shown
in Fig. 6, the time-domain responses of the straight and curved
rectangular tunnels are compared at different distances. It can
be seen that the time-domain response will changemore obvi-
ously with the observation point locates farther. Moreover,
the field components distributions of yoz plane at different
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frequencies are given in Fig. 7 and Fig. 8 for straight and
curved cases in two boundary conditions. At last, the propa-
gation factors (PF) of the proposed method at the rage of 50m
are compared with the frequency-domain PE (FDPE) method
in Fig. 9 (in Dirichlet boundary) and Fig.10 (in Neumann
boundary). It can be seen that there is a good agreement
between them. More specifically, the calculation should be
taken for FDPE method at different sample frequencies.
As a result, the computational time will increase largely for
wide band problems. It can be concluded that the proposed
ADI-TDPE method can be used as an efficient tool to simu-
late EM pulse propagation in tunnels for wide band.

The propagation factor is calculated as follow

PF = 20 log10 (|ψ |)+ 10 log10 (d) (35)

in whichψ is the field component. d means the distance from
the source to the observed cross section.

At last, a more practical and complex tunnel is modeled.
As shown in Fig. 11, a vaulted tunnel of Dirichlet boundary
condition with three different kinds of conducting vehicles is
analyzed. The curvature radius is set to be 600m.Meanwhile,
Fig.12 shows the real sizes of three automobile models. The
time-domain responses for tunnels with and without automo-
biles are given at different distances in Fig.13. Meanwhile,
as shown in Fig.14, the field components distributions of yoz
plane at different frequencies are given for tunnels with and
without automobiles. The parameter of Gaussian source are
set as ηy = 2.5m, ηz = 1.5m, y0 = 0m and z0 = 3m.
It can be seen that the multipath effect of the wave propa-
gation will be more obvious when vehicles exist in tunnel.
In addition, there will be some differences in the time-domain
far-field response. Influenced by the bending of the tunnel,
the phenomenon of field accumulation occurs at the distances
of 25m (see Fig. 13 (a)-(c)) and 50m (see Fig. 13 (d)-(f)). The
wave reflection of the vehicles causes some ripples in the field
distribution diagram. Since the observation position is exactly
where the car is, the field distribution is composed of two
parts (see Fig. 13 (g)-(i)). The first part is the field distribution
in the car, where fields are equal to zero. For the rest of
the region, the wave reflection is obvious near the cars. The
fields will be newly accumulated at the distances of 55m (see
Fig. 13 (j)-(l)). It can be seen that the proposed 3DADI-TDPE
method can be used to predict the time-domain response of
the wave propagation in the complex curved tunnels with
vehicles. However, the multipath effects can not be modeled
by the proposed one-way PE method. It should be noted
that the two-way parabolic equation (2W-PE) can be used
to estimate the multi-path propagation with high accuracy,
which can be considered in the future work.

IV. CONCLUSION
In this paper, a 3D ADI-TDPE method is derived to model
the EM pulse propagation in tunnels with vehicles. By taking
advantage of the ADI scheme, the complicated boundary of
vehicles can bemodeledmore accurately and flexibly than the
FSS method. Moreover, the ADI-TDPE method is extremely

attractive for its high computational efficiency. Some numer-
ical results for different boundary conditions are simulated
to predict the EM pulse propagation in tunnels. It can be
concluded that the proposed method has a good performance
to model complex and practical tunnel environments.
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