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ABSTRACT This paper proposes an adaptive large scale antenna system (ALSAS) for enhancing energy
efficiency in low density wireless network scenarios. The proposed ALSAS comprises of two stages, a novel
adaptive discontinuous transmission (ADTx) stage and an antenna array optimization (AAO) one. The basic
idea is to utilize prior knowledge of the users’ quality of service (QoS) requirements as well as precoding
selection in the ADTx stage to maximize the transmitter hibernation periods subject to a certain complexity
constraint. In the AAO stage, further power saving is achieved by reducing the number of active antenna
elements subject to a certain QoS requirement. It is shown that, relative to conventional large scale antenna
system (LSAS), the proposed ALSAS system achieves significant energy efficiency improvements under
various scenarios. The results show that the proposed technique can provide energy efficiency improvement
between 125% and 1124% in the suburban scenario, and between 196% and 952% in the rural scenario. It is
also demonstrated that for rural environments with relatively small short inter-site-distance (ISD) values,
ALSAS can provide up to 500% power saving for the fixed bit rate requirement case.

INDEX TERMS Massive MIMO, discontinuous transmission, adaptive precoding energy efficiency, QoS,
suburban and rural scenarios.

I. INTRODUCTION
It is well-known that multiple-input multiple-output (MIMO)
technology can significantly increase the network capacity
through spatial multiplexing [1]. The fifth generation (5G)
New Radio (NR) standard supports a single user equip-
ment (UE) in single-user MIMO with a maximum of eight
antennas for the down link (DL) and four for the uplink
(UL) [2, pp. 29]. It also supports multi-antenna data trans-
mission for multiple UEs, multi-user MIMO, with a max-
imum of twelve transmission layers for the DL and UL.
MIMO, in the form of large scale antenna system (LSAS),
or massive MIMO, is used as a multiuser multiplexing tech-
nique for its ability to satisfy the growing demands in wire-
less networks. In fact, having a large number of antennas
does not only allow increasing the number of multi-
plexed users, but it also reduces the channel variation
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across the spectrum making the channel response flat which
could increase the achievable capacity [3], [4]. Further-
more, beamforming in LSAS reduces the interference for the
cell-edge users and allows full spectrum utilization without
soft frequency reuse as in the Long Term Evolution (LTE)
standard [5]. Another advantage of LSAS is the reduced
isotropic radiated power (EIRP) per antenna, which simpli-
fies the antenna chain design and lowers the power consump-
tion per antenna chain [6]. That is, each LSAS antenna can
employ a radio frequency (RF) chain similar to that of a
small cell with a more efficient power amplifier (PA), orthog-
onal frequency division multiplexing (OFDM) modulator,
low noise amplifier (LNA), etc. For instance, a small cell
PA can have 50% power efficiency compared to 25% in a
conventional macro base station (MBS) [7]. Several practical
demonstrations have confirmed the tremendous advantage
of LSAS. For example, Samsung’s 64 × 64 massive MIMO
test revealed a 640%peak throughput improvement compared
to a 4× 4 MIMO [8].
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The combination of low power consumption and high
achievable throughput is what makes LSAS an ideal tech-
nology for 5G networks. This is especially true for a high
user-density scenario where the number of multiplexed users
is large. On the other hand, in low density environments,
such as off-peak urban, suburban and rural scenarios, a large
number of antennas may become counterproductive [7], [9].
Therefore, energy efficiency (EE) improvement will lead to a
significant power reduction [7]. One way to achieve high EE
using LSAS is by taking into account the general behavior of
the UEs. As shown in [10], more than 40% of mobile cellular
traffic is used for low data rates such as e-mail, short messages
and voice over Internet protocol (VoIP), which usually require
a bit rate of less than 1.5 Mbps. Although the remaining 60%
of the traffic corresponds to video, most live video streaming
applications require less than 0.5 Mbps for both watching
and broadcasting [11]. Therefore, a full buffer scenario is not
common for most cases, making discontinuous transmission
(DTx) [12] an effective tool to improve EE in low density
LSAS networks. DTx was originally used to reduce interfer-
ence in communication channels [13], and later for reducing
power consumption in LTE [14]–[19], by regularly putting a
certain base station in hibernation mode. It is shown in [14]
that significant power saving can be achieved when the traffic
load is low. Most existing work on DTx considers wireless
systems with a small number of antennas, and employ inter-
ference and transmission coordination [20]. To the best of
the authors’ knowledge, DTx has never been incorporated
into LSAS. The closest implementation of DTx in a system
with a large number of antennas is in massive distributed
antenna system [21].

In addition to DTx, extensive work has been invested to
optimize the EE in LSAS. In general, such metric can be
optimized using well-known techniques such as the Dinkel-
bach and fractional programming algorithms [22], [23].
For example, Fang et al. [24] proposed a solution to a
non-convex optimization problem with nonorthogonal mul-
tiple access (NOMA) by using constraints that include the
outage probability. In [25] the authors addressed maximizing
the EE subject to specific power and data rate constraints,
while in [26] the authors claimed to achieve near-optimal
EE using joint antenna selection, power optimization and
user selection. In [27] a low-complexity EE optimization
solution based on maximum transmitted power and minimum
data rate constraint is proposed based on fractional program-
ming, learning, and game theory. Other works focused on the
user association and/or power allocation such as [28], [29].
Given the aforementioned discussion, reducing the power
consumption in wireless networks under low density sce-
narios is indispensable. Therefore, by capitalizing on our
work [30]–[32], we propose an adaptive LSAS (ALSAS)
technique that utilizes a combination of a novel adap-
tive DTx (ADTx) combined with precoding selection. The
proposed ADTx exploits the quality of service (QoS) infor-
mation, such as bit rate and latency requirements, and
the flexibility of switching between different precoding

techniques to maximize the antennas hibernation periods.
Although there are many precoding techniques to choose
from, such as conjugate beamforming (CJ), zero forcing (ZF),
minimum mean square error (MMSE), and dirty paper pre-
coding [33], [34], we confine the choice here to ZF and CJ,
which are prominent precoding techniques [4]. It is worth
noting that ZF has lower complexity than MMSE while
can also provide near-optimal sum rate when the num-
ber of antennas is much larger than the number of users
[35, pp. 67], which is the case in this paper. While CJ offers
low complexity at the expense of some performance degra-
dation when the number of users is relatively large, ZF trades
complexity for improved performance when the number of
users is large. After the ADTx stage, ALSAS performs
antenna array optimization (AAO) to increase the hibernation
period and achieve additional transmission power reduction.
It will be shown that the proposed technique significantly
improves EE in LSAS systems, especially when the network
load is low, in both suburban and rural scenarios, while
satisfying the QoS. Furthermore, the proposed technique
provides a significant EE improvement when the cell size
is reduced. To validate our claims, mathematical analysis
corroborated by simulation results are presented for several
use cases of interest. As compared to [30]–[32], this paper
extends and refines the DTX scheme to a full adaptive one
and tailors its optimization to low density sub-urban and
rural scenarios. Additionally, it includes both analytical and
simulation results and extends the results and discussion
sections to include various parameters of interests such as
spectral efficiency and outage probability, in addition to the
EE enhancement achieved in different environments

The rest of the paper is organized as follows. First, the sys-
tem model and basic concepts are described in Section II.
The proposed ALSAS is explained in Section III. ADTx is
analyzed and evaluated in Section IV. Numerical results and
conclusions are drawn in Sections V and VI, respectively.

A. SYMBOLS AND NOTATIONS
The following notations are used throughout this paper:

• Bold Upper cases and Greek letters with a bar such as
Ā and Ā, lower case and Greek letters such as a and α
denote vectors (sets) with elements Ai, Ai, ai, and αi,
respectively.

• Bold upper case letters such as B denote matrices with
elements Bm,n, where m denotes the row number and
n denotes the column number. The lth row or column
in B is denoted as Bl .

• The unit step function U (a, b) = 1 if b > a, and
0 otherwise.

• [x], dxe and bxc denote the round, ceiling and floor
functions, respectively.

• Subscript G and Z indicate the CJ and ZF precoding
techniques, respectively.

• l is the scheduled transmission index.
• k is the user index.
• (·)T is the transpose.
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TABLE 1. List of abbreviations in alphabetical order.

TABLE 2. List of symbols.

Furthermore, a list of important abbreviations and symbols
used throughout this paper are summarized in Tables 1 and 2,
respectively.

II. SYSTEM MODEL AND FUNDAMENTALS
A. SYSTEM MODEL
This work considers a typical OFDM-based LSAS [30], [31].
To simplify the presentation, we initially consider a single
MBS and later extend the model to a multi cell scenario. The
considered MBS is equipped with M transmit antennas, and
simultaneously servesK single-antenna UEs, whereM � K .
The symbol vector dn = [d1, d2, . . .dK ]T , dk is the data sym-
bol of the kth user selected uniformly from a particular con-
stellation such as quadrature amplitude modulation (QAM),
and the index n specifies the corresponding nth subcarrier

that will be used to transmit the data vector dn. For linearly
precoded LSAS, the vector dn is multiplied by an M × K
precoding matrix3n to generate the precoded vector vn. That
is,

vn = 3ndn (1)

where vn ∈ CM×1. To generate M OFDM symbols with N
subcarriers each, the following matrix is formed,

V =


vT1
vT2
...

vTN

 (2)

where V ∈ CN×M . Consequently, each column in V is
converted to an OFDM symbol by computing the inverse fast
Fourier transform (IFFT) and appending a cyclic prefix (CP).
Then each OFDM symbol is mapped to one of the
M antennas.

At the receiving side, each UE removes the CP samples
and computes the FFT of the received sequence to produce
the vector r, which contains the information symbols of the
K users. At the nth subcarrier, r can be written as

rn = Hnvn + wn

= Hn3ndn + wn (3)

whereHn
∈ CK×M is the channelmatrix andwn

∈ CK×1 rep-
resents the receiver noise that has independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian
entries with zero-mean and σ 2

w variance.
The K UEs require a set of different bit rates, R̄ ∈ R1×K ,

which are subject to certain latency requirements defined by
Ȳ ∈ R1×K . In this paper, latency is defined as the data
transmission duty cycle for a given UE. This is defined as the
ratio between the required OFDM symbols and the number
of transmission slots per frame.

A modified time-division duplex (TDD) system is con-
sidered with low density UE distribution, as in rural and
suburban areas. The considered frame structure follows the
format described in [36], where a frame consists of F OFDM
data symbols and includes `OFDMpilot symbols. Therefore,
each frame has F−` data symbols for uplink (UL) and down-
link (DL) transmissions, denoted as FD and FU, respectively.
In this work we consider that FD = FU and ` = F/10,
where F= TuTfr/

(
TgTs

)
[36], Tg is the OFDM cyclic prefix

interval, Ts is the OFDM symbol interval, Tfr is the total frame
period and Tu is the OFDMusable interval, Tu = Ts−Tg. The
pilot symbols are used to estimate the channel response using
the MMSE criterion [37].

As proposed by the Greentouch consortium [7], we con-
sider separate pilot and control signal transmission to allow
each MBS to hibernate when there is no data or pilot signals
to be transmitted. Furthermore, it is assumed that each MBS
has the ability to control the number of active antennas, which
can be activated/deactivated instantly. A reuse factor of 7
is assumed for the pilot signal transmission and the pilot
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signals are orthogonal in the time domain. Therefore, the pilot
length for the k th UE is given by K ≤ `k ≤ `/7, where
K is themaximum number of instantaneousmultiplexed UEs.
As reported in [36], this pattern reduces pilot contamination
to a value that is much lower than the noise level, mak-
ing it plausible to ignore the impact of pilot contamination.
In the frequency domain, the subcarriers are divided into
resource blocks (RBs) each of which has 12 subcarriers,
and time-spectrum will be allocated for each RB and OFDM
symbol.

B. SINR AND CAPACITY MODEL
For clarity, we first describe the signal-to-interference and
noise ratio (SINR) and the capacity formulae of the precoding
schemes used as the basis for the proposed algorithm. The
precoding process can take a maximum of K UEs per RB
where K ≤ K . Given that the average SNR at the kth UE for
a single antenna system is given by [4],

ψk |αk =
α−1k PD
ηk

(4)

where αk is the pathloss coefficient between the MBS
and kth UE, PD is the transmit power per antenna at the MBS
and ηk is the noise power of the UE. The effective SINR of the
kth UE withM active antennas,K active UEs, with imperfect
channel estimates, can be expressed as [4],

γk =
M
K
ak + µ (5)

where µ = 0 and−ak for CJ and ZF precoding, respectively,
and

ak =


ψk%k

(ψk + 1) (%k + 1)
, CJ precoding

ψk%k

ψk + %k + 1
, ZF precoding.

(6)

Furthermore, %k =`kPU/ (αkη0), where η0 is the noise power
at the MBS. Since a large number of antennas can eliminate
small scale fading variations [3], the effective SINR for the
precoded system is the same across all RBs. Given that each
OFDM symbol has a maximum of B RBs that can be allo-
cated to a particular user, the maximum achievable bit rate for
that user is given by,

Rmax
k =

1
Tfr

FBQ log2 (1+ γk) bit/s (7)

where Q is the number of subcarriers per RB. Based
on (4)-(7), LSAS will have a set of pathloss coefficients,
α ∈ R1×K , received interference power set, Ī ∈ R1×K ,
to calculate the SINR set γ ∈ R1×K and the achievable bit
rate R̄max

∈ R1×K . To simplify notations, γG, aG, µG and
R̄max
G are used for CJ precoding and γ Z , aZ , µZ and Rmax

Z for
ZF precoding.

C. ENERGY EFFICIENCY MODEL
The EE computed over a given frame is computed in this work
in terms of the energy productivity of the system, which is
defined as

E =
B6fr

P6Tfr
bits/Joule

=
B6fr /Tfr
P6

(8)

where P6 is the total consumed power and B6fr is the total
number of bits transmitted per frame. By noting that B6fr /Tfr
simply represents the total DL bit rate R6 , then

E =
R6

P6

=
1
P6

K∑
k=1

min
{
Rk ,Rmax

k
}
. (9)

The data rate for each user is selected as min
{
Rk ,Rmax

k

}
to

minimize the energy consumption. Therefore, the MBS will
limit the total bit rate to the desired rate even when higher bit
rates can be achieved.

The total power consumption P6 is related to the
DL transmission model for the 2020 scenarios [7] is given
by

P6 = PA + PB + PC + PH + PJ (10)

where PA denotes the power consumption of the power
amplifier (PA), PB is the digital baseband power, PC is the
antenna analog circuit power, PH is the power for signaling
and control bits, and PJ is the power consumption related
to the control, backhaul and network signaling, which is
typically 300m̃W [7], [38], [39]. The powers PA, PB and
PC are assumed to be adaptive where it switches between
active (on) and hibernation (off) states, where at a given
instant, M antennas are active for ε̄ ∈ R1×M percent of
the time slot. Hence, PA =

∑M
m=1 P

on
A εm+ (1− εm)P

off
A ,

PB =
∑M

m=1 εmP
on
B and PC =

∑M
m=1 εmP

on
C , where PonA =

max
{
ϕ
νA
PD,Pmin

A

}
, ϕ is the power coefficient, Pmin

A is the
minimum power consumption of the PA and is equal to
28.75 mW, νA is the PA efficiency, which is considered
as 0.5, and PoffA = 4.375m̃W. Furthermore, PoffC = 150m̃W and
PonB = 16m̃W.
The power for signaling and control bits is PH =

E ref
H
3

∑K
k=1 Rk , where E ref

H is the energy intensity of the
signaling and control given in [7], which equals to
0.35 J/Mbits and 0.06 J/Mbits for suburban environ-
ments with 0.75 UEs per km2 and 5.25 UEs per km2,
respectively, and 1.99 J/Mbits and 0.3 J/Mbits for rural
environments with 0.075 UEs per km2 and 0.525 UEs
per km2, respectively.

III. THE ADAPTIVE LSAS ALGORITHM
A. ALSAS DESIGN PRINCIPLE
ALSAS aims to satisfy the UEs’ QoS requirements with
the minimum transmit power by intelligently utilizing prior
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FIGURE 1. ALSAS design principle.

knowledge of the requirements to adapt various system
parameters. The adaptation process can be performed in two
main stages as shown in Fig. 1. In the first stage, the main
LSAS subsystems, which are responsible for signal transmis-
sion/reception as well as the UEs’ measurement, detect the
main UEs’ properties, such as pathloss, interference informa-
tion, etc., and pass them to the ADTx stage to determine the
transmission scheduling accordingly.

In the second stage, the ADTx reduces the transmission
time based on the UEs bit rate and latency requirements
through a buffering system. Such requirements are consid-
ered because the UEs support various types of applica-
tions with different data rate requirements. For example,
VoIP requires low bit rates in a continuous fashion, but ultra
high definition (UHD) video streaming requires high data
rates that is at least 40 Mbps, but it can be bursty if the user is
streaming short videos [40]. Therefore, AAO can be used to
reduce the number of active antennas without compromising
the achievable bit rate by adjusting the transmission period
according to a predefined criterion.

B. THE ADTx STAGE
The ADTx stage arranges the data into L scheduled trans-
missions (STs), and determines the precoding technique that
minimizes the total required transmission time for each ST,
subject to a given complexity constraint. Each ST contains
data for one or more UE to be transmitted simultaneously,
thus, resource allocation in the form of RB assignment is
performed. For each ST, the allocation process specifies the
number of required OFDM symbols S̄ ∈ I1×L , number of
active antennas M̄ ∈ I1×L , and the RB allocation matrix

A ∈ BK×N . The elements of A and S̄ are affected by the
UEs’ requirements such as the data rates R̄ and latencies Ȳ,
and channel conditions including pathloss and time
correlation.

The need for adaptive precoding can be justified by not-
ing that CJ enables using all M antennas at the expense of
significant multiple access interference. On the other hand,
ZF eliminates the interference, but it limits the number of
antennas that can be used due to the large delay associated
with processing the precoding matrix [41]. In this paper,
we assume that ZF can only use a subset of MZ < M
antennas. The choice of which precoding technique is used
at the lth ST is influenced by MZ , the maximum number of
multiplexed UEs when using CJ KG, or ZF KZ , as well as
ψ , R̄ and L̄, where MZ < M and KG > KZ . UEs that
require transmission at the lth ST are indicated by the set
ξ∈ B1×K , where ξk = 1 indicates that the kth UE requires
an ST, otherwise ξk = 0. The ADTx stage during the lth ST
can be best described using the following steps:

1) Set l = 1, ω = 1.
2) Compute PO.
3) Select the desired Precoding scheme.
4) Allocate Resources.
5) If

∑K
k=1 Rl,k = 0 or Sl+1= 0, end.

6) Else, l = l + 1, L = l, Go to step 2.
Steps 2, 3 and 4 are described below, and ω is a weighting

factor defined in Algorithm 3.

1) COMPUTING PO
The PO block provides all the required information for the
precoder selection and resource allocation, which includes
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the SINR, number of RBs for each UE, achievable bit rate
and required OFDM symbols. The achievable bit rate per
OFDM symbol for CJ and ZF requires the SINRs of the
CJ and ZF precoders at the lth ST for all users, which are

given by γG,l =
[
γ
(1)
G,l , γ

(2)
G,l , . . . , γ

(KG,l)
G,l

]
and γ Z ,l =[

γ
(1)
Z ,l , γ

(2)
Z ,l , . . . , γ

(KZ ,l)
Z ,l

]
, respectively, where

γ
(k)
G,l = γk |

[
M ,KG,l, aG,k , µG

]
, k = 1, . . . ,KG,l (11)

γ
(k)
Z ,l = γk |

[
MZ ,KZ ,l, aZ ,k , µZ

]
, k = 1, . . . ,KZ ,l (12)

and KG,l and KZ ,l are the number of multiplexed UEs at the
lth ST,

KG,l = min {KG,Kl}

and

KZ ,l = min {KZ ,Kl}

Kl is the total number of users whose data will be transmitted
during the lth ST,

∑L
l=1 Kl = K . Furthermore, the number

of allocated RBs for the kth user during the lth ST using
CJ precoding is given by

NG,k,l =

[
KG,l

Kl
B

]
ξk , k = 1, 2, . . . ,Kl (13)

subject to:

Kl∑
k=1

NG,k,l = KG,lB (14a)

NG,k ≤

⌊
KG,l

Kl
B

⌋
+ 1. (14b)

Similarly, the number of RBs using ZF precoding is
given by

NZ ,k =

[
KZ ,l

Kl
B

]
ξk (15)

subject to:

K∑
k=1

NZ ,k = KZ ,lB (16a)

NZ ,k ≤

⌊
KZ ,l

Kl
B

⌋
+ 1. (16b)

Finally, using NG,k and NZ ,k , the calculated bit rate per
OFDM symbol for k = 1, . . . ,K using CJ and ZF are given
by

Rmax
G,k = Rmax

G
(
γG,k,l,NG,k

)
(17)

Rmax
Z ,k = Rmax

Z
(
γZ ,k,l,NZ ,k

)
. (18)

2) PRECODING SELECTION
In general, precoding selection leads to two possible out-
comes, which are reducing the release time (RT) or increasing
the spectral efficiency (SE). RT is defined as the time period
taken for at least one UE to satisfy their bit rate requirement.
Reducing RT benefits some UEs that significantly gain from
a certain precoding choice, which in turn reduces the number
of simultaneous UEs for the rest of the STs. However, this
strategy may lead to blocking out the resource for the remain-
ing UEs, especially at the cell edge. In order to overcome such
a conflict, we propose the following:
• Precoding selection is based on minimizing the UEs’
outage probability.

• Trade-off between minimizing RT and maximizing SE
where these two parameters are selected alternately only
in the case when the RT of CJ and ZF are similar.
If, however, RT for one of the precoding schemes is
much smaller than the other, the precoding technique
that minimizes RT is selected.

RT of CJ and ZF at the l th ST, is sG = mino
(
Rl,o/Rmax

G,o

)
and sZ = mino

(
Rl,o/Rmax

Z ,o

)
, respectively, where o =

{k | k = 1, . . . ,K ∧ ξk = 1}, and ∧ denotes the logical con-
junction. In addition, the user that provides the minimum RT
at the l th ST is given by umin = argmino ψo. Hence we
can define RT from CJ and ZF at the l th ST υ = (sG, sZ )
with its minimum and maximum values υmin = minυ and
υmax = maxυ, respectively.

Minimizing RT takes the precoding technique that has
the smallest value from set υ. Let the RT based precoding
selection be denoted by PI∈ {0, 1}, where PI is the precoding
indicator, PI = 1 implies that ZF is used and PI= 0 means
that CJ is used. Thus, the precoding selection can be given by

PI = (argmin {sG, sZ })− 1. (19)

By noting that argmin {sG, sZ } ∈ {1, 2}, then PI ∈ {0, 1}.
On the other hand, SE based precoding selection compares
the bit rates of the precoding techniques to select the one
with the largest value. If the outcome of SE based precoding
selection is given by � ∈ {0, 1}, where � = 1 corresponds
to ZF and� = 0 corresponds to CJ, then SE based precoding
selection can be given by

� = U

(
K∑
k=1

Rmax
G,k ,

K∑
k=1

Rmax
Z ,k

)
. (20)

Based on the aforementioned two objectives, Algorithm 1
is devised to select the precoding scheme. This algorithm
includes three main checks that are sequenced according to
their priority. The first check is for the outage, which would
arise if RT is longer than the available OFDM symbols at the
l th ST, Sl , and selects the precoding technique that minimizes
the outage, which will be performed using Algorithm 2.
However, if the two precoding techniques have identical out-
ages, the algorithm performs the second check and selects the
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precoding technique that offers the minimum RT. Otherwise,
the algorithm proceeds to check three and selects the precod-
ing technique that maximizes SE, which will be performed
using Algorithm 3. It is worth noting that Algorithm 3
guarantees that RT minimization is still considered when the
overall outage probability for the users is minimized. This is
achieved by using a weighting factor ω ∈ { 1, 2 }, as shown
in Algorithm 3.
The outcome of precoding selection at the l th ST will be

defined as

Pl =
{
1, ZF is selected
0, CJ is selected.

(21)

Using the selected precoding technique, the global param-
eters for the l th ST, are given by Ml = M , Kl = KG,l ,
al = aG, µl = µG and Nl = NG if Pl = 0; otherwise,
Ml = MZ , Kl = KZ ,l , al = aZ , µl = µZ and Nl = NZ .

Algorithm 1 Precoding Selection
Input:R, Rmax

Z , Rmax
G , sG, sZ , Sl , υ

1. if sG > Sl OR sZ > Sl
2. Perform Algorithm 2
3. elseif υmin < 2υmax OR ω = 2, then
4. Pl=PI , Sl = υmin, ω = 1
5. else
6. Perform Algorithm 3
7. end
8. Output: Sl , Pl , ω

Algorithm 2 Outage Users Based Precoding Selection
Input:R, Rmax

G , Rmax
Z , Rl , υ, Sl

1. XZ =
∑

i U
(
Ri,Rl,i−Rmax

Z ,i

)
2. XG =

∑
i U
(
Ri,Rl,i−Rmax

G,i

)
3. if XZ 6=XG, then Pl = U(XZ ,XG)

4. else, Pl =
{(∑K

k=1 R
max
Z ,k

)
>
(∑K

k=1 R
max
G,k

)}
5. end if

6. S l =
{
Sl, Sl < 0.1 OR (XZ = 0 AND XG = 0)
1
2Sl, otherwise

7. Output: Pl , Sl

3) RESOURCE ALLOCATION
The final aspect in the ADTx stage is to utilize the infor-
mation gathered to perform resource allocation which takes
into account latency handling. After completing the precod-
ing selection, resource re-allocation is needed if the latency
constraints are not satisfied. A possible approach to over-
come this is to increase the transmission time such that
the latency constraint can be satisfied. However, this may
reduce the system efficiency because it introduces trans-
mission redundancy. Therefore, we propose Algorithm 4 to
maintain redundancy within a pre-defined limit. Recalculat-
ing the number of RBs for the l th ST is given by N̂ l subject

Algorithm 3 SE Based Precoder Selection
Input: Rmax

G , Rmax
Z , υ, �

1. λZ =
∑

i=1 U
(
Rmax
G,i ,R

max
Z ,i

)
2. λG =

∑
i=1 U

(
Rmax
Z ,i ,R

max
G,i

)
3. if λZ 6=λG, then Pl = U(λG, λZ )
4. else, Pl =�
5. end if
6. if PI 6= Pl , then ω = 2, Sl = max

{
υPl+1
ω
, υPI+1

}
7. else, ω = 1, Sl = υPI+1
8. end if
9. Output: Pl , Sl , ω

to min
∑K

k=1

∣∣∣Rl,k−R̂max
k

∣∣∣ and min
∑K

k=1

∣∣∣∑l
b=1 Sbξk−Yk

∣∣∣ .
In order to minimize the complexity of the proposed scheme,
the maximum number of iterations is set to three, which is
selected on the basis that the impact of resource re-allocation
becomes negligible beyond three iterations.

Based on N l , UEs multiplexing and RBs allocation is
given by

Al,k,n =

{
1, allocate k th UE at the nth RB
0, otherwise

(22)

subject to:

B∑
n=1

Al,k,n = Nl,k (23a)

A6
l,n ≤ Kl, n = 1, . . . ,B (23b)

where Ā6
∈R1×B, and A6

l,n =
∑K

k=1Al,k,n, n = 1, . . . ,B.
Using Sl and Rl , the available symbols and remaining
bit rates for the (l + 1)th ST are respectively given by
Sl+1 =FD −

∑l
b=1 Sb and Rl+1,k = Rk −

∑l
b=1 R

max
b,k Sb,

k = 1, . . . ,K |ξk = 1.

Algorithm 4 Latency Handling
Input: N l , Rmax, Rtarget,k , Y
1. i = 1
2. while i ≤ 3 do
3. Adjust the number of RBs, N̂ l , based on the target,
Rtarget,l,k
4. Check the achievable bit rate, R̂max, using N̂ l set
5. If R̂max

k > Rtarget,k for any k = 1, . . . ,K then
6. i = i+1, reduce number of multiplexed UEs, Kl and
repeat line 3
7. else, i = 4, Nl,k = N̂l,k for k = 1, . . . ,K
8. end if
9. Output: N l , S l , and Kl

C. ANTENNA ARRAY OPTIMIZATION STAGE
TheAAO stage attempts to reduce the number of active anten-
nas required for each ST by adjusting the transmission period
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based on R = S log2
(
1+M a

K
)
. For example, assuming

a
K = 1 and M = 400, increasing the transmission time
by 30% allows reducing the number of required antennas
by 75%, and hence, provide further power saving. If the
required number of antennas for the l th ST after the AAO is
denoted as M̃l , the AAO attempts to find minM̃l subject to

L∑
l=1

S̃l ≤ TD (24a)

R̃max
l,k Sl ≤ λl,k , k = 1, . . . ,K (24b)

2Kl ≤ M̃l ≤ M (24c)

where S̃l is the number of OFDM symbols at the l th ST
and R̃l,k is the bit rate for the kth UE during the l th ST
after the AAO step. R̃l,k , k = 1, . . . ,K , is given by
R̃l,k = S̃lC

(
γ
(
M̃l,Kl, al,k , µl,k

)
,N

)
, where

C (γ (·) ,N ) =
NQ
Tfr

log2 (1+ γ (·)) . (25)

IV. ADTx ANALYSIS
A. SINR ANALYSIS OF THE DTX TRANSMISSION
1) SINGLE CELL LSAS WITH K UES UNIFORMLY PLACED
WITHIN A DISTANCE dmax

This scenario considers the case when the interference impact
of LSAS to the surrounding cells is low. We assume that the
pathloss is given by α = 10(αdB/10), where αdB = A +
B log10 (d), A is a constant that captures the effect of free
space propagation at a reference distance d , and B = 10β,
where β is the pathloss exponent. In the following analysis,
the UE index is dropped, unless it is necessary to include it.
Lemma 1: The probability and cumulative density func-

tions (PDF) and (CDF) of the UE’s SINR are respectively
given by

fψ (ψ)=


20

ψBd2max

(
$
ψ

) 20
B
, ψ ≥ ψmin

0, otherwise
(26)

Fψ (ψ)=


1

d2max

((
$

ψmin

) 20
B

−

(
$

ψ

) 20
B
)
, ψ ≥ ψmin

0, Otherwise.
(27)

where $ = PT /
(
η10A/10

)
, η is the noise level at the UE,

and the SINR per antenna ψ = PT / (αη). The proof is given
in Appendix II.

2) K UEs TRANSMITTING USING L STs
Consider the case whereK UEs are transmitting over L STs,
and each ST consists of Kl UEs,

∑L
l=1 Kl = K . The UEs are

grouped based on their SINR values in ascending order, e.g.
the UE with the lowest SINR is transmitted during the first
ST, and the one with the highest SINR is transmitted in the
L th ST. The UE whose SINR order is m during the mth ST
is denoted as um.

Lemma 2: The PDF of the SINR of the uthm UE is given by

fum (ψ) =
Kb
r

(
K − 1
um − 1

) φm∑
t=0

(
φm

t

)
qt

×

(
gψ

1
rhm

(hm+t−λ)
− ψ

1
rhm

(t−λ)
)hm

(28)

where φm = K − um, b = $
20
B /d2max, v =

1
d2max

(
$
ψmin

) 20
B
,

q = 1−v
b , hm = um − 1, r = B

20 , λ = r + K, and g = v/b.
Proof: Using order statistics, the SINR PDF of uthm UE

is given by [42]

fum (ψ) = Wmfψ (ψ)
(
Fψ (ψ)

)um−1 (1− Fψ (ψ))K−um .
(29)

where Wm , K
(K−1
um−1

)
. Expanding (29) gives

fum (ψ) =
Wm

rd2maxψ

(
$

ψ

) 1
r
(
v− σ

(
$

ψ

) 1
r
)um−1

×

(
1− v+ σ

(
$

ψ

) 1
r
)K−um

(30)

where σ = 1/d2max. After some straightforward manipula-
tions (30) can be written as

fum (ψ) =
3l

ψ
20
B +1

(
v−

b

ψ
20
B

)um−1 (
1− v+

b

ψ
20
B

)K−um
(31)

where

3m =
Kb
r

(
K − 1
um − 1

)
. (32)

By defining ψ
20
B , x, and noting that b > 0, {φm,um} are

integers greater than one, thus fum (ψ) can be written as

fum
(
x

B
20

)
=

3m

xr+1

(
v
b
−

1
x

)um−1 (1− v
b
+

1
x

)φm
(33)

which can be further simplified to

fum
(
x

B
20

)
=
3m

xλ
(gx − 1)hm (qx + 1)φm . (34)

Using binomial expansion and substituting x with ψ
20
B gives

the PDF of uthm-ranked UE given in (28 ). �

B. TRANSMISSION PERIOD OF ADTx
Under scenario 2 and assuming that all UEs require the same
throughput, R, the transmission length of the l th ST is affected
by the lowest SINR for that particular group. This implies that

Sl = max
um=1,...,Kl

R
Cl

(35)
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TABLE 3. Simulation parameters for Fig. 2 and 3, [7].

where

Cl =


Q
Tfr

log2

(
1+

M
Kl

ψl,um
(ψl,um+1)

)
, CJ

Q
Tfr

log2

(
1+

MZ − Kl
Kl

ψl,um

)
, ZF.

(36)

Hence, the average transmission period for scenario 2 is given
by S =

∑L
l=1 S l , where

S l =
∫
∞

−∞

fum (ψ) Sl(ψ)dψ (37)

where

Sl (ψ)=


RTfr
Q

[
log2

(
1+

M
Kl

ψl,um(
ψl,um + 1

))]−1, CJ

RTfr
Q

[
log2

(
1+

MZ − Kl
Kl

ψl,um

)]−1
, ZF.

(38)

Assuming that in each ST, adaptive precoding selection is
applied based on the following condition:

Pl =
{
1, ψl,u ≥ ψZ

0, ψl,u < ψZ
(39)

where ψZ = M/ (MZ − Kl)− 1, then, (37) can be written as

S l =
∫ ψZ

ψmin

fum (ψ) Sl(ψ)dψ +
∫ ψmax

ψZ

fum (ψ) Sl(ψ)dψ.

(40)

Since 1/log(x/ (x + 1)) does not have a definite integral,
the solution of this equation is achieved numerically.

V. NUMERICAL RESULTS
A. IMPACT OF ADTx
The impact of discontinuous transmission on LSAS is eval-
uated in Figs 2 and 3 for the suburban and rural scenar-
ios, respectively. LSAS is considered to have M = 400
antennas, where each antenna transmits 200 mW of power.
The simulation parameters are given in Table 3. The channel
attenuation factors include the building penetration [7], [43].
The analytical results are obtained using (40).

As can be noted from Figs 2 and 3, the analysis and simula-
tion results match almost perfectly, which confirms the valid-
ity of the derived analysis. As can be seen from these figures,
increasing the number of STs reduces the total number of
occupied slots. The optimum number of STs vary depending

FIGURE 2. Impact of various number of scheduled transmission in
suburban scenario.

FIGURE 3. Impact of various number of scheduled transmission in rural
scenario.

on the number of active UEs. For example, the minimum
number of transmission slots for K = 5 and K = 9 is
achieved using 2 and 3 STs, respectively. This shows that the
proposed ADTx can reduce the required transmission period
and allows switching off some of the LSAS components.

B. EVALUATION PARAMETERS FOR MULTI CELL
SCENARIOS
The performance evaluation considered in this subsection
focuses on EE and the outage probability performance. The
UEs outage represents the number of UEs that do not get
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FIGURE 4. Energy productivity of suburban scenario with fixed rate
requirement.

at least half of the required bit rate. The presented results
correspond to suburban and rural scenarios, which make up
most of the coverage area of a cellular network, and hence,
the EE improvement is expected to be significant. A typical
users’ density in suburban areas ranges between 0.75 and
5.25 UE per km2, with a short inter-site-distances (ISD)
of 1732.1 m. In rural areas, the users’ density ranges between
0.075 and 0.525 UE per km2 with ISD of 2330 m [9].
A 49 cell wrap around is considered [36], the carrier

frequency is 2 GHz, and the pathloss is given by αk =
10

A+X
10 (dk)

B
10 where X is log normal shadowing with zero

mean and 6 dB standard deviation. The small scale fading
is modeled as Rayleigh, and the noise floor at the MBS and
UEs is set to -172 dBm/Hz and -165 dBm/Hz, respectively.
Various cases of bit rate requirements are evaluated, which
includes fixed and varying bit rate requirements. In the case
of fixed bit rate requirements, the target bit rate is set to be
in the range of 1 to 6 Mbps. On the other hand, in the case
of varying bit rate requirements we assume a minimum bit
rate of 100 kbps with the maximum bit rate between 1 to
15 Mbps. The bit rate is generated in a uniform distribution
in logarithmic scale. For both cases, latency requirements
between 10−3 and 5 duty cycles per frame is considered.
The performance of the proposed scheme is compared to the
continuous transmission case described in Appendix A.

The performance of the proposed ALSAS in a subur-
ban scenario shown in Figs. 4, 5, and 6, where Fig. 4
and Fig. 5 considers the EE with fixed and variable bit
rate requirements, while 6 presents the outage probability.
As can be noted from Fig. 4, the proposed technique provides
125% EE improvement for a fixed bit rate requirement of
1 Mbps for the 5.25 users/km2 case. When the user density

FIGURE 5. Energy productivity of suburban scenario with varying bit rate
requirement.

FIGURE 6. Outage probability of suburban scenario with fixed rate
requirement.

decreases to 0.75 users/km2, the EE improves substantially
to 455%. As the bit rate requirement and number of UEs
increase, the improvement decreases and becomes about 1%
for the high density case, while it remains significant for the
low density case with an improvement of about 52%. The
EE improvement reduction at high data rate and user density
is due to the fact that the MBS is mostly required to transmit
over the entire transmission frame.
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FIGURE 7. Energy productivity of rural scenario with fixed bit rate
requirement.

The EE for varying bit rate is shown in Fig. 5. As can
be noted, the EE trends with variable bit rates are generally
similar to the EE with fixed bit rates given in Fig. 4, except
that the improvement is considerably higher, particularly for
the low user density case. As can be noted from the figure,
the proposed ALSAS, for the case of 0.75 UEs per km2,
provides improvement of 1124% and 118% for the maximum
bit rate of 1 and 15 Mbps, respectively. For the high user
density case, the EE improvement is 304% and 23% for 1 and
15 Mbps, respectively. Considering that most of the wireless
mobile applications require bit rates less than 1.5 Mbps,
the proposed technique will provide an energy saving of more
than 1000% in this suburban scenario.

Fig. 6 shows the outage probability of the conventional
and proposed adaptive LSAS techniques using fixed bit rate
requirements. As the figure shows, ALSAS offers lower
or equivalent outage probability for the considered bit rate
range. Consequently, the EE improvement obtained using
the ALSAS is achieved without compromising the outage
probability.

Similar to the suburban scenario, the performance of the
proposedALSAS is depicted in Figs 7-10. The results are pre-
sented for fixed and variable bit rates and ISDs. The fixed ISD
is used to evaluate the performance of the proposed technique
with conventional configuration, while the varying ISD is
used to evaluate the EE performance if the cellular operators
of LSAS have ISD values that are from the one discussed
in this paper. To evaluate the impact for various ISDs, the
required fixed bit rate is set to 4 Mbps, and the varying bit
rate ranges from 100 kbps to 10 Mbps. In both cases, the user
density is considered as 0.525 UE/km2.

Fig. 7 shows the EE for fixed ISD and fixed bit rates.
Similar to the suburban scenario, the proposed technique

FIGURE 8. Energy productivity of rural scenario with varying bit rate
requirement.

improves the EE of the cellular network in rural scenarios
without degrading the QoS. Fig. 7 shows that an EE improve-
ment of more than 21% is guaranteed given that the bit rate
requirement is less than 6 Mbps for all UEs. As can be seen
from this figure, the proposed ALSAS provides a 61% EE
for low loads such as 0.075 UE/km2, even if the bit rate
is 6 Mbps. When the load increases to 0.525 UE/km2, the
EE improvement surges to 196%.

Fig. 8 shows the EE for a fixed ISD and variable bit rates.
As can be noted from this figure, the EE improvement for
ALSAS at 0.075 UEs/km2 is about 952% and 150% for a
maximum bit rate of 1 and 15 Mbps, respectively. For the
case of 0.525 UEs/km2, the EE improvement is about 461%
and 32% compared to conventional LSAS for a maximum
bit rate of 1 and 15 Mbps, respectively. Considering that
most applications require less than the simulated bit rate
requirement, it can be concluded that a minimum of 150%EE
improvement will be provided for future cellular networks.

The QoS in terms of outage probability is shown in Fig. 9
for the fixed rate and fixed ISD scenario. As depicted in
this figure, the proposed ALSAS managed to offer an out-
age probability that is comparable to the one offered by the
conventional LSAS for both low and high user densities.

The EE and outage probability for fixed and variable bit
rates and ISDs are presented in Fig. 10 and Table 4, respec-
tively. As can be noted form Fig. 10 and Table 4, conventional
LSAS achieves a maximum EE at 2.6 and 3 km, while the
proposed ALSAS improves EE as the ISD is reduced, with-
out compromising the QoS. Such performance is obtained
because reducing ISD decreases the total number of users and
the overall pathloss between MBS and UEs. Consequently,
the required transmission time and number of active anten-
nas can be reduced. This further proves the capability of
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FIGURE 9. Outage probability of rural scenario with fixed rate
requirement.

FIGURE 10. Energy Productivity performance of rural scenario at various
distances.

the proposed technique to maximize the hibernation time of
the MBS. The figure also shows that conventional trans-
mission does not provide a significant EE improvement as
ISD is varied. In practical scenarios, the bit rate require-
ment for certain UEs might be varying, thus, the proposed
technique can provide up to 500% EE improvement over
conventional LSAS. Although reducing ISD causes higher
capital expenditure (CAPEX) for the cellular operator, it low-
ers the carbon footprint significantly, as well as improves the
network performance due to shortening the distance.

TABLE 4. Outage probability of rural scenario at various distances.

VI. CONCLUSION
This paper proposed an adaptive system to minimize the
power consumption in LSAS systems. The adaptive system
reduces the power consumption by combining ADTx with
precoding selection and antenna optimization. The ADTx
stage is responsible for dividing the transmission into L STs
and selecting a suitable precoding technique per ST such
that the total transmission time and latency are minimized.
After ADTx, antenna array optimization is applied to further
increase the duration of the hibernation period for a subset
of antenna elements. The obtained analytical and simula-
tion results showed that the proposed technique can provide
EE improvements between 125% and 1124% in the suburban
scenario, and between 196% and 952% in the rural scenario,
without compromising QoS. It was also demonstrated that
for rural environments with relatively smaller ISD values,
the proposed technique can provide up to 500% power saving
for fixed bit rate requirements.

APPENDIXES
APPENDIX I
CONTINUOUS TRANSMISSION RESOURCE ALLOCATION
For the sake of completeness, this section describes the con-
tinuous transmission scheme with bit rate and SINR adapta-
tion. The adaptation is performed in two steps, which are the
power control calculation and the RBs allocation. To main-
tain low complexity and delay, the continuous transmission
scheme uses CJ precoding.
• Power control calculation:
The power control is applied if the achievable bit rate for

all K UEs is less than the target bit rate. With K active users,
the initial number of RBs per UE is given by Nin=B/K and
the initial throughput for all UEs is given by

Rin = {(γk ,N ) | TDC (γk ,N ) ∧ k = 1, . . . ,K } (41)

where C is given by (7). The transmit power coefficient is
given by

ϕ =

{
1, D = ∅
maxk=1,...,K 2k , Otherwise

(42)

where

D =
{(
Rin,k ,Rk

)
| Rin,k > Rk ∧ k = 1, . . . ,K

}
(43)

and 2 ∈ RK is given by 2k = γtarget,k/γk , k = 1, . . . ,K ,
and γ target is the target SINR, which is given by

γtarget,k =
Zk (8k + %k +8k%k + 1)

1− Zk
,

k = 1, . . . ,K .
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8k =
I k
ηk

Zk =
K
(
2RkTfr/(NinQS) − 1

)
(M −K) %k

. (44)

As can be noted form (42), the power control is applied
only when the achievable bit rate is lower than the throughput
requirement.
• RBs allocation
After applying power control, further resource adjustment

can be applied by considering the RB allocation. UEs that
achieve more than the required bit rate can apply further
reduction in the allocated RBs. This reduces the number of
multiplexed UEs in some part of the RBs, hence, increases
the achievable bit rate for the rest of UEs. The number of RBs
for continuous transmission, N ∈ RK is given by

Nk =
RkTfr

log2
(
1+ γϕ,k

)Q
such that

∑K
k=1Nk ≤ KB and Nk ≤ B for k = 1, . . . , K ,

where γ ϕ ∈ RK is the SINR coefficient with a power control
coefficient ϕ. Using N , the RBs allocation A ∈ RK×B,
is given by

Ak,n =

{
1, allocate k th UE at the nth RB
0, otherwise

(45)

subject to:
B∑
n=1

Ak,n = Nk (46a)

A6
n ≤ Kl , n = 1, . . . ,B (46b)

where A6
n =

∑K
k Ak,n.

APPENDIX II
PROOF OF LEMMA 1
Given that the PDF of the distance, fD (d) between the MBS
and EU is given by

fD (d) =


2d
d2max

, d ≤ dmax

0, otherwise.
(47)

By noting that αdB = A + B log (d), then α = 10
A+B log(d)

10 .
Substituting α in ψ gives

ψ =
PT

η × 10
A+B log(d)

10

=
PT

η × 10
A+B log(d)

10

=
$

d
B
10

. (48)

Because generally B is greater than 10, then ψ is strictly
decreasing by increasing d . Therefore, the CDF of ψ is given
by,

Fψ (ψ) = P (d ≤ u) = 1− FD (u) (49)

whereFD (d) is the CDF of d and u =
(
$
ψ

) 10
B
. Consequently,

fψ (ψ) can be obtained using the chain rule,

fψ (ψ) =
∂

∂u
(1− FD (u))

∂u
∂ψ

= −fD (u)
∂u
∂ψ

. (50)

By substituting ∂u
∂ψ
= −

10
(
$
ψ

) 10
B

Bψd2max
and fD (u) = 2

d2max

(
$
ψ

) 10
B

in (50) and simplifying the result, the PDF in (26) is obtained.
The CDF of the SINR is thus given by

Fψ (ψ) =
∫ ψ

ψmin

fψ (u) du

=
20

d2maxB

∫ ψ

ψmin

1
u

($
u

) 20
B
du

=
20

d2maxB
$

20
B

∫ ψ

ψmin

1

u
20+B
B

du (51)

Evaluating the integral gives∫ ψ

ψmin

1

u
20+B
B

du =
B
20

(
ψ
−

20
b

min − ψ
−

20
b

)
. (52)

By substituting (52) in (51) we obtain

Fψ (ψ) =
1

d2max
$

20
B

(
ψ
−

20
B

min − ψ
−

20
B

)

=
1

d2max

( $

ψmin

) 20
B

−

(
1

ψ
20
B

) 20
B
 . (53)
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