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ABSTRACT Weeds are among the major factors that could harm crop yield. Site-specific weed management
has become an effective tool to control weed and machine vision combined with image processing is an
effective approach for weed detection. In this work, an encoder-decoder deep learning network was inves-
tigated for pixel-wise semantic segmentation of crop and weed. Different input representations including
different color space transformations and color indices were compared to optimize the input of the network.
Three image enhancement methods were investigated to improve model robustness against different lighting
conditions. The results show that for images without enhancement, color space transformation and vegetation
indices without NIR (Near Infrared) information did not improve the segmentation results, while inclusion
of NIR information significantly improved the segmentation accuracy, indicating the effectiveness of NIR
information for precise segmentation under weak lighting condition. Image enhancement improved the
image quality and consequently the robustness of segmentation models against different lighting conditions.
The best MIoU value for pixel-wise segmentation was 88.91% and the best mean accuracy of object-wise
segmentation was 96.12%. The deep network and image enhancement methods applied in this work provided
promising segmentation results for weed detection and did not need large amount of data for model training,
which is suitable for site-specific weed management.

INDEX TERMS Weed detection, semantic segmentation, deep learning, precision agriculture, image
processing.

I. INTRODUCTION

Agriculture is facing tremendous challenges from weeds,
which appear everywhere randomly in the field, and compete
with crops for water, nutrients and sunlight, resulting in a
detrimental impact on crop yields and quality if uncontrolled
properly [1], [2]. Numerous studies have demonstrated a
strong correlation between crop yield loss and weed compe-
tition. The production loss due to weeds can be up to 34%
[3]-[6]. To control weeds, different operations have been
adopted, among which chemical weeding has been the
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most widely used one since 1940s. However, conventional
chemical weeding sprays herbicides uniformly to the whole
field, resulting in the overuse of herbicides and further lead-
ing to catastrophic environmental pollution problems [3].
To counteract these issues, site-specific weed manage-
ment (SSWM) was introduced. In SSWM, accurate weed
identification is crucial, which provides necessary individual
target information for spraying to the control system [7].
Machine vision is one of the most popular approaches
and has been investigated extensively for weed identifica-
tion [8]. Conventional procedures for weed detection with
machine vision include image pre-processing, segmentation,
feature extraction and classification [2], [9]. For the feature
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extraction procedure, handcrafted features are usually
extracted and optimally selected, which are then used for
classification. For images captured under ideal conditions
and at specific plant growth stages, these conventional meth-
ods provide very promising classification results with high
classification performances in the order of 80-95% in terms
of accuracy [7]. However, for real applications in the field,
the task becomes extremely challenging. Weed identification
accuracy is influenced by weed density, weed distribution
characteristics, varying lighting conditions in the field, occlu-
sion or overlapping of the leaves of crops and weeds, and
different growth stages of plants, etc[10]-[13]. Handcrafted
features extracted from color, shape, texture and spectrum
are not robust enough to the changes of these factors, leading
to the poor robustness and low generalization capabilities of
conventional crop-weed classification methods, and impos-
ing difficulties to the practical applications of such methods
in precision agriculture [7], [14].

Deep learning has been investigated extensively for image
processing and has also been applied in agriculture including
weed identification. Compared with conventional machine
learning methods for identifying weeds from digital images,
deep learning can automatically learn the hierarchical fea-
ture expression hidden deep into the images, avoiding the
tedious procedures to extract and optimize handcrafted fea-
tures [14]. In addition, semantic segmentation is one of the
most effective approaches for alleviating the effect of occlu-
sion and overlapping since pixel-wise segmentation can be
achieved. Some deep learning algorithms have been inves-
tigated for weed detection. Dyrmann et al. [15] trained a
fully CNN based on GoogLeNet architecture to detect weed
locations in leaf occluded cereal crops, which yielded a recall
of 46.3% and a precision of 86.6%. To cope with substantial
environmental changes with respect to weed pressure, weed
types, growth stages of the crop, visual appearance, and soil
conditions, Lottes et al. [7] adopted a fully convolutional
network (FCN) with an encoder-decoder structure and incor-
porated spatial information by considering image sequences.
Both RGB and NIR (Near Infrared) images were used for
model training. Results showed that the method substantially
improved the accuracy of crop-weed classification. Similarly,
Milioto et al. [16] constructed an end-to-end encoder-decoder
semantic segmentation network, and fed the network with
14 different vegetation indices and alternate representations
as input for semantic weed/crop/background segmentation.
The proposed method could properly deal with heavily over-
lapping objects and a large variety of growth stages, yielding
the best MIoU (mean intersection of union) value of 80.8%
for pixel-wise segmentation. Though promising results can
be obtained with these deep learning-based methods for weed
identification, there are still room for improvement. The deep
learning networks could learn effective features for weed
detection, but are also affected by varying lighting condi-
tions, which were not fully considered in the aforementioned
studies. To further improve semantic segmentation accuracy,
Chen et al. [17] proposed an encoder-decoder network with

VOLUME 8, 2020

atrous separable convolution, for semantic image segmen-
tation. The network could refine the segmentation results
especially along object boundaries and yield state-of-art per-
formance on PASCAL VOC 2012 and Cityscapes datasets.
However, the network also did not consider varying lighting
conditions.

Therefore, this work aimed at performing pixel-wise
semantic segmentation of field images into soil, crop and
weed. Specifically, (1) an encoder-decoder network with
atrous separable convolution was investigated for semantic
crop/weed/soil segmentation; (2) different input represen-
tations including different color space transformations and
color indices, were compared to analyze the effect of input
representations to the performance of the adopted network;
and (3) model robustness with respect to lighting conditions
was improved by image enhancement.

Il. MATERIALS AND METHODS

A. IMAGE DATASETS

Two image datasets were evaluated in this work. One is a
publicly available sugar beet image dataset (http://www.ipb.
uni-bonn.de/data/sugarbeets2016/) captured with a readily
available agricultural robotic platform, BoniRob, on a sugar
beet farm near Bonn in Germany over a period of three
months in spring 2016 [18]. The other is an oilseed image
dataset captured with a commercial RGB camera (Canon
60D, 50 mm lens, 5184 pixel x 3456 pixel) which was
mounted on a gantry-type frame at a height of around
1.5 m above soil at our own test field on campus in
early winter 2017. The sugar beet dataset consists of both
RGB and corresponding NIR images, captured with a JAI
AD-130GE multi-spectral camera at an image resolution
of 1296 pixel x 966 pixel. The JAI AD-130GE camera was
mounted to the bottom of the BoniRob robot chassis at a
height of around 85 cm above soil, consisting of a RGB
sensor and a NIR monochromatic sensor. The NIR monochro-
matic sensor collects signals within the spectral range
of 750-1000 nm, with sensitivity peak at around 780 nm.
The sugar beet was in early growth stage and weed density
was relatively low, with slight overlapping of the leaves of
sugar beet and weed. For the RGB images, it seems that the
lighting condition is not well, as the brightness and contrast
of the RGB images are low, as shown in Figure 1a. There are
283 images in the sugar beet dataset with ground-truth label-
ing provided by Chebrolu et al. [18] from which we randomly
selected 200 images for training and 83 images for evaluation.
For our oilseed dataset, the captured images with a resolution
of 5184 pixel x 3456 pixel were cropped into more images
with a resolution of 1550 pixel x 3456 pixel. The oilseed was
also in the early growth stage, but with heavy weed pressure
and overlapping. And the oilseed images (Figure 1b) were
captured under the direct illumination of sunlight, with some
shadow regions. These 68 RGB images were annotated by
hand, with 50 images for training and 18 images for evalu-
ation. To further verify the generalization capability of the
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(e)

FIGURE 1. (a) Original image from sugar beet dataset, (b) Original image
from oilseed dataset, (c) Sugar beet image with L component subtracted
by 40, (d) Oilseed image with L component subtracted by 100, (e) Sugar
beet image with gamma value of 0.5, (f) Oilseed image with gamma value
of 0.5.

proposed approach, the datasets were augmented by gamma
correction and changing the L component in HSL color space.
For the sugar beet dataset, the gamma value was set as 0.5,
1.5 and 2, and the L component was added by 50, 100 and
150, and subtracted by 40, respectively. And for the oilseed
dataset, the gamma value was set as 0.5, 1.5 and 2, and the L
component was added by 50, and subtracted by 50 and 100,
respectively. Examples of augmented images were shown
in Figure 1.

B. IMAGE PREPROCESSING

Image preprocessing can help to improve the generalization
capabilities of a classification model by aligning the training
and test data distribution and improving the image quality [7].
As the lighting condition substantially affects the robustness
of a classification model, three image enhancement methods
were investigated in this work. For the input of deep network,
Milioto et al. [16] deployed 14 different input representations
including different vegetation indices and raw input in differ-
ent color spaces to improve the performance of classification
model and reduce the amount of images for training. Sim-
ilarly, several different vegetation indices and color spaces
were also evaluated as the input representations in this work.

1) IMAGE ENHANCEMENT

The two datasets involved in this work were acquired under
totally different lighting conditions, as can be seen in Fig-
ure 1. For the sugar beet dataset, the images are with low
brightness and contrast. By contrast, the images in our oilseed
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dataset were captured under the direct illumination of sun-
light. The brightness and contrast of the oilseed images are
high enough, with some regions close to saturation in the
images. There are also some shadow regions in the oilseed
images, imposing more difficulties for crop/weed classifica-
tion. To alleviate the effect of different lighting conditions and
improve the robustness of classification model, three image
enhancement methods were evaluated.

a: HISTOGRAM EQUALIZATION

Histogram equalization (HE) is a powerful scheme for adjust-
ing image intensities to enhance contrast. In grey scale his-
togram equalization, the method rearranges the grey values
in such a way that the modified histogram resembles the
histogram of uniform distribution [19]. The detailed princi-
ple and implementation procedures of HE can be reached
in reference [20]. For color images with three channels,
the same technique equalizing the image in three dimen-
sional spaces causes unequal shift in the three components
resulting in change of hue of the pixel [21]. The HE prepro-
cessing for color image adopted in this work is to equalize
only the intensity component in the color space of HSI, and
then transform the equalized HSI image back to RGB color
space [22].

b: AUTO CONTRAST

The process of contrast enhancement increases the percep-
tibility of the objects in the image. To enhance the contrast
of the images involved in this research, the Auto Contrast
algorithm used in the commercial software Adobe Photoshop
CS6 (Adobe Systems Software Ireland Ltd.) was applied. The
Auto Contrast operator does not adjust channels individu-
ally and does not introduce or remove color casts. It simply
darkens the darkest pixels to pure black, lightens the lightest
pixels to pure white, and redistributes all the other tonal
values in between proportionally. This makes the highlights
appear lighter and shadows appear darker. The Pseudocode
demonstrating the process of Auto Contrast is as follows.
The parameter ‘percent’ in the algorithm is the clipping per-
centage, and delta is a parameter to fine tune the enhanced
image. For RGB images, the R, G and B channels are fed
to the algorithm, while for NIR images, the input is just
one channel.

c: DEEP PHOTO ENHANCER

A Deep Photo Enhancer based on unpaired learning proposed
by Chen et al. [23] was applied for image enhancement.
As shown in Figure 2, the method is based on the frame-
work of two-way generative adversarial networks (GANs)
and U-Net was augmented with global features to act as a
generator in the GAN model. Wasserstein GAN (WGAN)
was improved with an adaptive weighting scheme, resulting
in faster and better training converges. In addition, individ-
ual batch normalization layers for generators in the two-
way GANs was used to better adapt to the characteristics
of their own inputs. For enhancing the images in this work,
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FIGURE 2. The network architectures of the proposed unpaired learning method for

image enhancement [23].

the model provided by the authors was adopted, which was
trained on photographer labels of the MIT-Adobe 5K dataset
as well as an HDR dataset selected from Flickr images tagged
with HDR.

2) INPUT REPRESENTATIONS

To facilitate greenness identification and plant classification,
several frequently used color spaces and vegetation indices
were involved to represent the input of model training. The
color spaces of YCrCb and YCgCb have been proved to
be effective for greenness segmentation by researchers [24],
[25], therefore the raw images in these two color spaces were
used as two input representations. The vegetation indices
involved include NDI (Normalized Difference Index), NDVI
(Normalized Difference Vegetation Index), ExG (Excess
Green), ExR (Excess Red), ExXGR (Excess Green minus
Excess Red), CIVE (Color Index of Vegetation), VEG (Veg-
etative Index), and MExG (Modified Excess Green Index),
COM1 (Combined Indices) and COM2, as calculated by
Equations (1)-(10) [2], [16]. These indices were developed
for vegetation extraction and are less sensitive to changes in
field conditions.

NDI= 128+ (C =R 4 (1
- G+R
NIR + R
NDVI — R+ X )
NIR — R
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ExG = 2G-R-B 3)
ExR = 1.4R-G 4
ExGR = ExG-ExR 3)

CIVE = 0.441R — 0.881G + 0.385B + 18.78745 (6)

VEG = W )
COMI = ExG + CIVE + ExGR + VEG (8)
MExG = 1.262G — 0.884R — 0.311B )
COM2 = 0.36ExG + 0.47CIVE + 0.17VEG (10)

C. NETWORK ARCHITECTURE

An encoder-decoder network with atrous separable convolu-
tion, was investigated for semantic image segmentation in this
work. As shown in Figure 3, the encoder module encodes
multi-scale contextual information by applying depthwise
atrous convolution at multiple scales. Atrous convolution is
a powerful tool that allows to extract the features computed
by deep convolutional neural networks at an arbitrary resolu-
tion. And depthwise separable convolution could drastically
reduce computation complexity by factorizing a standard
convolution into a depthwise convolution followed by a point-
wise convolution. In the encoder-decoder network, the depth-
wise atrous convolution combines the atrous convolution and
depthwise separable convolution to reduce computation com-
plexity while maintaining similar (or better) performance.
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FIGURE 3. Encoder-decoder network with atrous separable convolution for semantic image segmentation [17].

A simple yet effective decoder first bilinearly upsamples
the encoder features by a factor of 4 and then these fea-
tures are concatenated with corresponding low-level features
from the network backbone. After the concatenation, several
3 x 3 convolutions are applied to refine the features followed
by another simple bilinear upsampling by a factor of 4.
With these operations, the decoder module could refine the
segmentation results along object boundaries. More details
regarding the network can be found at reference [17].

The effectiveness of this encoder-decoder network has
been approved on the benchmarks of PASCAL VOC
2012 and Cityscapes datasets, achieving the test set perfor-
mance of 89.0% and 82.1% without any post-processing. The
network was implemented relying on the Google TensorFlow
library with the programming language Python 3.5.

D. TRAINING DEEP NETWORK

As we know, training a deep model from scratch is computa-
tionally expensive and requires large mounts of labelled data.
However, in this work we only have 200 and 50 images for
training for the sugar beet and oilseed, respectively, making
it impossible to train the models from scratch. Hence, we uti-
lized knowledge in other segmentation domain to solve our
problem via transfer learning [26] in a low-cost way. Transfer
learning for a convolutional neural network that consists of
convolution base and fully-connected layers at the end, means
to retrain the final layers of the network with new traing
data based on a previously trained network. This process will
slightly adjust the weights for final layers of the pre-trained
model according to the input images. Therefore, in this work
we trained the encoder-decoder network based on a pretrained
model on PASCAL VOC 2012 dataset from VOC challenges
with 11530 images. This leads to much less computation load
and training data, while remaining comparable segmentation
accuracy.
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E. EVALUATION
Three classes were considered (soil, weed and crop) in
this work. The performance of segmentation was firstly
measured in terms of pixel intersection over union (IoU)
averaged across the 3 classes. The mean intersection over
union (MIoU) can be calculated using Equation (11).
TP

= an

FP+ TP+ FN

For automated weeding, it is more important to recognize
the targeted object accurately, since the weeding actuator
cannot perform pixel-wise operation. Therefore, an object-
wise metric was also calculated to indicate the model’s
performance. We analyzed all objects with area bigger than
320 pixels, which was calculated by dividing the desired min-
imum object detection size of 1 cm? by the spatial resolution
of 2 mm?/px in the 1296 x 966 images.

IoU

Ill. RESULTS AND DISCUSSION

A. IMAGE ENHANCEMENT

Figure 4 compares the visual effect of different image
enhancement methods. For raw RGB images (Figure 4al)
from sugar beet dataset, the brightness and contrast were
low. After enhancement, the brightness and contrast of the
images were improved significantly. The images enhanced
by HE method (Figure 4a2) were with the highest brightness
and contrast, but the color of the images was distorted and
seemed vary unnatural. That may be caused by the irreducible
singularities of the transformation between RGB and HSI
spaces and the fact that HE is only performed on the intensity
component [22]. For RGB images enhanced by Photoshop
Auto Contrast (Figure 4a3), they looked bright and sharp,
with visually appealing color. And for RGB images processed
by Deep Photo Enhancer (Figure 4a4), the brightness and
contrast were also improved, but the change was not that
significant compared with the images processed by HE and
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FIGURE 4. Raw and enhanced images. (a1-a4) Raw and enhanced RGB images of sugar beet by HE, Photoshop Auto Contrast and
Deep Photo Enhancer; (b1-b4) Raw and enhanced NIR images of sugar beet by HE, Photoshop Auto Contrast and Deep Photo
Enhancer; (c1-c2) Raw and enhanced RGB images of oilseed by HE, Photoshop Auto Contrast and Deep Photo Enhancer.

Photoshop Auto Contrast. Different from raw RGB images,
the NIR images (Figure 4bl) from sugar beet dataset were
with relatively high contrast, thanks to the ability of NIR cam-
era to capture information in low illumination environment.
After enhancement, the brightness and contrast of the NIR
images were improved significantly. However, the images
processed by Deep Photo Enhancer (Figure 4b4) seems to
be with color and not grayscale image. After analysis it was
found that the images consisted of three channels, which was
caused by the three channels output of Deep Photo Enhancer.
With respect to the oilseed dataset, the raw RGB images
were with high brightness and contrast, but with the direct
illumination of sunlight and some shadow regions. The dif-
ference between raw and enhanced RGB images was visually
marginal.

B. PERFORMANCE OF SEMANTIC SEGMENTATION

Table 1 illustrates the pixel-wise segmentation results with
different input representations and image enhancement
methods. Corresponding segmentation results are shown
in Figure 5 and Figure 6. For the sugar beet dataset, trans-
formation of color space did not improve the segmentation
results, with RGB space yielding the highest MIoU value
of 72.01%. Compared with color images in RGB, YCrCb
and YCgCb spaces, the model trained with NIR images
yielded much better result, with MIoU value of 79.28%.
This is consistent with the fact shown in Figure 4 that NIR
images are with higher brightness and contrast, facilitating
the discrimination between sugar beet from weeds. With
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Algorithm 1 Auto Contrast

Input: RGB or NIR images with a dimension of rowscol
Output: Enhanced images
: [«~RxParameter1+4G=Parameter2+B=*Parameter3
: [«I/(max(I))
: I_sort<—sort(I)
I out<«I
: I_min<«I_sort(rowxcolxpercent)
: I_max <—I_sort(rowsxcolxpercent)
: for i<—1 to row do
for j«—1 to col do
if I(I, j) < [_min then
I_out(l, j) = I_min
11: else if I(I, j) < I_max then
12 Lout(l,j)=1
13: else
14 : I_out(, j) = (@, j)-I_min)*(1-I_min)/(I_max-
I_min)+I_min
15: end if
16 : end for
17 : end for
18 : k<« (I_out + delta)/(I+delta)
19 : I_out[][][1]«Rxk
20: I_out[][][2]<«Gx*k
21 : T_out[][][3]«-Bx*k

0O N kW=

— \O
S ...

respect to the performance of vegetation indices, different
indices and their combinations were compared. It should
be noted that since the deep network adopted in this work
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Deep Photo Enhancer-RGB Deep Photo Enhancer-NIR

—

- %
PS Auto Contrast-RGB

PS Auto Contrast-NIR

FIGURE 5. Visualization of pixel-wise segmentation results for sugar beet dataset. The caption of each sub-image, except
‘Color image’ and ‘Ground truth’, denotes the input for the deep network, with which the segmentation results were obtained,

corresponding to Table 1.

only allows three channels as input, all representations listed
in Table 1 are set as input with the format of (channell,
channel2, channel3). For grayscale images that only have
one channel like NIR image, the three input channels are
identical. From the MIoU values it can be observed that the
input representations including NIR information (No. 5, 7 and
9) provided much better performance than those without NIR
information. By contrast, other vegetation indices did not
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benefit the segmentation, with some even deteriorating the
performance. This again confirms the effectiveness of NIR
information for precise segmentation under weak lighting
condition.

As stated previously, three image enhancement meth-
ods were applied to improve the image quality. And the
enhanced images were then used for model training. After
enhancement, the brightness and contrast of the images were
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HE-RGB

PS Auto Contrast-RGB Deep Photo Enhancer-RGB

FIGURE 6. Visualization of pixel-wise segmentation results for oilseed
dataset. The caption of each sub-image, except ‘Color image’ and ‘Ground
truth’, denotes the input for the deep network, with which the
segmentation results were obtained, corresponding to Table 1.

improved significantly, and the performance of segmenta-
tion models was boosted correspondingly, which were all
superior than the result obtained by Milioto et al. [16]
using 14 channels as input. For enhanced RGB images,
comparison of MIoU values showed that the three image
enhancement methods performed similarly, with HE being
slightly inferior. For enhanced NIR images, model trained
with images enhanced by PS Auto Contrast yielded the best
results, followed by model trained with images enhanced
by Deep Photo Enhancer. It can be also seen that models
trained with enhanced images all yielded superior segmen-
tation results than those trained without enhancement. This
could be attributed to the low brightness and contrast of the
RGB images that would result in missing boundary infor-
mation of the objects. From Figure 5 it can be seen that the
segmented objects (sugar beet and weed) by models trained
with NIR information contain more abundant details along
the object boundaries. By contrast, the boundaries of objects
segmented by models trained without NIR information are
much smoother, which seems like they are processed by
dilation operation.

For our oilseed dataset captured under better lighting con-
dition, the difference between raw and enhanced RGB images
is visually marginal, and pixel-wise segmentation results
also demonstrate that image enhancement did not change
the segmentation performance (Figure 6). The deep network
is capable of learning effective features hidden deep into
the images with high brightness and contrast, regardless of
shadow regions. And the three image enhancement methods
did not cause any negative effect on segmentation. Comparing
the segmentation results of the two datasets shows that the
MIoU values of the oilseed dataset are all greater than those
of the sugar beet dataset. This may be mainly caused by some
mistaken labels in the sugar beet dataset (Figure 7). For those
mistaken labelled objects shown in Figure 7, the deep model
correctly segmented most of them. However, when calcu-
lating MIoU, they were not counted as true positives since
they were different from the labels in ground truth images
provided. In addition, the poor illumination in the sugar beet
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TABLE 1. Pixel-wise test performance.

INPUT MiloU
DATASET NO. ENHANCEMENT REPRESENTATION [%]
1 - RGB 72.01
2 - YCRCB 71.25
3 - YCGCB 68.63
4 - NIR 79.28
5 - (NDI, NIR, EXG) 78.87
6 - (NDL CIVE, EXG)  70.68
7 - (R, G, NIR) 78.82
8 - NDI 69.39
9 - NDVI 75.60
SUGAR 10 - CIVE 71.03
BEET 11 - ExG 69.35
12 - MEXG 71.38
13 - COM1 68.81
14 - COM2 69.13
15 HE RGB 84.53
16 HE NIR 85.80
17 PS-AC RGB 85.37
18 PS-AC NIR 87.13
19 DPE RGB 85.18
20 DPE NIR 86.64
21 MILIOTO’S CNN (14 CHANNELS) 80.80
22 - RGB 88.54
OILSEED 23 HE RGB 88.27
24 PS-AC RGB 88.62
25 DPE RGB 88.91

*HE: Histogram Equalization, PS-AC: PS Auto Contrast, DPE: Deep Photo
Enhancer.

TABLE 2. Pixel-wise test performance on augmented dataset.

DATASET No. ENHANCEMENT INPUT MioU [%]

Augmented sugar 1 -- RGB 75.82
beet dataset by 2 HE RGB 84.29
changing L 3 PS-AC RGB 85.36
component 4 DPE RGB 83.12
Augmented sugar > = RGB 76.30
beet dataset by 6 HE RGB 8293
: 7 PS-AC RGB 84.74
gamma correction 3 DPE RGB 82.05
. 9 - RGB 71.52

Augmented oil
daltleztgsete byegh(;nsgiii 10 HE RGB 87.23
L component 11 PS-AC RGB 86.08
12 DPE RGB 86.05
. 13 - RGB 73.76

Augmen il
e gidg‘;nfsf: 14 HE RGB  87.65
correction 15 PS-AC RGB 86.44
16 DPE RGB 85.78

*HE: Histogram Equalization, PS-AC: PS Auto Contrast, DPE: Deep
Photo Enhancer, CL: change L component of the image, GC: Gamma
correction.

dataset may also has some effect. The proposed method could
alleviate but not totally eliminate the negative effect of poor
illumination. This can be also confirmed by the semantic
segmentation results of the augmented datasets (Table 2 ),
from which we can see that after changing the brightness and
contrast of the images by altering L component and gamma
values, the MIoU values for segmentation without image
enhancement (No. 1, 5, 9 and 13) decreased significantly to
less than 77%, while after enhancement, the MIoU values all
increased to over 82%, comparable but slightly less than those
shown in Table 1 (No. 15-20, and 23-25).
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FIGURE 7. Examples of mistaken labels in ground truth images (white
circles) for sugar beet dataset.

Generally it can be concluded that for the sugar beet
dataset, image enhancement improved the image quality and
thus the robustness of segmentation models in terms of dif-
ferent lighting conditions, and for the oil seed dataset, image
enhancement did not degrade the performance of segmenta-
tion models. Another point is that the deep network applied
in this work does not need large amount of data for model
training thanks to the advantage of transfer learning. The
segmentation model for the oilseed dataset trained 50 images
and yielded MIoU values around 88%.

C. PERFORMANCE OF OBJECT-WISE SEGMENTATION

Table 3 illustrates the object-wise segmentation results with
different input representations and image enhancement meth-
ods. The connected areas bigger than 320 pixels in ground
truth and prediction images, which were treated as objects,
were counted and the mean accuracy of the connected areas
were calculated. For the sugar beet dataset, the mean accu-
racy of different input representations did not differ from
each other obviously, with the mean accuracy ranging from
93.55% to 96.06%. However, after image enhancement,
the mean accuracy all decreased, which was counter-intuitive
since image enhancement improved the performance of pixel-
wise segmentations. Analysis found that two reasons may
lead to the result. The first is that some objects were wrongly
labelled in the ground truth images, as shown in Figure 7.
The second is that the mean accuracy was calculated as the
ratio of true positives and all objects, which tended to be
larger for coarser segmentations, since the objects in the
coarser segmentations were larger than the objects in ground
truth images and covered the latter ones more easily. For
segmentations No. 4, 5,7 and 21 in Table 1 and Table 3 whose
pixel-wise accuracies were close, their object-wise accuracies
were also very close to each, indicating that the image seg-
mentation did not reduce the segmentation accuracy. This can
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TABLE 3. Object-wise test performance (HE: Histogram Equalization,
PS-AC: PS Auto Contrast, DPE: Deep Photo Enhancer)

Mean
Dataset No. Enhancement Input Representation Accuracy
[%]
1 RGB 96.06
2 YCrCb 95.31
3 YCgCb 94.36
4 NIR 95.04
5 (NDI, NIR, ExG) 95.31
6 (NDI, CIVE, ExG) 94.22
7 (R, G, NIR) 95.87
8 NDI 94.06
9 - NDVI 94.48
Sugar 10 - CIVE 94.86
beet 11 - ExG 93.55
12 - MExG 93.86
13 - COM1 94.12
14 - COM2 94.39
15 HE RGB 92.75
16 HE NIR 89.69
17 PS-AC RGB 94.29
18 PS-AC NIR 91.01
19 DPE RGB 93.50
20 DPE NIR 91.37
21 Milioto’s CNN (14 channels) 94.74
22 - RGB 95.76
Oilseed 23 HE RGB 94.80
24 PS-AC RGB 95.80
25 DPE RGB 96.12

*HE: Histogram Equalization, PS-AC: PS Auto Contrast, DPE: Deep
Photo Enhancer.

TABLE 4. Runtime of classifiers.

Inputs Preprocessing  Network Total
-- 60 ms
HE: 10 ms 70 ms
Sugar beet PS-AC: 6 ms 60 ms 66 ms
DPE: 12 ms 72 ms
-- 190 ms
. HE: 38 ms 228 ms
Oilseed  pg AC: 20 ms 190ms 510 ms
DPE: 44 ms 234 ms

be further confirmed by the object-wise segmentation results
for the oilseed dataset.

D. RUNTIME

The training time for 200 sugar beet images for 40k iterations
is about 8 hours, and 50 oilseed images for 40000 iterations
is about 3 hours, on a workstation with an Intel i7 CPU
(256 GB RAM) and NVIDIA GTX1080Ti GPU (88 GB GPU
memory). For implementing the classifier on our workstation,
the runtime is shown in Table 4. We can see that the total
inference time is less than 100 ms for a camera with a reso-
lution of 1296 x 966 pixel, which meets the requirement of
real-time processing. For a higher resolution image, it takes
longer time to process.

IV. CONCLUSION

In this work, an encoder-decoder deep learning network was
investigated for pixel-wise semantic segmentation of crop
and weed. Different input representations including different
color space transformations and color indices were compared
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to optimize the input of the network. Three image enhance-
ment methods were investigated to improve model robust-
ness against different lighting conditions. Results shows that
color space transformation and vegetation indices without
NIR information did not improve the segmentation results,
while inclusion of NIR information significantly improved
the segmentation accuracy, indicating the effectiveness of
NIR information for precise segmentation under weak light-
ing condition. Image enhancement improved the image qual-
ity and thus the robustness of segmentation models against
different lighting conditions. Another point is that the deep
network applied in this work does not need large amount of
data for model training. Future work will be focused on model
compression, through which the trained model can be applied
on mobile platforms with less computing capability.
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