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ABSTRACT Existing fingerprint-based indoor localization uses either fine-grained channel state informa-
tion (CSI) from the physical layer or coarse-grained received signal strength indicator (RSSI)measurements.
In this paper, we propose to use a mid-grained intermediate-level channel measurement — spatial beam
signal-to-noise ratios (SNRs) that are inherently available and defined in the IEEE 802.11ad/ay standards—
to construct the fingerprinting database. These intermediate channel measurements are further utilized by
a deep learning approach for multiple purposes: 1) location-only classification; 2) simultaneous location-
and-orientation classification; and 3) direct coordinate estimation. Furthermore, the effectiveness of the
framework is thoroughly validated by an in-house experimental platform consisting of 3 access points using
commercial-off-the-shelf millimeter-wave WiFi routers. The results show a 100% accuracy if the location is
only interested, about 99% for simultaneous location-and-orientations classification, and an averaged root
mean-square error (RMSE) of 11.1 cm and an average median error of 9.5 cm for direct coordinate estimate,
greater than 2-fold improvements over the RMSE of 28.7 cm and median error of 23.6 cm for RSSI-like
single SNR-based localization.

INDEX TERMS Indoor localization, WiFi, millimeter wave, fingerprinting, machine learning, deep neural
networks, location, orientation, coordinate estimation.

I. INTRODUCTION
Localization of people, objects and devices in indoor envi-
ronments has received tremendous attention over the past
few decades. Although the global positioning system (GPS)
is a prevailing technology for outdoor localization, its use
for indoor localization has been prevented due to its large
attenuation when penetrating buildings.

Radio frequency (RF) technologies, e.g., WiFi, infrared,
RF identification, ultra wide-band (UWB), Zigbee, Blue-
tooth, digital television, cellular and frequency-modulation
(FM) radio, have been proposed for indoor localization with
varying degree of implementation complexity and result-
ing accuracy. Most of them have been built upon informa-
tion/estimation either on i) time, e.g., time of arrival (ToA),
time of flight (ToF), time difference of arrival (TDoA),
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ii) angles, e.g., angles of arrival (AoA) and departure (AoD),
iii) phases, e.g., phase of arrival and phase difference, and
iv) power, e.g., received signal strength indicator (RSSI) or
signal-to-noise ratio (SNR) [1], [2].

Compared with technologies requiring dedicated hard-
ware, such as anchors in UWB localization systems,
indoor localization systems using existing infrastructure are
more cost-effective solutions. Given its ubiquitous presence,
WiFi stands out as a technology for infrastructure-free indoor
localization. Most WiFi-based indoor localization frame-
works use either fine-grained channel state information (CSI)
from the physical layer [3]–[12] or coarse-grained RSSImea-
surements from the MAC layer [13]–[29] for fingerprinting
or direct localization; see more detailed literature review in
the next section.

The conventional RSSImeasurement suffers from themea-
surement instability and coarse granularity of the channel
information, leading to limited accuracy for localization.
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The CSI measurement is more fine-grained but requires
access to physical-layer interfaces and high computational
power to process a large amount of sub-carrier data. These
limitations motivate us to use mid-grained intermediate chan-
nel measurements which are more informative (e.g., in the
spatial domain) than the RSSI measurement and easier to
access than the lower-level CSI measurement. Specifically,
this paper proposes to use a new type of intermediate channel
measurement — spatial beam SNRs — that are inherently
available (with zero overhead) for beam training for the
fifth-generation (5G) and IEEE 802.11ad/ay standards oper-
ating at millimeter-wave (mmWave) bands, to construct the
fingerprinting database.

Using commercial-off-the-shelf (COTS) 802.11ad routers,
we conduct proof-of-concept experiments to collect the
beam SNR measurements at several location-of-interests for
constructing a fingerprinting dataset at regular office envi-
ronments. For the in-house measurement dataset, both clas-
sification and coordinate estimation are considered using a
deep neural network architecture inspired by residual network
(ResNet) [30] for location/orientation identification and coor-
dinate estimation. To verify the advantage of proposed beam
SNRs fingerprinting and neural networks, the location accu-
racy and estimation error are analyzed through the compari-
son to various machine learning methods. Our contributions
and results are summarized as follows:
• We propose to fingerprint beam SNR measurements for
location and orientation for indoor localization as they
provide relatively rich information on spatial propaga-
tion paths of mmWave signals used during beam training
phase in IEEE 802.11ad standards, and are accessible
from COTS 802.11ad chipsets.

• We introduce a ResNet-inspired deep neural net-
work (DNN) by fusing feedforward fully-connected lay-
ers and shortcut connections for one-dimensional beam
SNR vectors from multiple access points (APs).

• We implement a mmWave fingerprint-based indoor
localization system consisting of 4 COTS 802.11
ad-compliant WiFi routers and collect real-world mea-
surements in an office space during regular business
hours.

• We conduct comprehensive performance analysis by
evaluating performance as a function of the number
of APs, training data size, sliding-window size, orien-
tation mismatch, and off-grid locations.

• High-accuracy localization performance is achieved
by using beam SNRs, which is greater than 2-fold
improvements over the conventional RSSI-like single
SNR-based fingerprinting localization.

It is noted that this paper takes one step further from our pre-
liminary work in [31] and [32] by introducing the customized
deep learning (DL) neural network and achieving significant
improvements, especially for the coordinate estimation.

It is worth noting that our work is inspired by earlier
efforts in [33]–[35] which enabled easy access to beam
SNR measurements from COTS 802.11ad WiFi routers.

However, rather than formulating it to a direct localization as
a constrained optimization and requiring dedicated chamber
measurements of beam patterns, we propose to direct fin-
gerprint beam SNR measurements as features for location
and orientation. This is motivated by the conventional wis-
dom that fingerprinting yields better performance than direct
localization by registering locations-of-interest directly with
WiFi propagation features without the need for an accurate
propagation model.

The remainder of the paper is organized as follows.
Section II reviews the existing literature of using the coarse-
grained RSSI measurements and fine-grained CSI measure-
ments for indoor localization. In Section III, we introduce the
principle of a multi-AP data collection system. Section IV
details the offline fingerprinting phase to build the labeled
training dataset and the deep learning-based online local-
ization phase. Section V describes the in-house experiment
setup, the classification performance, and the accuracy of
direct coordinate estimation. Finally, conclusions are drawn
in Section VI.

II. LITERATURE REVIEW
In the following, we provide a literature review on
WiFi-based indoor localizations using RSSI and CSI mea-
surements and related applications.

A. RSSI FINGERPRINTING
Early WiFi-based indoor localization systems used RSSI
measurements to estimate indoor location in a direct local-
ization fashion [13]–[16]. For fingerprinting-based methods,
RSSI was used directly as fingerprinting data in systems such
as Radar [17], Compass [18], and Horus [19] due to easy
access to 802.11ac- and 802.11n-compliant devices.

Classical machine learning methods such as the k-nearest
neighbor (kNN) and support vector machine (SVM) were
applied to RSSI fingerprintingmeasurements [17], [20]–[23].
In [19], a probabilistic Bayesian method was proposed
to measure the similarity between the test and finger-
printed RSSI measurements. Instead of using parametric
statistical distributions such as the Gaussian and lognormal
distributions, non-parametric kernel methods were applied
to the RSSI measurements to extract statistical distribu-
tion of RSSI measurements to infer the likelihood of test
measurements [24], [25]. Leveraging modern machine learn-
ing frameworks such as discriminant-adaptive neural net-
work [26], robust extreme learning machines [27], and
multi-layer neural networks [28], RSSI fingerprinting-based
indoor localization methods showed improved localization
performance over classical machine learning approaches.
More recently, [29] proposed to apply recurrent neural net-
works (RNNs) to RSSI measurements for utilizing trajectory
information.

Nevertheless, RSSI measurements have limitations such as
1) instability of RSSI measurements at a given location and
2) coarse-grained channel information.
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B. CSI FINGERPRINTING
At low frequency bands, CSI measurements can be accessed
from COTS 802.11n, 802.11ac and 802.11h devices. These
data are complex-valued channelmeasurements overmultiple
subcarriers at 2.4 and 5 GHz bands [3]–[8]. With richer
channel information, a larger amount of CSI measurements
from fingerprinted locations can be trained bymore advanced
deep learning architectures to learn the mapping from CSI
to locations. For instance, ConFi [9] used convolutional neu-
ral networks (CNNs) to train CSI measurements from three
antennas, for classifying the location, and estimating location
coordinates with weights equal to the classified category
posteriors. [10] fingerprinted full CSI over multiple time
instants, calibrated their phases and fitted one autoencoder
for one location. An unknown location was estimated as
centroid of fingerprinted locations with weights computed
from autoencoders’ reconstruction errors. Besides the above
classification-first localization methods, CSI measurements
were trained directly to provide the coordinate estimation by
formulating a regression problem in [11], [12].

At mmWave bands (e..g, 28-GHz for 5G communication
and 60 GHz for IEEE 802.11ad [36] and 802.15.3c [37]),
the use of CSI measurements for fingerprinting was much
less reported in the literature due to the cost of a dedi-
cated mmWave platform or no access to CSI measurements
from COTS mmWave WiFi devices. RSSI and AoA from
multiple APs were fingerprinted and then used to estimate
location using the weighted nearest neighbor algorithm [38].
A two-dimensional power delay profile (PDP) over multiple
beampatterns was used as fingerprints at 28 GHz band for
outdoor localization [39]. It exploited the fact that clients’
locations can be registered by multipath delays due to sur-
rounding obstructions (e.g., buildings and trees). To obtain
high-resolution PDP, it assumed that base stations can trans-
mit short pulses with a sequence of directive beamforming
patterns and a high sample rate was required at the client to
separate closely-spaced delays. However, this concept was
verified only using ray-tracing simulated datasets.

C. RELATED LITERATURE
In the following, we provide a brief overview of direct local-
ization and related sensing applications.

1) MMWAVE DIRECT LOCALIZATION
With no requirements of offline fingerprinting, direct
localization methods using mmWave channel features were
proposed. Examples include a three-stage location and ori-
entation estimation method in [40], direct localization for
massive multi-input multi-output (MIMO) based on AoA
and ToA in [41], and three-dimensional (3D) localization
using a large-scale mmWave uniform cylindrical array [42].
Similarly, [43]–[45] estimated location from knowledge
of mmWave channel in the angular domain with one or
moreAPs. Nonetheless, hardware constrains limit the number
of RF chains that can be employed in ammWave device due to

cost and power consumption, rendering the above referenced
direct localization methods impractical.

2) HUMAN SENSING
Beyond indoor localization, WiFi-band and mmWave
frequency-modulated continuous-wave (FMCW) signals
from dedicated devices and commercial sensing evaluation
boards (e.g., TI AWR/IWR chipsets) were utilized to take
advantage of their high-resolution range and angle informa-
tion to track persons behind the wall, determine personal
identity, estimate pose and gestures, and track 2D/3D skeleton
movements [46]–[51].

With success of mmWave FMCW signals for human
sensing, commercial WiFi signals, especially CSI measure-
ments from commercial 802.11n chipsets at low frequency
(2.4 GHz) bands, were trained via supervised learning or
cross-modal deep learning for human sensing tasks such as
device-free localization, activity recognition, fall detection,
personal identification, emotion sensing, and skeleton track-
ing [52]–[62]. Most recently, [60] used annotations from
camera images to train fine-grained CSI measurements over
30 subcarriers and 5 frames from 3 transmitting and 3 receiv-
ing antennas. The cross-modal deep learning approach
showed the great potential of commercial WiFi signals for
sensing applications. Nevertheless, explicit utilization of
beam features from commercial mmWave communication
(5G and WiFi) signals was not yet reported in the literature.

III. DATA COLLECTION SYSTEM
A. HARDWARE
We use TP-Link Talon AD7200 routers to build our
in-house data collection system. Complying with IEEE
802.11ad standards, this router implements Qualcomm
QCA9500 transceiver that supports a single stream commu-
nication in 60 GHz range using analog beamforming over
32-element planar array, as shown in Fig. 1(a).

To search for desired directions, a series of pre-defined
beampatterns or sectors are used by APs to send bea-
con messages to potential clients which are in a lis-
tening mode with a quasi-omnidirectional beampattern.
These beampatterns were measured in a chamber at the
TU Darmstadt [33], [34] and three selected beampatterns
(two for transmitting and one for receiving) are shown
in Fig. 1(b). Then, clients send a series of beampatterns
while the APs are in a listening mode. After beam training,
the link can be established by choosing the pair of beam-
patterns between the AP and clients. Such beam training
is periodically repeated and the beam sectors are updated
to adapt to the environmental changes. It is noted that the
resulting beampatterns depart from the theoretical ones and
exhibit fairly irregular shapes due to hardware imperfections
and housing at 60 GHz.

B. BEAM SNR
When directional beampatterns are used, beam SNRs are
collected by 802.11ad devices as a measure of beam quality.
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FIGURE 1. (a) Commercial off-the-shelf 802.11ad device: Talon
AD7200 router; (b) Two directional transmitting beampatterns and a
quasi-omnidirectional receiving beampattern used for beam training are
shown. The beampatterns were measured in a chamber at the TU
Darmstadt [33].

FIGURE 2. Illustration of beam SNR measurements as a function of
transmitting and receiving beampatterns.

For a given pair of transmitting and receiving beampatterns,
corresponding beam SNR can be defined as

hm = BeamSNRm =
1
σ 2

I∑
i=1

γm(θi)ζm(ψi)Pi, (1)

where m is the index of beampattern, I is the total number
of paths, θi and ψi are the transmitting and receiving azimuth
angles for the ith path, respectively, Pi is the signal power
at the ith path, γm(θi) and ζm(ψi) are the transmitting and
receiving beampattern gains at the ith path for the mth beam-
pattern, respectively, and σ 2 is the noise variance. Fig. 2
shows an example of I = 3 paths between the transmitting
side that probes the spatial domain using the (m = 24)th
directional beampattern and the receiving side which is in a
listening mode. For Talon AD7200 routers, the beam SNR
measurements are further quantized in a stepsize of 0.25 dB.
Overall, from one beam training, one AP can collectM beam
SNRs forM transmitting beampatterns.

C. CONFIGURATION
To access the raw beam SNR measurements at Talon
AD7200 routers, we followed the work in [33]–[35] and

FIGURE 3. The data collection system uses multiple commercial 802.11ad
devices as APs and one 802.11ad device as client for fingerprinting. The
client sequentially performs beam training over multiple APs. During the
beam training phase, beam SNR measurements are collected from each
AP to a workstation via Ethernet cables.

FIGURE 4. Beam SNR measurements when the client is located at
(a) three locations with the same orientations; and (b) the same location
but with different orientations.

used the open-source software package in [63]. Particularly,
we used the Nexmon firmware patching framework [64],
which enables the development of binary firmware extensions
in C. By matching the patterns of IEEE 802.11ad beam train-
ing frames with the memory inside the chip, one can identify
parts of the firmware handling the beam training frames
and extract beam SNR measurements from these memory
addresses.

The data collection system consists of multiple Talon
AD7200 routers, three serving as APs and one as the client,
in a configuration shown in Fig. 3. The client sequentially
performs beam training over multiple APs. During the beam
training phase, beam SNR measurements are collected from
each AP to a workstation via Ethernet cables.

D. DATA VISUALIZATION
Fig. 4 shows collected beam SNRs over the time (packet
index) and spatial beam (sector index) domains from one
AP to a client. The top row shows the beam SNR mea-
surements when the client is located at three different loca-
tions (i.e., Locations 1, 2, 3) with the same orientation
(Orientation 90◦), while the bottom row shows the beam
SNR measurements when the client is located at the same
location (Location 3) but with different orientations (i.e., Ori-
entations 0◦, 90◦, 180◦). Overall, beam SNR measurements
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are stable over time (packet index) with only a few fluctu-
ations, possibly due to people moving. On the other hand,
the measurements are sensitive to the client’s location and
orientation as beam SNRs change more rapidly over sector
index.

IV. INDOOR LOCALIZATION BY mmWave BEAM
FINGERPRINTING
In the following, we utilize the beam SNRs to build fin-
gerprinting dataset at reference locations and orientations,
and then introduce a ResNet-based deep learning approach
for classification and coordinate estimation. Compared with
our earlier classical machine learning approaches such as the
kNN, SVM and Gaussian process (GP) [32], the deep learn-
ing approach shows significant improvements on localization
errors, as verified in Section. V.

A. OFFLINE TRAINING DATASET
To construct the fingerprinting dataset, we follow the standard
procedure by stacking all SNR measurements from all beam
sectors as a fingerprinting vector, e.g., h = [h1, h2, . . . , hM ]T

where M is the number of beampatterns used for beam
training and [·]T denoting the transpose. When multiple APs
are used, we combine beam SNR measurements from each
AP to form one long fingerprinting snapshot, i.e., h̃ =
[hT1 ,h

T
2 , . . . ,h

T
P ]
T
∈ RMP×1, where P is the number of APs.

For a given location and orientation, R fingerprinting snap-
shots, h̃1(l, o), . . . , h̃R(l, o), are collected to construct the
offline training dataset, where l and o are the indices for
the location and orientation, respectively. By collecting many
realizations of beam SNR measurements at multiple APs
over L locations-of-interest and O orientations, we will have
LO sets of MP× R beam SNR measurements in the training
dataset.

Albeit simple, the offline fingerprinting phase is time- and
manpower-consuming. This issue becomes worse when one
sets the resolution of fingerprinting positions and orientations
to a finer granularity. In our experiment, it is not uncommon
to collect the fingerprinting datasets in days. To alleviate this
issue, one can borrow the concept of crowdsourcing [65], [66]
which exploits pervasive (mmWave) WiFi devices to collect
training samples and labels with unconscious cooperation
among volunteering users [67], and adaptive sampling which
exploits adaptivity to identify highly informative fingerprint-
ing positions and, hence, reduces the amount of labeled
samples.

B. ONLINE LOCALIZATION
When new fingerprinting measurements from an unknown
location are available, the problem of interest is to identify
its location and/or orientation and estimate its coordinate.
To this end, we propose a deep learning architecture by
fusing feedforward fully-connected (FC) layers and shortcut
connections (SC) of the ResNet for both classification and
coordinate estimation.

FIGURE 5. Proposed deep learning architecture by fusing feedforward
fully-connected (FC) layers and shortcut connections (SC) of ResNet along
with batch normalization (BN) and dropout regularization operations for
multi-purpose indoor localization: 1) location-only classification;
2) simultaneous location-and-orientation classification; and 3) direct
coordinate estimation.

1) PROPOSED NETWORK ARCHITECTURE
The proposed deep neural network architecture for indoor
localization is shown in Fig. 5. It first feeds beam SNRs from
multiple APs to an input layer with a dimension of Nw, where
Nw refers to the layer width. In the case of three APs, a total
of 108 beam SNRs by cascading measurements from APs is
used as an input. The input layer is implemented by using a
fully-connected linear layer, i.e., y0 =Winputh̃+ binput, for a
weight ofWinput ∈ RNw×108 and a bias of binput ∈ RNw×1.
Then, the output y0 is fed into Nd consecutive residual

blocks, where a shortcut connection is used to jump from the
input to the output of each residual block in order to learn
residual gradient for improved training stability,

y` = f`(y`−1, θ`)+ y`−1, ` = 1, 2, . . . ,Nd , (2)

where f` is the nonlinear mapping with weights θ` to be
learned, y` is the output of the `th residual block and input
for the next residual block, and Nd is the number of residual
blocks.
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For the residual block architecture, the form of f` can be
flexible in terms of the number of hidden layers, the use of
bottleneck layers for dimension reduction and computational
reduction, activation functions, and regularization formats.
In Fig. 5, we consider the batch normalization (BN) and
rectified linear unit (ReLU) activation function followed by
hidden layers implemented by two fully-connected layers
of the same dimension of Nw. The use of the same dimen-
sion through the residual block allows an identity-mapping
shortcut connection which introduces neither additional
parameters nor computation complexity, but allows for
more efficient gradient backpropagation to mitigate gradi-
ent exploding or vanishing. More specifically, the output of
the previous residual block y`−1 first goes through a batch
normalization layer and a ReLU activation layer. Then a
fully-connected layer of Nw × Nw is used for linear combi-
nation. This process is repeated again to generate the output
of the nonlinear mapping f`(y`−1, θ`) which is added to the
input y`−1 which passes through the shortcut connection path.
In other words, for the particular architecture, the weights θ`
in (2) includes the linear weights of two hidden layers and
associated bias vectors. Finally, dropout operations are used
to silence a proportion of nodes of hidden layers to prevent
overfitting.

It is easy to see that the proposed deep neural net-
work is inspired by the ResNet [30] which stacks
two-dimensional convolution layers and uses shortcut con-
nections for two-dimensional image recognition. By com-
paring the original ResNet with the proposed architecture,
one can note a number of subtle differences here: First,
we replace the two-dimensional convolution layers with sim-
ple fully-connected layers since we deal with one-dimension
vectors of beam SNRs and linear combinations of input are
sufficient to capture the interaction among them. Second,
as a consequence of the fully-connected layers, the shortcut
connection is operated over the same dimension (i.e., Nw)
as opposed to the skip links in the original ResNet have to
bridge over different dimensions by zero-padding identity
mapping or projection if a stride of 2 or larger is used. Third,
with simple fully-connect layers, dropout operations aremore
meaningful to randomly silence nodes in hidden layers and
prevent overfitting.

Finally, for the output layer, we use a fully-connected layer
to generate an output vector u = WoutputyNd + boutput with
a dimension of N , where N is determined by the objective:
1) N = 7 for the location-only classification; 2) N = 28
for the simultaneous location-and-orientation classification;
and 3) N = 2 for the two-dimensional coordinate estimation.
In the following, we further elaborate the three cases.

2) CLASSIFICATION: LOCATION-ONLY AND SIMULTANEOUS
LOCATION-AND-ORIENTATION
With the above network architecture, one can attach a clas-
sification output layer to assign new beam SNRs into one of
fingerprinted locations and orientations. This is achieved by
formulating it as a classification problem. If only the location

is interested, the dimension of the last fully-connected output
layer is N = 7 for our experiments, while N = 28 if
7 locations and 4 orientations are simultaneously identified.
For a training input with a label, the corresponding output of
the last layer u is first normalized with the softmax operation
as

sn = exp(un)
/ N∑
i=1

exp(ui), n ∈ {1, 2, . . . ,N }. (3)

where sn is the nth element of the normalized output un that
is referred to as the location or location-orientation score
vector in Fig. 5. Then, the cross-entropy loss function is
computed over the score vector s = [s1, s2, . . . , sN ] and the
corresponding one-hot label vector c = [c1, c2, . . . , cN ] as

Lclassification = −
∑
n

cn log(sn). (4)

The average probability of successful classification
(or accuracy) is calculated by the ratio between the number
of correct estimations and total samples, i.e., Pr(argmaxi si =
argmaxi ci) where Pr(·) denotes the sample probability that
the argument event is true.

3) REGRESSION: COORDINATE ESTIMATION
One can also estimate the coordinates of new measurements
by formulating it as a regression problem. For the finger-
printing training dataset, the label is changed from the pair
of location and orientation to the coordinate values of the
fingerprinted location. Therefore, we set N = 2 in the
output layer u for the two coordinate values in the Cartesian
coordinate system. Then, the mean-square error (MSE) of the
coordinate estimation is used as a loss function:

Lregression = |x − u1|2 + |y− u2|2, (5)

where (x, y) is the Cartesian coordinate of the true fingerprint-
ing location for the training sample.

C. IMPLEMENTATION
The proposed neural network is implemented in Chainer 7
with python 3.7. A MacBook Pro 2016 with 2.9 GHz
i7-6920HQ processor and 16 GB memory is used for data
analysis. For optimization, adaptive momentum (Adam)
stochastic gradient descent method is used with a learning
rate of 0.001 and a mini-batch size of 100. The maximum
number of epochs is 500 while early stopping with a patience
of 10 is used. Training the DNN architecture takes about
1.03 seconds per epoch on the laptop computer.

D. COMPUTATIONAL COMPLEXITY
Now we analyze the computational complexity of the pro-
posed neural network during the test phase. As seen from
Fig. 5, the main building block is the FC layer. For each
FC layer with an input dimension of Nin and an output
dimension of Nout, the forward procedure mainly consists
of two components: the matrix multiplication between the
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FIGURE 6. Experimental setup with 3 APs (denoted by triangles) in
7 locations-of-interest (denoted by crosses) and 4 orientations in an
office environment during regular hours.

input vector and the Nout × Nin weight matrix and the addi-
tion of the bias vector of Nout × 1, which gives a total
of about 2NinNout floating-point operations (FLOPs). For
each residual block, it consists of two FC layers, ReLU
layers and a skip connection. In general, the ReLU activation
layer can be implemented with bit-wise AND operations
per dimension, while the skip connection introduces single
addition per dimension. Therefore, each residual block has
about (4Nw + 3)Nw FLOPs. Adding the FC-based input and
output layers, the overall computational complexity is about
Nd (4Nw + 3)Nw + 2 MPNw + 2 NNw FLOPs, where MP is
the input dimension, and Nd and Nw denote the number of
residual blocks and the number of nodes per hidden layer,
respectively. In the case of simultaneous location and orien-
tation classification of N = 28 with Nw = 100, we have
about 67.5 thousand FLOPs for Nd = 1 residual block and,
respectively, 148.1 thousand FLOPs for Nd = 3 residual
blocks.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
The data collection system is deployed in an office envi-
ronment during office hours, as shown in Fig. 6. There are
6 offices on both sides and 8 cubicles in the middle. All
6 offices and 4 cubicles on the right are occupied by staff
members. Furniture including chairs, tables, and desktops are
present in the cubicles.

These 3 APs, denoted as red triangles, are fixed in the aisle
with fixed orientations. Specifically, AP1, AP2 andAP3 point
to 90◦, 180◦ and 0◦, respectively, where the orientation refer-
ence is marked out in Fig. 6. To collect fingerprinting training
data, we location a client at one of 7 locations-of-interest
marked by crosses in Fig. 6. At each of the 7 locations,
we collect beam SNR measurements by rotating the client
to 4 orientations at [0◦, 90◦, 180◦, 270◦]. Overall, the offline
training dataset consists of beam SNR measurements from
L = 7 locations and O = 4 orientations.1 The number of

1The in-house mmWave Beam SNR Fingerprinting (mmBSF) dataset is
released at https://www.merl.com/demos/mmBSF.

TABLE 1. Number of training (test) samples for each location and
orientation.

TABLE 2. Average probability of successful classification for location and
orientation identification with different methods.

labeled training data for each location and orientation is listed
in Table 1.

B. PERFORMANCE OF CLASSIFICATION
We first present our results on the location and ori-
entation classification for our mmWave beam SNR
fingerprinting-based localization system. For this pur-
pose, we use the confusion matrix C as a performance
visualization:

C(i, j) =
1
Tj

Tj∑
t=1

1[l̂(h̃t (j)) = i], (6)

where i and j are indices, respectively, for the estimated and
true locations/orientations, and Tj is the number of sample
in the test dataset for the index j. In addition, l̂(h̃t (j)) is the
location/orientation estimate by using the tth sample batch
from the test data collected at jth location/orientation.
We first evaluate the localization performance of the pro-

posed DL approach with Nw = 100 and Nd = 1, i.e., one
residual block, for both location and orientation determina-
tion. Fig. 7(a) shows the confusion matrix using the proposed
approach using the beam SNRmeasurements. The indices are
arranged as ` = (l − 1)× 4+ (o− 1) where l ∈ {1, . . . , 7} is
the location index and o ∈ {1, . . . , 4} is the orientation index.
It is seen from Fig. 7 that the proposed DL approach is able to
localize both location and orientation with high probability.
The probability of successful classification is 98.96% on
average. The averaged F1 score (harmonic mean of precision
and recall) is also present in the figure captions for reference.
When only the location is interested, corresponding confu-
sion matrix is shown in Fig. 8(a). The results show that the
DL approach with the beam SNRs can achieve an accuracy
of 100%.
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FIGURE 7. Confusion matrices for simultaneous location-and-orientation
classification using the proposed DL approach.

FIGURE 8. Confusion matrices for location-only classification using the
proposed DL approach.

1) BEAM SNRS VERSUS CONVENTIONAL SNR
To illustrate advantages using beam SNRs, we compare
the performance with the traditional fingerprinting-based
approach with only one SNR measurement (or RSSI) avail-
able at each AP. For this purpose, we extract only one
SNR measurement (from the highest average SNR) from
all M = 36 beam SNRs at each AP and, therefore, the fin-
gerprinting training data are R realizations of the RSSI-like
single SNR values at each location and orientation. We apply
the DL approach with the same architecture except that the
input dimension is now 3. Corresponding confusion matri-
ces are shown in Fig. 7(b) for the simultaneous location-
and-orientation classification and Fig. 8(b) for location-only
classification. This comparison clearly shows significant per-
formance gains from conventional RSSI-like measurements
to beam SNRs that carry richer spatial channel information.

2) IMPACT OF CLASSIFICATION METHODS
Next, we confirm that the proposed DL approach yields
better performance over several classical machine learn-
ing methods, such as linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), SVM, decision tree
(DT), and kNN. The results are shown in Table 5. Overall,
we have the following observations:

• Classification using beam SNRs significantly improves
the accuracy compared to the cases using single SNR.

TABLE 3. Average probability of successful classification as a function of
training size R for the proposed DL method.

• With beam SNRs, all classification methods except the
DT show excellent performance with a nearly 100%
accuracy.

• Our DL method consistently outperforms other consid-
ered machine learning methods.

We further remark a comparison in terms of computa-
tional complexity between the DL method and the simple
kNN method. As analyzed in Section IV-D, once the train-
ing is done, the computation complexity of the proposed
DL method depends on the dimension but not on the number
of training samples. In contrast, the complexity of the kNN
is a function of the number of labeled training samples in
the fingerprinting dataset (i.e., R · L · O), the dimension of
fingerprinting samples (i.e., MP), and the value of k . In the
most naïve implementation, e.g., calculating each Euclidean
distance and identifying the labeled samples closest to the test
sample, the kNN method has a computational complexity of
O(RLO(k + MP)) although a further complexity reduction
can be achieved [68] by using partial distance, editing, and
prototype pruning. In our case, the total number of training
samples is RLO = 12,007 in Table 1, and the dimension of
the sample is MP = 108. Hence, the DNN method can be
simpler than the naïve kNN implementation.
In the following, we focus on evaluating its performance as

a function of training data size, sliding-window size, the num-
ber of APs, and orientation mismatch, as the DL method
achieves the best performance.

3) IMPACT OF TRAINING DATA SIZE
In the above performance evaluations, all training data listed
in Table 1 were used for training the proposed neural network.
To evaluate the impact of the number of training data on the
localization performance, we truncate the original training
dataset to smaller datasets with R = {10, 20, 50, 100} beam
SNR snapshots in each location and orientation. The average
probabilities of successful classification are listed in Table 3.
It is not surprising to see that the performance degrades as
the number of training data reduces. Nevertheless, even in the
case of only R = 10 fingerprinting beam SNRs, the average
success probabilities are greater than 94% for the simulta-
neous location-and-orientation classification and maintain a
nearly 100% for the location-only classification.

4) IMPACT OF WINDOW SIZE
Then we evaluate the localization performance as a func-
tion of window size Q, where Q denotes the number of
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TABLE 4. Average probability of successful classification as a function of
window size Q.

FIGURE 9. Impact of the number of APs on the performance of the
simultaneous location-and-orientation classification accuracy.

consecutive packets used for the location and orientation clas-
sification. For each location and orientation, the beam SNRs
fingerprint is now expanded to a Q × 108 matrix. To keep
the dimensionality constant regardless of the window size Q,
we employed principal component analysis (PCA) before the
feed to the proposed neural network. As listed in Table 4,
the results reveal that the window size Q has a minor effect
on the classification performance for both location-only and
simultaneous location-and-orientation classification. In turn,
this further confirms that the spatial feature (beam SNRs) is
more dominant than the temporal feature (snapshots) in the
fingerprinting training dataset.

5) IMPACT OF APS
We now evaluate the impact of classification performance by
changing the combinations of multiple APs. When only one
AP is available, the result of confusion matrices is shown
in the top row of Fig. 9. It shows that each AP has its own
ambiguity region in terms of locations and orientations. For
example, AP1 is hard to distinguish some orientations in
Locations 2, 4 and 7, i.e., the 7th, 16th, 26th and 28th diagonal
elements are missing, while AP2 shows several misclassi-
fications at Location 7, i.e., the 25th diagonal element is
missing. The average probabilities of successful classifica-
tion are shown in Table 5, where the success probabilities of
simultaneous location-and-orientation classification can still
reach at 84.3%, 90.9% and 80.2% for AP1, AP2 and AP3,
respectively.

TABLE 5. Average probability of successful localization for various
combinations of APs.

FIGURE 10. Histogram of predicted orientations from simultaneous
location-and-orientation classification on two test datasets with a 45◦
orientation mismatch at Location 5. The predicted location from the
proposed DL approach is always Location 5 with a 100% accuracy.

With one more AP available (i.e., 2 APs), the ambiguity
region is significantly reduced as seen from the bottom row
of Fig. 9. This is particularly true for the combination of
AP1 and AP2, where the average probability of successful
classification jumps to 94.9%. When all three APs are avail-
able, the accuracy improves to 98.9% for the simultaneous
location-and-orientation classification.

6) SENSITIVITY TO ORIENTATION MISMATCH
Finally, we evaluate the sensitivity of the classification perfor-
mance with respect to the orientation mismatch. To this end,
we collect another independent test dataset at Location 5 with
two additional orientations at 225◦ and 315◦ with a 45◦ ori-
entation mismatch to their nearest fingerprinted orientations
in the training dataset.

For both mismatch cases, there is no compromise on the
performance for the location classification. In other words,
it maintains 100% accuracy to classify the location even if
there is an orientation mismatch between the training and
test datasets. Taking closer look at the test case of orienta-
tion 225◦ in Fig. 10(a), 88.0% out of the test samples are
classified to the orientation 270◦ and the remaining 12.0% to
the orientation 180◦, two closest orientations included in the
training dataset. Similarly, for the test case of orientation 315◦

at Location 5, the histogram of orientation classification
Fig. 10(b) shows that all test samples are classified to 270◦,
again, one of two closest orientations in the training dataset.
Overall, the results of Fig. 10 imply that 4 orientations for
constructing the training fingerprint data may be sufficient
to localize the client location even for the case when the true
orientation of the test data is not included in the 4 orientations.

In a short summary, the above results on the classification
performance confirm that the beam SNR measurements are
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TABLE 6. Configuration of APs, on-grid training and testing locations, and
off-grid testing locations.

able to register distinctive fingerprinting signatures for local-
ization and orientation. Both classical classification (except
the DT) and DL methods are able to achieve a nearly 100%
accuracy. In terms of computational complexity, the DL
method can be faster than the naïve kNN implementation for
testing, although it takes additional training time.

C. PERFORMANCE OF COORDINATE ESTIMATION
In this section, we directly predict the 2D coordinate of the
client location by formulating it as a regression problem.
Particularly, we consider a more practical scenario where an
independent test dataset at 4 off-grid locations (denoted as
A, B, C, and D in Figs. 14) was collected on a different date
(four months later than the date of training data collection)
during regular business hours. As shown in Table 6, these
off-grid locations are not the same as the 7 fingerprinted loca-
tions (denoted as on-grid locations with labels 1, 2, · · · , 7
in Fig. 14) in the training dataset and the distance from
each off-grid test location to its closest on-grid fingerprinted
location is about the same and less than 70 cm to test the
capability of sub-meter localization accuracy.

1) LEARNING TRAJECTORY
To predict the 2D coordinate, we attach an output layer of
dimension 2 to the proposed neural network architecture of
Nw = 100 and Nd = 1 in Fig. 5 with the MSE loss func-
tion. To achieve better generalizability for off-grid coordinate
estimation, the dropout rate is increased from 0.1 to 0.8, and
reduced the learning rate of Adam to α = 0.0001.We applied
a data augmentation technique based on a pairwise super-
position with Gaussian noise injection to both beam SNR
values and fingerprinted location coordinates with variances
of 0.5 dB2 and 0.02 m2, respectively.

Fig. 11 presents the MSE trajectories of 2D coordinate
estimation as a function of epochs for both training and
testing. One can see that the training MSE (blue curves) at
7 on-grid locations rapidly decreases from 1m2 to 0.001m2,
while the testing MSE (red curves) at the same 7 on-grid
locations but in a different date exhibits a slower convergence
and finally reaches to a level slightly below 0.01m2 over
250 epochs. More importantly, the proposed DL approach
can achieve the testing MSE at 4 off-grid locations at a level
of 0.01m2. It is worth noting that the testing MSE at the
4 off-grid locations is smaller than that at the 7 on-grid

FIGURE 11. Learning trajectory in localization MSEs of the proposed DL
method over epochs.

FIGURE 12. CDF curves of localization error for the proposed DL
approach using beam SNRs and RSSI-like single SNR for 7 on-grid and 4
off-grid testing locations. The results were averaged over 20 time with
different initializations.

FIGURE 13. Location-wise RMSEs of coordinate estimation for the
proposed DL approach using beam SNRs and RSSI-like single SNR
at 7 on-grid and 4 off-grid testing locations.

locations because the average distance among the off-grid
locations is smaller than that of the fingerprinting locations
and all the off-grid locations are inside the regions encom-
passed by the 7 on-grid locations.
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FIGURE 14. Coordinate estimates at 4 off-grid testing locations (referred to as A,B,C,D in black squares).

2) AVERAGE LOCALIZATION PERFORMANCE
To evaluate the average localization performance, we trained
the proposed neural network for 20 times starting with
different initialization setups. Fig. 12 shows the averaged
cumulative distribution function (CDF) of coordinate esti-
mation error over the 4 off-grid locations. Compared with
the RSSI-like single SNR fingerprinting, the proposed beam
SNR fingerprinting along with the deep learning approach
achieves significant improvements. Specifically, the aver-
aged median root mean-square error (RMSE) is improved
by an order of magnitude from 34.6 cm to 3.6 cm for the
7 on-grid testing locations. For the 4 off-grid testing locations,
the averaged median RMSE of 9.5 cm by using the beam
SNR is considerably better than that by using the RSSI-like
single SNR with a median RMSE of 23.6 cm. The proposed
DL-based approach also outperforms the classical machine
learning method (i.e., GP) with a median RMSE of about
18 cm as reported in [32].

3) LOCATION-WISE LOCALIZATION PERFORMANCE
Fig. 13 shows location-wise RMSE at the 7 on-grid loca-
tions and 4 off-grid locations. For the conventional RSSI-like
single SNR fingerprinting at on-grid locations, the proposed
DL approach achieves an RMSE of about 45.7 cm, where the
best performance is obtained at Location 4 which is closest to
AP3, whereas theworst performance is obtained at Location 6
possibly because it is relatively far from any APs. By using
the beam SNR, one can achieve an RMSE of 3.6 cm, which is
nearly 10-fold better than the single SNR-based fingerprint-
ing. It is noted that the RMSE at Location 7 was exceptionally
higher than those at the other 6 locations. This may be due
to a few scattering paths for Location 7 to exploit spatial
beam patterns as it is at the line-of-sight propagation between
AP1 and AP2 and on the edge of fingerprinted coverage.

For the 4 off-grid testing locations, the single SNR fin-
gerprinting shows an RMSE of 28.7 cm, while the beam

SNR fingerprinting gives an RMSE of 11.1 cm. The sample
distributions of coordinate estimates at the off-grid loca-
tions are shown in Fig. 14. It is clear to see that the single
SNR fingerprinting-based coordinate estimates are scattered
around the middle regions of fingerprinted locations and the
beam SNR-based counterpart shows well-clustered coordi-
nate estimates around corresponding true locations.

4) IMPACT OF NEURAL NETWORK ARCHITECTURE
Finally, we show the impact of the neural network architec-
ture in terms of the number of neuron nodes Nw of the hidden
layers and the network depth Nd . Fig. 15 shows the nominal,
best and worst RMSEs from 20 independently trained neural
networks as a function of Nw when Nd = 1, i.e., there is
only one residual block and three hidden layers (one input
layer and two FC layers in the residual block) in total. It is
seen that the RMSEs rapidly reduce when the number of node
increases from Nw = 25 to Nw = 100 and then increase again
when Nw > 100. When Nw = 100, the nominal RMSE is
about 10 cm with the best performance can break into the
centimeter-level accuracy, i.e., 8.6 cm.

Fig. 16 shows the nominal, best and worst RMSEs as a
function of the network depth Nd when Nw = 100, i.e., the
number of nodes is fixed to 100 for each layer. Given the
structure of the residual block in Fig. 5, the total number of
hidden layers is given by 2Nd +1 as each residual block con-
tains two hidden layers plus the input layer. We also include
the performance of a plain multilayer perceptron (MLP) that
is identical to the proposed architecture in Fig. 5 but without
shortcut connections. First, it can be verified from Fig. 16
that deeper networks with shortcut connections give slightly
improved performance in terms of the nominal MSE. Second,
concerning the best RMSE, the proposed architecture with at
least one residual block, i.e., at least three hidden layers, can
give a centimeter-level localization accuracy. Finally, the pro-
posed architecture with shortcut connections canmaintain the
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FIGURE 15. Nominal, worst and best RMSEs of coordinate estimation as a
function of the number of nodes Nw when Nd = 1.

FIGURE 16. Nominal, worst and best RMSEs of coordinate estimation as a
function of the network depth Nd when Nw = 100. The total number of
hidden layers is given by 2Nd + 1.

robustness against the network depth, while the RMSE of the
plain MLP quickly explodes over the network depth.

In a short summary, it is noticeable that the proposed DL
approach can achieve higher accuracy than the conventional
machine learning methods for the direct coordinate estima-
tion. For instance, the median RMSE is improved from 18 cm
of the GPmethod to 9.5 cm of the proposedDL approach. The
use of the beam SNR measurement over the RSSI-like sin-
gle SNR measurement is also justified with about 2-fold
improvements on the median RMSE.

VI. CONCLUSION
This paper has demonstrated that, by fingerprinting
real-world beam SNRs from multiple COTS mmWave WiFi
devices in our office environment, the proposed deep learning
approach can identify the location and orientation of a client
with high accuracy (100% accuracy if the location is only
interested and about 99% for simultaneous location-and-
orientations classification) and directly estimate the coor-
dinate of a client with localization performance of 9.5 cm

and 11.1 cm in term of the median and mean RMSEs,
respectively. The localization performance was further eval-
uated as a function of various factors such as training data
size, window size, the number of access points, orientation
mismatch, and network width and depth.
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