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ABSTRACT During recent years, maglev transportation has made great progress, and as a result, many
intelligent levitation control algorithms have emerged. However, enterprises often find it difficult to make a
choice when faced with the selection of a controller. The main reason is that the performance evaluation of
control algorithms is a complex, multiple-criteria, multifactor coupling problem that cannot be represented
by a precise mathematic model. In this paper, a novel artificial intelligent evaluation method for the selection
of a levitation controller is developed based on a 3-grade fuzzymethod and analytic hierarchy process (AHP).
Three kinds of intelligent levitation control algorithms are applied to a full-size test maglev train to collect
experimental results with real data. The proposed artificial intelligence method to develop a 3-grade fuzzy
multicriteria approach is used to select the best levitation controller for the maglev train. This method can
then provide information consultation services to maglev train firms. To the best of our knowledge, for
maglev trains, this is the first intelligent evaluation approach with real experimental data. The proposed
method can also be applied to other information consultation and decision making systems with appropriate
modifications.

INDEX TERMS Information consultation, intelligent evaluation approach, 3-grade fuzzy method, maglev
train.

I. INTRODUCTION
With the rapid improvement of the worldwide economic
situation and, in particular, urbanization, urban traffic has
many difficult problems Examples include traffic accidents,
and more so, latterly, exhaust pollution. Although the use
of subways can minimize these problems, the noise and,
in particular, subway vibration not only affects passengers
but, depending on foundation quality, can also affect the state
of surrounding buildings and consequently their residents.
In such circumstances, an environmentally friendly, comfort-
able, safe and intelligent transportation method is urgently
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needed. The maglev train, as shown in Fig. 1, is a new type
of urban transportation method [1]–[3]. It can travel faster
than 500 km/h and has such advantages as riding comfort,
safety, low maintenance relative to other transportation meth-
ods and also contributes to environmental protection. In the
light of the above, maglev transportation is further developing
and spreading vigorously worldwide [4].

The levitation control system, which determines the
performance of a maglev train, is the core element. The
characteristics of this system include such as strong non-
linearity, open loop instability, time-varying parameters and
external disturbances, all of which challenge the control
design. Currently, the traditional control algorithm is clas-
sic linear control, such as the PID controller. Increasingly,
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FIGURE 1. Maglev train lines: (a) Incheon line, (b) Changsha line,
(c) Shanghai line, and (d) Emsland line.

alongside, the development of artificial intelligence technol-
ogy many intelligent control algorithms have been proposed.
An active levitation controller with a virtual energy harvester
designed by Li et al. [5] is used to suppress vehicle-guideway
coupling vibration. Sun et al. [6] proposed an adaptive sliding
mode control of the maglev system, based on the radial
basis function (RBF) neural network and an adaptive learning
law for network weights, which can approximate unknown
parameters effectively. Zhou et al. [7] designed an active con-
trol method with a finite impulse response (FIR) filter for a
magnetic levitation system, which can suppress the vibration
caused by the track irregularity. Qian and Fan [8] utilized
RBF neural network to approximate the uncertainties, which
can solve the load frequency control problem for the renew-
able power system. Fuzzy control approaches had, already,
proved to be successful in various applications [9]–[15]. Sun
et al. [9] established a Takagi-Sugeno (T-S) fuzzy model
of a maglev vehicle-guideway with global nonlinearity. This
greatly greatly facilitates stability analysis and control law
design. Ding et al. [10] proposed a novel method to analyze
the stability of the hybrid systems with fuzziness. The effec-
tiveness of the method presented in this Paper is verified by
the successful application to a differential-drive two-wheeled
mobile robot. Precup et al. [11] presented a fuzzy logic
control algorithm to stabilize the Rössler chaotic dynamic
system with sufficient satisfactory simulation results. Sun et
al. [12] designed a fuzzy PID controller to address vehicle-
rail coupling vibration problems. Radgolchin and Moeen-
fard [13] developed an adaptive supervised multi-level fuzzy
controller to control the deflection of an electrostatically
actuated microplate. The simulation results show that the
proposed controller can effectively stabilize the microplate
beyond the pull-in instability limit. Sun et al. [15] proposed
a nonlinear robust control law with an adaptive fuzzy logic
approximator. Although these levitation control algorithms
have their own advantages and disadvantages, there is still no
method for evaluating them, despite the fact thatmanymaglev
train companies want to choose new intelligent control algo-
rithms, but in the face of the variety of control algorithms,
it is difficult to determine which one is the most suitable.
Currently there is an urgent need to comprehensively evaluate
control effects, based on artificial intelligence algorithms
and to hence be able to advise enterprises regarding suitable
decisions.

The purpose of a levitation intelligent control algorithm
evaluation system is the selection and evaluation of the
control scheme using artificial intelligence (AI) algorithms.
In expert systems and AI, many rules and criteria cannot

be accurately described [16]–[18], hence, fuzzy mathematic
methods are used to do so. If the systems contain a rela-
tively complicated and large amount of knowledge and asso-
ciated experience, the results obtained by the fuzzy meth-
ods are more realistic. The evaluation of levitation con-
trol is a typical example. The values of the evaluation fac-
tors, which cannot be accurately described by mathematics,
are based on multiple-criteria decision making. In recent
years, AI analysis methods including, such as Bayesian net-
works, accident trees, fuzzy comprehensive evaluation, fatal-
ity analysis, gray theory and other evaluation methods, have
been widely applied to consultations and decision-making
and to find information,. Yao et al. [19] proposed a con-
strained parameter evolutionary learning (CPEL) algorithm
for Bayesian network parameter learning to analyze the
decision-making related to UAV autonomousmissions. Lake-
hal and Harouz [20] presented a novel method, based on a
fault tree and a BN to enable simpler information processing.
The method has been successfully applied to turbo compres-
sor analysis. Dong et al. [21] utilized a 2-tuple fuzzy linguis-
tic approach in the analytic hierarchy process to improve the
selection of the individual numerical scale and prioritization.
Wang et al. [22] proposed a fuzzy case-based reasoning
method based on a design thinking process and extracted the
key form features by utilizing a fuzzy analytic hierarchy pro-
cess. Abdel-Basset et al. [23] proposed a new method based
on a neutrosophic analytical hierarchy process to evaluate
risks in the supply chain. Mouronte-López et al. [24] utilized
an analytic hierarchy process, neural networks, and software
agents to improve the spare parts management process in a
telecommunications’ operation. Xu and Xu [25] developed
a new method for the probability-hesitant analytic hierarchy
process. Han et al. [26] proposed a fuzzy comprehensive
evaluation method, which is effective and applicable for
power grid enterprises in the assessment of the efficiency
of a power plant program, The inconsistent elements can be
rapidly and accurately detected with the proposed method.
Thus, it appears that the factors that affect controllers are
numerous and coupled. However, traditional methods, such
as the equal weight method, statistical experiment method,
variable weight method and set-valued statistical iteration
method, often yield little differences in those evaluation val-
ues, which cause decision-making difficulties, or require a
deep understanding of the problems in applied mathematics.
Thus, to evaluate and compare the performance of different
levitation controllers in a one-dimensional space, it is impor-
tant to scientifically and objectively synthesize a multi index
problem into a single index form and subsequently be used
by maglev trains companies to select new intelligent control
algorithms.

The evaluation and analysis methods for maglev traffic
have not yet been reported, however, the application of these
intelligent analysis methods, in other aspects, provides a
suggested method to evaluate the controllers. However, the
evaluation is complicated, in that it involves such as con-
trol accuracy, dynamic performance, anti-disturbance ability,
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response speed. For example, some algorithms have quick
response speed, but are sensitive to disturbances, causing
overshoot. Additionally, there is an analysis deficiency if only
a single mathematical analysis method is used. When fault
tree analysis alone, (FTA) is used, it is difficult to determine
the importance of each basic event from the top event, in the
cases, in which the probability of each, cannot be accurately
counted. When the analytic hierarchy process (AHP) alone,
is used, there is some subjectivity, because the judgment
matrix is constructed by an experts’ understanding of the
whole system. In addition, only when the random consistency
index CR<0.1 is the consistency of the judgment matrix
considered to meet the requirement. Otherwise, it must be
readjusted. Therefore, to analyze and evaluate the levitation
control algorithm, which can provide consulting services for
enterprises to select the control algorithms, a new 3-grade
fuzzy comprehensive evaluation approach with AHP method
is proposed. The main contributions are summarized as fol-
lows:

1. In comparison with traditional methods, the designed
3-grade fuzzy comprehensive evaluation approach, with
AHP, is able to provide a more comprehensive and effective
evaluation.

2. The proposed method, to evaluate the performance of
different levitation controllers in one dimension space, is able
to synthesize a multi index problem into a single index form.

3. As far as we know, this is the first intelligent evaluation
approach for maglev trains using real experimental data.

The rest of this paper is organized as follows: in Section 2,
the preliminary knowledge is given. In Section 3, three intel-
ligent levitation control algorithms are introduced. In Sec. 4,
intelligent comprehensive levitation control algorithm evalu-
ations are given. The paper concludes with conclusions and
the future outlook.

II. PRELIMINARY KNOWLEDGE
A. ANALYTIC HIERARCHY PROCESS (AHP)
The analytic hierarchical process takes the target of the
research as a problem that requires systematic analysis, and
decomposes the complex problems associated with the target
layer by layer [23]–[27]. The factors in the same layer are
compared, discriminated and calculated.

The numerical scale of AHP consists of 17 values and can
be described as follows:{

1
f
, f1, fi

}
, i = 2, 3, . . . , 9

where, f1 = 1 and fi+1 > fi > 1. The value
of fi (i = 1, 2, . . . , 9) corresponds to the ith grade of
the AHP linguistic scale. By choosing different values
for fi (i = 1, 2, . . . , 9), different numerical scales can be
obtained.

Let A =
(
aij
)
n×n, where aij > 0 and aij × aji = 1,

be a reciprocal numerical pairwise comparison matrix. The
priority vector can be derived from A.

TABLE 1. Linguistic scale.

The AHP linguistic scale has nine gradations [23]–[27],
which are listed in Table 1 as follows.

The additive normalization method is a prioritization
method; it can be expressed as follows:

ωi =
1
n

n∑
j=1

aij∑n
i=1 aij

, i = 1, 2, . . . , n (1)

The principal eigenvector of A as the desired priority vector
W can be obtained by solving the linear system

AW = λW, eTW = 1 (2)

where, λ is the principal eigenvalue of matrix A.
λmax is the maximum eigenvalue of the judgment matrix.

The consistency criterion of the judgment matrix can be
written as follows:

ηλ =
λmax − n
n− 1

(3)

R is the average random consistency index value and ηR
can be calculated as follows:

ηR =
ηλ

R
(4)

where, ηR < 0.1 and the pairwise comparison matrix is gen-
erally considered to have complete consistency; otherwise,
the matrix needs to be readjusted until it has satisfactory
consistency.

B. COMBINATION WITH FUZZY COMPREHENSIVE
EVAIUATION
The method combined with fuzzy comprehensive evaluation
approach [21], [22], [28] can be described as follow.

1) Establish indicator set U = {u1, u2, · · · , un}. Divide
U into k first-level indicators U = {U1,U2, · · · ,Uk} such

that U =
k⋃
i=1

Ui,Ui ∩ Uj = ∅(i 6= j), and each first-level

indicator is divided as follows: Ui =
{
ui1, ui2, · · · , uini

}
(i =

1, 2, · · · , k), where n1 + n2 + · · · + nk =
k∑
i=1

ni = n.

2) Construct a priority vector according to the improve-
ment AHP. The priority vector corresponding to U can be
written as follows:

W̄ = (a1, a2, · · · , an) i = 1, 2, · · · , n (5)
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The priority vector corresponding to Ui can be obtained as
follows:

W̄i =
(
ai1, ai2, · · · , aij, · · · , aim

)
i = 1, 2, · · · ,m (6)

3) To determine the rating level as V = (v1, v2, · · · , vn),
we use the comment set to rank items into 3 levels (i.e., n =
3), excellent, average, and poor.

4) The single factor fuzzy evaluation is carried out and the
single factor evaluation matrix can be obtained as follows.

R =


r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
...

...

rn1 rn2 · · · rmm

 , 0 ≤ rij ≤ 1 (7)

5) Let the fuzzy synthetic decision model be (U,V,R), the
priority vector be W̄, and the corresponding comprehensive
evaluation can be B = W̄ ◦ R. The multi-grade fuzzy
evaluation model can be designed, in accordance with the
complexity of the model. At present, most are two-grade
fuzzy comprehensive evaluation models.

III. INTELLIGENT LEVITATION CONTROL ALGORITHMS
Firstly, it is necessary to determine which controllers will
participate in the evaluation. The fuzzy PID controller [11],
the adaptive neural-fuzzy sliding mode controller (ANF-
SMC) [15], and the RBF neural network sliding mode con-
troller with the minimum parameter learning method [6] were
subsequently chosen as examples. For the design of the fuzzy,
neuro-fuzzy and sliding mode controllers, refer to [6], [12]
and [15]. The three kinds of levitation controllers are to
be comprehensively evaluated and compared based on the
proposed intelligent evaluation approach.

1) FUZZY PID CONTROL ALGORITHM
The fuzzy PID controller can be expressed as follows:

kp = kp0 +1kp
ki = ki0 +1ki
kd = kd0 +1kd

(8)

u(t) = kperror(t)+ki

∫ t

0
error(t)dt+kd

derror(t)
dt

(9)

The meaning of the symbols is found in [12]. The control
schematic diagram of the fuzzy PID is illustrated in Fig. 2.

The maglev system fuzzy control rules tables are listed in
Tables. 2- 4. More detailed information about the fuzzy PID
controller is given [12].

2) ADAPTIVE NEURAL-FUZZY SLIDING MODE CONTROL
ALGORITHM
The adaptive neural-fuzzy sliding mode controller (ANF-
SMC) is described below.

ueq = −
[
ĝ(η)+1g(η, θ1g)

]−1
·

[
f̂ (η)+1f (η, θ1f )+ c1η2(t)+ c2η3(t)+ c0e(t)

]

FIGURE 2. Schematic diagram of the fuzzy PID.

TABLE 2. Fuzzy inference rules Of 1KP .

TABLE 3. Fuzzy inference rules of 1Ki .

TABLE 4. Fuzzy inference rules of 1Kd .

usw = −
[
ĝ(η)+1g(η, θ1g)

]−1
·

[
Wsgn(S)+ κ

(
c1e+ c2η2 + η3 + c0

∫ t

0
e(t)dt

)]
{
θ̇1f = −r1f Sξf (η)
θ̇1g = −r1gSueqξg(η)

(10)

The meanings of the symbols are given in [15]. The struc-
ture of the neural network fuzzy system used in ANFSMC is
shown in Fig. 3.

The detail of how to train, test and validate the neural
network and the architecture is given in [15].
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FIGURE 3. Structure of the neural network fuzzy system.

FIGURE 4. Full-scale IoT-based maglev train system.

3) RBF NEURAL NETWORK SLIDING MODE CONTROL
ALGORITHM
The RBF sliding mode controller [30-31] is described as
follows:

um(x, t) =
1

1
/
2sϕ̂hTg hg

[
−
1
2
sφ̂hTf hf + r − c1ė

− c2ë− ηsgn(s)− µs
]

˙̂
φ =

γ1

2
s2hTf hf −�1γ1φ̂ (11)

˙̂ϕ =
γ2

2
s2hTg hgum −�2γ2ϕ̂ (12)

The meaning of these symbols and RBF neural network
details can be found in [6].

These control algorithms are programmed and tested on a
full-size maglev test vehicle, as shown in Fig. 4, and experi-
mental data can be collected for later analysis and evaluation.

IV. INTELLIGENT COMPREHENSIVE EVALUATION OF THE
LEVITATION CONTROL ALGORITHMS
To evaluate the levitation controller, is a complicated system
engineering problem. The factors that affect controllers are
numerous and complicated. The influence of each factor
is correspondingly different, and there are particular rela-
tionships between them. The boundary between a good and
bad performance is also quite vague, and hence difficult to
describe by using classical mathematics. Fuzzymathematic is
a better choice when solving such complex large-scale prob-
lems. To comprehensively evaluate more factors and thereby
overcome the difficulty of the weight distribution caused

TABLE 5. Scheme for the proposed method.

by the interlinkage of factors, to evaluate the controllers,
an intelligent comprehensive evaluation approach, based on a
3-grade fuzzy method and AHP is proposed. The main steps
of the proposed algorithm are given in Tab. 5.

A. SELECTION OF THE EVALUATION INDEX AND
EVALUATION SET
Firstly, the selection of an evaluation index and evalua-
tion set was made. The control performance is evaluated in
terms of the carrying capacity and anti-disturbance capacity.
The carrying capacity involves no load, full load and over-
load. The anti-disturbance capability includes high-frequency
square wave input, low-frequency square wave input, high-
frequency harmonic input and low-frequency harmonic input.
The evaluation indices include two first-grade indexes,
seven second-grade indexes and twenty third-grade indexes,
as shown in Fig. 5. The first-grade indexes are the carry-
ing capacity and anti-disturbance capacity. The second-grade
indexes are the no-load, full-load, overload, high-frequency
square wave input, low-frequency square wave input,
high-frequency harmonic input and low-frequency harmonic
input. The third-grade indexes are different indicators of the
control performance. The evaluation set of a maglev train can
be denoted as U = {u1, u2, · · · , u20}.

During the experiment, the different disturbance signals are
artificially added at the sensor inputs of. The high-frequency
square wave input signal refers to a square wave signal with a
period of 0.5 s and amplitude of 1.5 mm. The low-frequency
square wave input signal is a square wave signal with a period
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FIGURE 5. Evaluation index of levitation controllers for maglev train.

FIGURE 6. Different disturbance signals.

of 4 s and amplitude of 1.5mm. The high-frequency harmonic
input signal generates a harmonic signal with a period of 0.5 s
and amplitude of 1.5 mm. The low-frequency harmonic input
signal generates a harmonic signal with a period of 4 s and
amplitude of 1.5 mm. The sampling period of all signals is
0.01 s. The different disturbance signals are shown in Fig. 6.

B. EVALUATION INDEX VALUES OF REAL DATA IN
EXPERIMENTS
After selecting the evaluation index, experimental data for
candidate controllers should be provided. Based on the data
collected in the experiments, a trusted database is built
according to the Apriori algorithm [29]. The relevant data are
analyzed and extracted to form the required evaluation index
values. The evaluation index values of the three controllers
are listed in Tables 6-7.

TABLE 6. Evaluation index values of fuzzy PID.

TABLE 7. Evaluation index values of ANFSMC.

C. DETERMINATION OF INTELLIGENT PRIORITY
The intelligent priority should be determined following the
steps below:

First, the hierarchical structure of various control indices
of the maglev train is established as shown in Fig. 5.

Second, the pairwise comparison matrix of the levitation
system for the maglev train is constructed.
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TABLE 8. Evaluation index values of the RBF controller.

According to the pairwise comparison of factors of the
same grade with respect to the importance of a factor of the
previous grade, the pairwise comparison matrix is obtained
as follows.

1) The importance pairwise comparison matrix in the cri-
terion layer 1 relative to the target layer.

Based on Table 1 and expert experience, the pairwise com-

parison matrix of U1 and U2 to U is A =
[

1 4
1/4 1

]
.

2) The importance pairwise comparison matrix of criterion
layer 2 relative to criterion layer 1.

The pairwise comparison of U11, U12, and U13 to U1 is

A1 =

 1 1/5 1/2
5 1 4
2 1/4 1

 .
The pairwise comparison matrix of U21, U22, U23 and U24

to U2 is

A2 =


1 1/2 4 3
2 1 6 4
1/4 1/6 1 1/2
1/3 1/4 2 1

 .
3) The importance pairwise comparison matrix of scheme

layers relative to criterion layer 2.
The pairwise comparison matrixes ofU111,U112,U113 and

U114 toU11, andU121,U122,U123 andU124 toU12, andU131,
U132, U133 and U134 to U13 are:

A11 = A12 = A13 =


1 8 5 6
1/8 1 1/5 1/3
1/5 5 1 3
1/6 3 1/3 1


Similarly, the pairwise comparison matrixes of U211 and

U212 to U11, U221 and U222 to U22, U231 and U232 to U23,
U241 and U242 to U24 are:

A21 = A22 = A23 = A24 =

[
1 3
1/3 1

]
.

Third, the weight of each layer is calculated, and a consis-
tency check of the weights is conducted. Because the same
calculated method is used, only matrix A2 is developed in

detail here.

A2 =


1 1/2 4 3
2 1 6 4
1/4 1/6 1 1/2
1/3 1/4 2 1


Column normalize
−−−−−−−−−−→


0.279 0.261 0.308 0.353
0.558 0.522 0.462 0.471
0.070 0.087 0.077 0.059
0.093 0.130 0.154 0.118


row sum
−−−−→


1.201
2.013
0.293
0.495

 normalized
−−−−−−→


0.300
0.503
0.073
0.124


Then, the eigenvector is W =

[
0.3 0.503 0.073 0.124

]T
Due to A2W =

[
1.216 2.037 0.294 0.496

]T , the maxi-
mum eigenvalue is:

λmax =

4∑
i=1

(PW)i
4Wi

= 4.0326 (13)

The consistency indicator is calculated as follows:

ηλ = (λmax − n)/(n− 1) = 0.0109 (14)

The random consistency ratio is as below.

ηR = ηλ/R = 0.0121 < 0.1 (15)

It is learned that ηR < 0.1, so the priority vector of U21,
U22, U23 and U24 is W̄2 =

[
0.3 0.503 0.073 0.124

]T .
The same method can be utilized to obtain other priority

vectors as follows:

W̄ = [0.8, 0.2]T , W̄1 = [0.111, 0.64, 0.249]T ,

W̄11 = W̄12 = W̄13 = [0.622, 0.051, 0.218, 0.109]T ,

W̄21 = W̄22 = W̄23 = W̄24 = [0.75, 0.25]T

D. FUZZY COMPREHENSIVE EVALUATION OF LEVITATION
CONTROL ALGORITHMS
The fuzzy comprehensive evaluation approach can be imple-
mented as follows:

First, the membership function between the 3-grade index
and the evaluation set is determined. To express the fuzzy
mapping of the factors set to the evaluations set, the trape-
zoidal distribution is used as the membership function of
‘‘excellent’’, ‘‘average’’ and ‘‘poor’’.

Themembership function of the ‘‘excellent’’ controller can
be expressed as follows:

β1(ζ ) =


1, ζ ≤ γ1,
γ2 − ζ

γ2 − γ1
, γ1 < ζ < γ2,

0, ζ ≥ γ2,

(16)
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FIGURE 7. Membership function of evaluation set.

TABLE 9. Reference point value of the levitation control system.

The membership function of the ‘‘average’’ controller can
be obtained as follows:

β2(ζ ) =



0, ζ ≤ γ1,
ζ − γ1

γ2 − γ1
, γ1 < ζ < γ2,

1, γ2 ≤ ζ ≤ γ3,
γ4 − ζ

γ4 − γ3
, γ3 < ζ < γ4,

0, ζ ≥ γ2,

(17)

The membership function of the ‘‘poor’’ controller is:

β3(ζ ) =


0, 0 ≤ ζ ≤ γ1,
ζ − γ1

γ2 − γ1
, γ1 < ζ < γ2,

1, ζ ≥ γ2,

(18)

where, ζ denotes the control performance index value of the
maglev levitation control system. γ1, γ2, γ3 and γ4 represent
the membership function reference points. The membership
function is described in Fig. 7.

The reference point values of the levitation control system
are reported in Table 9.

Second, the original data are standardized, and a single
factor evaluation of the third-grade index is conducted to
obtain a single factor evaluation matrix.

Let the fuzzy comprehensive decision model be (U, V, R)
and the priority vector be W̄. The corresponding comprehen-
sive evaluation is B = W̄ ◦ R, where W̄ =

[
a1 a2 · · · an

]T
and R = (rij)n×m(i.e., comprehensive judgment). The prin-

cipal factor determinant mode bj =
n
∨
i=1

(ai · rij) (j =

1, 2, · · · ,m) is utilized to obtain the comprehensive evalu-
ation matrix as B =

[
b1 b2 · · · bm

]
.

The results of the third-grade comprehensive evaluation are
listed as follows:

B11= [0.128, 0.218, 0.513] , B12= [0.1, 0.124, 0.56] ,

B13= [0.08, 0.622, 0.622] , B21= [0.6, 0.626, 0.035] ,

B22= [0.19, 0.75, 0.42] , B23= [0.72, 0.75, 0.126] ,

and B24= [0.13, 0.138, 0.13]

Third, the second-grade factor sets are comprehensively
evaluated, and the second-grade evaluation matrix can be
obtained as follows:

R1 =

B11
B12
B13

 =
 0.12772 0.2177 0.5132

0.0991 0.1244 0.5598
0.0793 0.6220 0.622



R2 =


B21
B22
B23
B24

 =


0.5939 0.6255 0.0351
0.1864 0.75 0.42117
0.7197 0.75 0.12613
0.131 0.138 0.12888


The priority vectors W̄ij are expressed in (16). The

second-grade comprehensive evaluation results are B1 =
[0.063, 0.155, 0.358] and B2 = [0.178, 0.377, 0.212].
Fourth, the first-grade factors sets are comprehensively

evaluated, and the overall evaluation matrix is obtained as
follows:

R =
[
B1
B2

]
=

[
0.063 0.155 0.358
0.178 0.377 0.212

]
(19)

The priority vector is W̄ = [0.8, 0.2]T . The overall sys-
tem comprehensive evaluation result is represented as B =
[0.051, 0.124, 0.287].
From the principle of maximum membership, it is con-

cluded that the fuzzy PID is a ‘‘poor’’ controller, and the
membership of ‘‘poor’’ is 0.287.

Additionally, the evaluation results for the ANFSMC and
RBF neural network sliding mode controllers can be obtained
in the same manner and are as follows:

BANFSMC = [0.287, 0.126, 0.056]

BRBF = [0.056, 0.318, 0.318]

The results suggest that the ANFSMC is the best con-
troller among the three controllers. This is consistent with
the long-term experimental results from a national maglev
transportation engineering R&D center.

Utilizing the classic AHP method, we can also obtain the
weight vector of the three controllers for the total target is
[0.214, 0.425, 0.361]. The greater value in the weight vector
indicates better control effect. However, the results show that
the difference between the evaluations is very small. Besides,
once a new control algorithm is introduced for evaluation,
the results of all control algorithms need to be recalculated.
The proposed method in this work not only produces more
comprehensive evaluation, but also only a single calculation
is needed when a new control algorithm is introduced for
evaluation. Therefore, the new method also can save a lot of
computation time.

V. CONCLUSIONS
Proposed In the study, presented in this paper, is the provision
of information consultation services for maglev train com-
panies, and an intelligent comprehensive evaluation method
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for the selection of levitation controllers. To the best of our
knowledge, the proposed method, herein, is the first artifi-
cial intelligence evaluation method enabling the selection of
maglev levitation controllers capable of utilizing a 3-grade
fuzzy multicriteria approach. The experimental results of
three kinds of levitation controllers are provided for com-
prehensive evaluation, based on the proposed intelligent cou-
pling 3-grade fuzzy comprehensive evaluation approach with
AHP. The results show that themembership of ‘‘good’’ for the
fuzzy PID, is 0.051. The membership of ‘‘good’’ for the RBF
neural network sliding mode controller, is 0.056 and that for
the ANFSMC, is 0.287. The ANFSMC is the best controller
among the proposed three controllers. The evaluation results
are consistent with the long-term experimental results. It
should be noted that this result only relates to the evaluation
of three controllers and under specific control parameters.
Thus it is possible that different controller parameter val-
ues may produce different results. Additionally, the different
importance levels selection (the pairwise comparison control
indicesmatrix) also obtained different evaluation results. This
can be determined by the companies according to the mar-
ket rating. Focus, next, must be on the rules related to the
selection of a numerical scale and the selection of a prior-
itization method for the proposed method, such that it can
be extended to other systems for convenient evaluation and
consultation.
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