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ABSTRACT Along with the barbarous growth of spams, anti-spam technologies including rule-based
approaches and machine-learning thrive rapidly as well. In antispam industry, the rule-based systems (RBS)
becomes the most prominent methods for fighting spam due to its capability to enrich and update rules
remotely. However, the antispam filtering throughput is always a great challenge of RBS. Especially,
the explosively spreading of obfuscated words leads to frequent rule update and extensive rule vocabulary
expansion. These incremental obfuscated words make the filtering speed slow down and the throughput
decrease. This paper addresses the challenging throughput issue and proposes a constant time complexity
rule-based spam detection algorithm. The algorithm has a constant processing speed, which is independent of
rule and its vocabulary size. A new special data structure, namely, Hash Forest, and a rule encoding method
are developed to make constant time complexity possible. Instead of traversing each spam term in rules,
the proposed algorithm manages to detect spam terms by checking a very small portion of all terms. The
experiment results show effectiveness of proposed algorithm.

INDEX TERMS Constant time complexity, hash forest, rule-based filtering, spam detection, throughput.

I. INTRODUCTION
The widespread use of Internet had grown explosively since
the first establishment of Internet in 1969. Internet had con-
nected each individual together via computers and mobile
devices. Along with it, the scale of data is overwhelmingly
increased as well [1], especially after the wide use of social
networks, personal communication tools, emails and short
messages (SMS). This easy-communication circumstance
also encouraged the numerous emerge of spams. Such kind
of activities turned into one of the most profitable businesses
for spammers and criminals.

Spams first spread explosively but mainly in emails in the
first decade of 21th century, indicated by the statistic results
provided in [2], [3]. Spam e-mails grew exponentially from
8% in 2001 up to 90% during 2009 [2]. Fortunately, the trend
turned downward to around 8.2% of junk e-mail volumes
worldwide because of the withdraw of rogue Internet Service
Providers such as 3FN, Bredolab, Rustock, and Grum.
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Then, spams spread widely into the fast growing SMS
service, because it has reached more than 6 billion users
globally with approximately 9.5 trillion SMS sent globally
in the year 2009. At first, spam SMS generally less perva-
sively than email spam [4]. Then, mobile spam has steadily
increased from 2008 to 2012 and recently account for half
of all North America mobile phone traffic in 2019 [5]. The
increased use of SMS service has sustained great profits
close to 117.2 billion dollars in 2017 [6]. The great interests
have attracted malicious spammers to spread unsolicited,
commercial, bulk electronic message [7]. Such SMS may
sometimes convey undemand adverts, viruses, malware or
other annoying contents targeted at consumers, businesses
or government organizations. Recently, security has become
main threatening concern because spam SMS often attract
users to reveal critical personal information by promising free
gifts, cheap product offers, credit cards or debt relief services.

Anti-spam technologies have been developed much along
with the growth of spams. Compared with machine learning
approaches boosting in antispam research, the rule-based
systems (RBS) have been much predominant in the filtering
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industry since it integrates various classification methods
and are able to update filters online remotely. Recent years,
motivated by the benefits provided by SaaS (Software as
a Service), RBS are running on cyber security compa-
nies, such as Symantec Cloud, McAfee Cloud Security,
or Kasper-sky Hosted Security [8]. The most popular one is
SpamAssassin [9].

However, such cloud-based spam-filtering services con-
centrate filtering tasks and demand much high throughput
capabilities. In addition, the variety of spam always chal-
lenges the limited RBS filtering throughput. The overwhelm-
ingly emerged obfuscated words, as shown in TABLE 1, are
the most difficult and challenging issue. They are possible to
get through RBS spam filters as they always contain unusual
symbols or blanks. However, they are still able to be associate
to spam words in mind.

TABLE 1. Obfuscated words in spam SMS messages.

Obfuscated words directly lead to rules spam term vocab-
ulary explosion and rule quantity increasing extraordinarily.
Consequently, the computation time for detecting and filter-
ing grows dramatically, making the running RBS slow down
significantly and even impractical.

To overcome the drawback, some researchers studied
scheduling strategies [10], [11], some researchers provided
simulation tools of filters’ throughput for research [12] and
some companies relied on upgrading hardware equipment.

However, an inconstant time complexity algorithm
stretches the computation time longer while rules quantity
and its spam term vocabulary increase. If the time complex-
ity of filtering algorithms of RBS can reduce to constant,
the throughput issue can be solved since the expansion of
rule and its vocabulary size will not slow down filtering speed
ever.

RBS rules include a Boolean expression and a rank. The
Boolean expression is a combination of spam terms and
logical operators. An RBS is capable to detect spam SMS
rapidly based on the Boolean expressions and return spam
SMS ID and matching rule ID pairs. In our research, several
creative methods manage to complete the filtering process
within an extremely short and constant time. We first studied
on the rule representation in computer memory. The rule data
are organized in a speed-optimized structure, namely, Hash
Forest, which is capable to avoid accessing each spam term
while detecting spams. Then, we studied on the method to
calculate Boolean operators automatically through the spam
detection process. Currently, we support the use of&& (AND
operator), || (OR operator) and ( ) (bracket operator) in rule

Boolean expressions. Other operators will be supported in our
future research.

This research was motivated by the cooperation with a
communication service company. This company provides
SMS service in Shanghai and serval provinces near around.
Their SMS includes verification codes SMS, e-commercial
SMS, express delivery SMS, government SMS, promote sale
SMS of malls or grocery stores, etc. The company sends more
than 80 million business short messages per day on average
and about 150 million per day on peak. The project was car-
ried out to increase filtering speed to meet its overwhelming
SMS sending throughput requirement. This project success-
fully addressed the throughput issue and decreased the time
complexity of the spam detection algorithm to constant O(1).
About 150 million SMS can be filtered in less than one hour.
Currently, the company is running 110k rules, including 10k
black rules and 100kwhite rules.With the rise of rule number,
the algorithm maintains its constant spam detection speed.

The main contributions are following.
1) Propose a new rule data structure, namely, Hash Forest.

It rearranges spam terms into search routes branches. Hash
Forest helps the algorithm detect spam term by checking a
very small portion of them.

2) Propose an encoding method for rule Boolean expres-
sions. The encoding method helps the filter calculate opera-
tors in expressions automatically. This process has constant
time complexity.

3) Develop a spam detection algorithm that only processes
symbols (i.e. letters in English) instead of whole spam terms.
Since symbols in languages are limited, the time complexity
is greatly reduced.

4) Support sequential matching. A rule contains a logical
expression. The logical brackets in an expression can be
detected one by one from beginning to the end with constant
time complexity.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the pro-
posed Constant Time Complexity Spam Detection algorithm.
Section IV outlines the experiment’s results to show the
constant computational complexity. The conclusion is drawn
and future work is discussed in Section V.

II. RELATED WORK
Along with the barbarous growth of spams, antispam tech-
nologies also thrive prosperously. The antispam technologies
include content filtering systems and pattern detecting sys-
tems. Both have advantages and limitations.

A. THE CONTENT FILTERING TECHNOLOGIES
The content filtering systems utilize statistical machine learn-
ing approaches. Many models have been applied to obtain
better spam detection results, such as Support VectorMachine
(SVM) [13], Bayesian methods [14], Decision Tree [15], etc.

SVM creates a multiclass, SVM-based classifier from a
set of binary SVM classifier. SVM becomes popular because
it is robust for many circumstances. SVM trains a decision
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equation from a high-dimensional feature space, which leads
to high accuracy. In addition, it has been developed into
serval types, including one-against-rest SVM (OAR-SVM),
one-against-one SVM (OAO-SVM), directed acyclic graph
SVM (DAG-SVM), adaptive directed acyclic graph SVM
(ADAG-SVM), and error-correcting output code SVM
(ECOC-SVM) [16].

Bayesian methods, such as Naive Bayes, are regarded
as the effective and important machine learning algorithms
in information retrieval. Teraguchi et al. [17] proposed a
Bayesian algorithm to defeat spammers. To enhance its accu-
racy, Bayesian methods are often hybrid with other algo-
rithms. Ebadati and Ahmadzadeh [18] proposed a GA-Naive
Bayes for spam email detectionwithGA algorithm for feature
section. Arifin et al. [19] focused on spam detection for SMS
by Naive Bayes Classifier and FP-Growth since FP-Growth
is utilized for mining frequent patterns.

In addition, other machine learning methods, such as
boosting trees [20], Neural Networks [21], are also applied
in spam detection and outperform Naive Bayes and Decision
trees.

Machine learning approaches usually require a beginning
training for spam filter and training again if rules are updated.
Then, the filter may be required to restart to load the updated
models. Therefore, although many progresses have been
made in research, their deployments in antispam industry are
not often reported.

B. RULE-BASED SYSTEMS
Rule-based systems, one of the most prominent methods
for fighting spam in industry, combine Pattern Detection
technologies, such as operation research, graph theory, data
analysis, clustering. It has been deployed and spread in the
antispam industry because they are capable to update rules
online remotely.

Anti-spam RBS filter spam based on a set of pares of
rules and its scores. Whenever a rule is matched through
its logical test, along with Boolean TRUE returns, its score
is accumulated into a global counter. A spam is determined
by whether the global counter comes up to a preconfigured
threshold.

1) THE SpamAssassin FRAMEWORK
SpamAssassin [9], a successful forerunner of typical
RBS, was developed from two rudimentary rule engines
filter.plx [22] and Spamometer [23]. In a long time, SpamAs-
sassin play a vital role [24] and has been adopted by antispam
industry companies (such as Symantec or McAfee) [10].

SpamAssassin is integrated with the most popular Mail
Transfer Agent (MTA) packages (e.g. Postfix, Exim or
QMail). It is designed to listen to TCP port 783. All received
packages are analyzed and several features are extracted as
inputs of rules filter. Then, spam emails are determined by
the accumulation of a global counter. SpamAssassin supports
Naïve Bayes classifier, Sender Policy Framework (SPF) ver-
ifier as build-in modules and third party filter as plugins.

However, SpamAssassin was reported to have a low fil-
tering throughput [25]. Therefore, a new-generation RBS
middleware has been developed from SpamAssassin, such as
Wirebrush4SPAM, to relieve its heavy throughput pressure.

2) THROUGHPUT IMPROVEMENTS
Throughput capability is always challenging essential fea-
tures of RBS. Fortunately, achievements have been made to
cope with performance issues [11].

The smart filter evaluation (SFE), introduced in Wire-
brush4SPAM [25], is able to terminate a rule execution at a
proper point based on evaluation. The termination is aimed to
save computational recourses.

Learning After Report (LAR) [25] in Wirebrush4SPAM
generates a new thread to process auto-learning tasks which
is inherited from SpamAssassin.

Identification of Bayes Useless Information (IBUI) in [26]
refines Naïve Bayes databases by removing unhelpful tokens
if it has an over-threshold Inverse Document Frequency (IDF)
value.

Per Rule Parallelization (PRP) [25] in Wirebrush4SPAM
upgrades parallel computing of SpamAssassin. It has a con-
current rule execution scheme capable to take advantage of
parallelizing computation regardless of the number of pend-
ing classifications.

Sufficient Condition Rules First (SCRF) [9] in a plugin of
SpamAssassin is able to terminate filter execution as soon as
enough matching rules are found.

The improvements discussed above mainly focus on sim-
plifying the filtering stages, omitting unnecessary process and
parallel computing. However, despite of the progress made
by these technologies, they did not report to decrease the
time complexity of filtering algorithms to an acceptable level.
Therefore, along with the explosion of term vocabulary in
rules, the filter speed will still keep slowing down.

This context provides a solution for throughput issue in
RBS by downgrading the computational complexity to con-
stant. That is, the speed of filtering algorithm is irrelevant to
rule size or rule term vocabulary.

III. THE CONSTANT TIME COMPLEXITY SPAM
DETECTION ALGORITHM
A. PROBLEM FORMULATION
The method presented in this paper is able to scan candidate
SMS to detect their all matching rules and return their rule
IDs. The filtering speed is independent of the increasing rule
amounts and rule term vocabulary.

Typical Boolean expressions of an English rule, a Chinese
rule and a mixed-language rule are shown in TABLE 2.

Apparently, rules always contain symbols including let-
ters, Chinese characters, numbers and some special symbols.
Therefore, a typical Boolean expression can be represented
as a unified formula shown in (1):

(T11||T12|| · · · ||T1n)&&
(T21||T22|| · · · ||T2n)&&

· · ·

(Tm1||Tm2|| · · · ||Tmn) (1)
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TABLE 2. Typical Boolean expression of rules.

where Tij represents a certain spam term in the Boolean
expression.

For a single term Tij, let S
ij
1 , S ij2 , S ij3 , · · · S ijk , · · · S ijK represent

the symbols in Tij. Here, symbols are letters in alphabet
language, like English, or hieroglyphic characters in pic-
tographic language. In this paper, we say symbols instead
of letters because there are different symbols in different
languages. Please note that this approach can also apply to
other language, regardless alphabet language, like English,
or pictograph language, like Chinese, even multiple language
mixture.

Filter speed is the main challenge of RBS throughput. The
paper focuses this issue and reduces the SMS filtering time
to constant. For a given set of SMS, the overall speed of
the proposed algorithm is only related to spam SMS amount
and remains stable while rule amount and its vocabulary are
expanding.

B. THE HASH FOREST
The Hash Forest, a special data structure of all spam terms,
forms the foundation of the constant time complexity of term
detection in the proposed spam detection algorithm.

1) PROCESSING SYMBOLS INSTEAD OF WORDS
There are numerous words in each language whereas symbols
are limited. Processing a relatively small set of symbols make
it possible to deployO(1) search algorithms, like Hash search,
on symbols searching.

Apparently, if traversing each word to detect term,
as shown in FIGURE 1, time complexity is uncontrollable.

However, the detecting direction can be changed to ver-
tical if symbols are processed. The detection process is to
find a path getting through each symbols of a term. By this
means, it only checks a small portion of all terms. An exam-
ple of searching for term C A©sh is shown in FIGURE 2.

FIGURE 1. Term by term searching direction.

FIGURE 2. Searching route of the term CA©sh.

Apparently, other terms, such as Debt, Discount, Pay Loan,
are left untouched.

Since word length is limited, the searching time for term
detection is limited below a constant.

Therefore, to achieve constant time complexity, Boolean
rule expressions are first represented in a unified formula and
their terms are represented symbol by symbol. Symbols from
all languages come from a limited set. Processing symbols
instead of terms takes the first step towards the goal: constant
time complexity. English language has 52 symbols, including
all letters and their capitals. Also, taking special symbols
in spam terms in consideration, approximately 200 or more
symbols will be added to the set. Therefore, symbol size of
spam terms is expected to be limited under 300 in English.
Even for Chinese, 3000 frequently used Chinese characters
can cover 99% Chinese documents and 1000 can cover 90%.
Therefore, in Chinese, not more than 2000 characters are
expected in terms of Boolean expressions.

C. THE DATA STRUCTURE OF THE HASH FOREST
The Hash Forest is a data structure to represent all terms in
all Boolean expressions.

As shown in FIGURE 2, many spam terms have the first
letter in common. This happens more likely in English than
in Chinese. In the Hash Forest, these common symbols are
merged together to form the root of each tree in the forest.

In addition, the second successive symbol of terms may
also be the same. They are merged to form the branch nodes.
A root node and a branch node represent a bunch of terms
with the first and second symbols in common.

Moreover, in turn, the rest common symbols follow the
same process to merge together to form branch tree nodes
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in next levels. When no more common symbols are found,
the trees continue growing according to symbols of each term
until reaching the last symbol which is the leaf node.

For example, as shown in FIGURE 3, suppose there are
only 3 terms in rules. They are Cash, C@sh, Ca$h. They all
begin with the letter C . So, they will form a single tree with
root node C . Then, Cash and Ca$h have the second letter a
in common. Therefore, the both terms will continue to merge
together with a branch node a. The rest uncommon letters link
one after another until the last one.

FIGURE 3. A 3 terms in a single-tree hash forest example.

More generally, for instance, suppose there are two terms
Tij and Tpq, They contain a few common symbols from the
beginning. let S ij1 , S ij2 , S ij3 , · · · S ijk , · · · S ijK represents the sym-
bols in Tij and Spq1 , Spq2 , Spq3 , · · · Spqr , · · · SpqR represents the
symbols in Tpq. Also, S

ij
1 , S

pq
1 and S ij2 , S

pq
2 are the same

respectively. They form the tree as shown in FIGURE 4.

FIGURE 4. A two terms in a single-tree hash forest example.

All terms in rule Boolean expressions are divided symbol
by symbol and same divided symbols are merged. Normally,
given enough terms, their symbols should be able to form
a multiple-tree, namely, Hash Forest. Each different first
symbol is the root of each tree. Suppose a black solid circle
in FIGURE 5 represents a symbol. The common symbols are
merged together. Such example of amultiple-tree Hash Forest
is shown in FIGURE 5.

1) SPAM TERM DETECTION VIA THE HASH FOREST
The Hash Forest is designed to speed up the existence detec-
tion of spam terms in SMS. It rearranges all spam terms
together and builds searching routes for each term. Such
searching process avoids checking the majority of terms in
each rule. The detection algorithm has O(1) time complexity.

To detect symbols in spam terms, a Hash search runs on
each level of the Hash Forest. If the Hash search finds the
matching symbol, another Hash search is performed on the

FIGURE 5. A multiple-tree hash forest examples.

next level of the matching node. And so on.When a level only
has one node, Hash search is substituted by a matching check.
If all Hash searches and matching checks return a matching
node until leaf node, a detected term is reported. By this way,
Hash searches are able to filter out all other un-matching
terms by checking a few symbols of the matching term. Such
process only checks a very small portion of term vocabulary
like route finding in the Hash Forest.

For instance, as illustrated in Figure 6, if trying to detect
ca$h in a term set {ca$h, cost, loan, debt, credit, . . .}, the first
Hash search will locate the tree of symbol c as the beginning
of this searching route. Then, the second Hash Search is
performed on the nodes of level 2, tree c. It locates the branch
of symbol a. Then, the searching route continues by directly
getting through the remaining symbols by a few matching
checks since no branches exist in deeper levels. If the search-
ing route reaches the leaf node h, it indicates that spam term
cash is detected. Apparently, it is unnecessary to traverse into
other trees of other symbols, such as b for debt, l for loan, etc.
The dash line in FIGURE 6 is the searching route.

FIGURE 6. An example of spam term detection and its searching route in
the hash forest.

2) TIME COMPLEXITY ANALYSIS OF TERM DETECTION
Asmentioned above, existence detection of a term is achieved
by a few Hash searches in the Hash Forest.

A Hash table (Hash map) is a data structure that imple-
ments an associative array abstract data type, a structure that
can map keys to values. A hash table uses a hash function
to compute a key, also called index or a hash code, and map
with an array of buckets or slots, fromwhich the desired value

VOLUME 8, 2020 82657



T. Xia: Constant Time Complexity Spam Detection Algorithm for Boosting Throughput on Rule-Based Filtering Systems

FIGURE 7. A general format (a) and an Example (b) of Boolean expression encoding.

can be found. Hash search gets O(1) search time on average
and O(n) in worst case [27]. The worst case happens when
all values are mapped to the same bucket. Such scenario is
unlikely to happen because the nodes amounts of each level
in the Hash Forest is quite limited. Therefore, the Hash search
time on each level has O(1) time complexity.

In addition, obviously, the times of Hash searches needed
when searching through the Hash Forest depend on the
average depth of the Hash Forest. The average depth, then,
is determined by the average length of terms. Actually, for
English, the average word length is 4.7 characters [28]. This
means the average depth of the Hash Forest is 4.7 in English
and the average times of Hash searches are 4.7. Furthermore,
since the algorithm also accelerate the search speed by getting
through the remaining symbols together when there is only
one node on these levels, the actual average times of Hash
searches are lower than 4.7.

On summary, a searching through the Hash Forest only
performs a few Hash searches which time complexity is
O(1) on average. Therefore, the overall time complexity for
detecting terms should be O(1).

D. RULE IDENTIFICATION
The Rule identification algorithm is designed to calculate
the logical operators rapidly and return ID of all matching
Boolean expressions of rules.

1) THE ENCODING OF THE BOOLEAN EXPRESSIONS
Take a look at the typical logical rule expression in (1) again.

(T11||T12|| · · · ||T1n)&&

(T21||T22|| · · · ||T2n)&&

· · ·

(Tm1||Tm2|| · · · ||Tmn)

where Tij represents a spam term in logical rule expression.
Apparently, expression always contains a few brackets.

Also, an identification of any term in a bracket indicates
Boolean true of the bracket. The rule is identified matching
only when all pair of brackets in a rule Boolean expression
equal TRUE. The aim of expression encoding is to make the
code equals 0 while all brackets equal true and the rule is
matching.

Therefore, the Boolean expressions are encoded at bracket
level as shown in FIGURE 7(a). Each bracket is encoded
as one Boolean value. To do so, a code of any expression
is first initialized as a ‘‘1. . . 1’’ string. Each character ‘‘1’’
represents a bracket in an expression. Once a term in a bracket
is detected, the bracket is TURE and the character ‘‘1’’
responding to the bracket is set to ‘‘0’’ at once. Also, if all
brackets are true, the code is ‘‘0. . . 0’’ and its numerical
value equals 0. At this time, a rule matching is reported.
Such codes can represent and calculate && (AND operator),
|| (OR operator) and ( ) (bracket operator). Furthermore, this
process is O(1) time complexity.

FIGURE 7(b) shows a specific example of Boolean
expression encoding. In the example, the rule expression
has 4 brackets. It is encoded as a four-character string
‘‘1111’’. Each character ‘‘1’’ represents a bracket from left
to right respectively. Also, a detection of any term in each
bracket indicates the logical Boolean TRUE of the bracket.
For instance, if Company is detected, the bracket (Corp.
||Company||Co. ||Discount||IMPORTANT||Debt) is TRUE
and its corresponding character, or called bit, is set to ‘‘0’’.
At this time, the string is ‘‘0111’’. With more terms are
detected, more brackets are TRUE and more characters ‘‘1’’
are set to ‘‘0’’. When the string is ‘‘0000’’, its numerical value
equals 0. The matching rule is reported for logging.

2) HASH FOREST WITH EXPRESSION CODE EXTENSIONS
LIST
Expression code extensions lists are the lists of rule expres-
sion ID and term position pairs. The term position value logs
that bracket the term exists in the rule.

For example, as shown in FIGURE 7(b), the term Contact
exist in the 4th bracket of the rule expression. The expression
code expressions should be [<rule expression ID>, 4]. The
filter will use the position 4 to set the 4th bit of the code
to 0 when detecting term Contact.

Usually, a term may exist in more than one rules.
Therefore, a list of rule expression ID and term position pairs
links to the leaf node of the term indicating all rules in the list
contains the term.

While initializing the filter, all rule Boolean expres-
sions are traversed once to form the Hash Forest.
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Also, the initializing preprocess simultaneously collects term
position data, generates the lists of expression ID and term
position ID pairs and links them to the Hash Forest.

For example, suppose a rule with ID 0001 is (ca$h||
credit)&&(cost)&&(loan||debt). The position number of
each term depends on the number of bracket where it exists.
Their code extensions link to the Hash Forest, as shown in
FIGURE 8. The position of term ca$h and credit is 1 as
they exist in the first bracket. The term cost is in position 2
because it is in the second bracket. Thus, loan and debt has
the position 3.

FIGURE 8. An example rule in hash forest with code extensions list.

A more general example of Hash Forest with Code
Extensions Lists is shown in FIGURE 9. Note the black solid
circles represent symbols of terms.

FIGURE 9. Hash forest with code extensions list.

3) TIME COMPLEXITY ANALYSIS OF RULE IDENTIFICATION
Once a term is detected, all rules containing the term are
matching candidates. Their codes are set by bit based on the
code extensions list of the term. The corresponding bit of code
is set to 0. When the algorithm ends, the only remaining work
is to find all matching expression by checking straight-zero
codes.

Furthermore, the codes are stored as a String. Each bit of
codes can be accessed by a char array, such as String[]. So, the
time complexity of setting codes by bit is O(1). Once a term
is detected, the codes of corresponding rules are set. If each

bit of a code is set to 0, it indicates that all brackets in the rule
is TRUE and the rule is matched. At this time, the numerical
value of the String equals 0, a matching event is reported and
the rule ID is logged in the matching rules list.

The time complexity of these steps is all irrelevant to either
rule size or rule term vocabulary. The overall time complexity
of rule identification is O(1).

E. THE SPAM SMS DETECTION ALGORITHM
This part will take SMS spam filtering as an example to
illustrate how a SMSmessage is traversed and how the logical
rule expressions are identified during the SMS traversing
process.

A SMS message is traversed only once. Since SMS
message always has a limit length, in this respect, the time
complexity of processing a single SMS message is also
constant.

FIGURE 10 shows the traversing process of a SMS
message.

FIGURE 10. The SMS traversing process.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS
The experiment is based on production environmental data of
the SMS service company cooperated with us mentioned in
Introduction.

The experiment is designed to validate the constant time
complexity of the proposed spam detection algorithm. The
filter processes a given set of SMS and filters certain spam
SMS in it. Then, we will check if the processing time
remains stable while adding more rules with term vocabulary
expanding.
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Algorithm 1 Single SMS Filtering
Step 1. Start processing from the 1st symbol of the SMS
message.
Step 2. Perform a Hash search on 1st level of the Hash
Forest. If not found, go to Step 7.
Step 3. Perform a Hash search on 2nd level of the Hash
Forest. If not found, go to Step 7.
Step 4. Perform a Hash search on ith level of the Hash
Forest. If not found, go to Step 7.
Step 5. Perform a Hash search on the leaf level of the Hash
Forest. If not found, go to Step 7.
Step 6. Term detected and set code extensions by bit.
If the numerical value of the code is 0, a matching rule is
reported.
Step 7. If the current symbol is not the last one, process the
next symbol and go to step 2.
Step 8. Check if any matching rules are reported. If so,
report spam SMS with the rules’ IDs.

The filter speed is too fast to notice the time difference for
a small size of SMS set. To make the processing time visible,
the given set of SMS has a size of 500,000.

To verify the overall spam detection time, the experiment
is designed to perform on 9 different sizes of rules. The first
batch has 120 rules and they filter out 28533 spam SMS.
Then, 10 rules are added each time. The 2nd one contains
130 in total. And so on, the 9th group contains 200 rules. The
term vocabulary expands while adding more rules.

The experiment is run on a MacBook Pro 2018 and the
results are shown in TABLE 3.

TABLE 3. Experimental results.

Please note that 500,000 SMS are filtered below
26 seconds. The filtering speed of the algorithm running on a
laptop is 70,000,000 SMS per hour. Actually, our cooperated
SMS service company reports a nearly 10 times faster speed
on their server.

As shown in FIGURE 11, the time consumed to filter the
50,000 spam remains stable while rules consistently increase.
In this procedure, term vocabulary expands much larger than
its original. Therefore, the experiment results validate the
constant time complexity of the spam detection algorithm
proposed in this paper.

FIGURE 11. The experimental results: consumed time (seconds) and
expanding term vocabulary.

In addition, the methods and algorithms in this paper have
also been implemented in a SMS service company in anti-
spam industry. 80 million SMS are sent per day on average
and 150 million are sent on peak days. The rules keep raising.
According to our latest contact, the company is currently
holding 110k rules, including 10k black rules and 100k white
rules. The processing speed remains stable regardless the
increasing size of rules and its vocabulary. Before imple-
menting the proposed algorithm, the company had 6 powerful
servers to parallel compute their old filtering program. Now,
only one virtual server is dedicated to filter spam SMS and
its CPU occupation is low.

B. AN ADDITIONAL FEATURE: SEQUENTIAL MATCHING
Sequential Matching is an additional feature of the method
presented in this paper. In addition to Boolean expression
matching, the SMS service company also demands each pair
of brackets of an expression must be satisfied one after
another sequentially.

Take the rule (ca$h||credit)&&(cost)&&(loan||debt) for
instance, the second bracket is TRUE not only when term cost
is detected but also when the first bracket is already TRUE.
Also, the third bracket is TRUE not only when term loan or
debt is detected but also when the first and second brackets
are already TRUE.

This feature can be achieved by setting a criterion to
expression code setting process. That is, a bit of a code can
only be modified unless the preceding bits have been set to 0.
This can be done by checking the numerical value of the
preceding bits.

V. CONCLUSION AND FUTURE WORK
In this paper, a constant time complexity spam detection
algorithm was put forward to boost throughout on rule-based
filtering systems and the computational complexity of the
proposed algorithm was analyzed. Since each step in the pro-
posed algorithm, including detecting a term and calculating
logical operators of expressions, has O(1) time complexity,

82660 VOLUME 8, 2020



T. Xia: Constant Time Complexity Spam Detection Algorithm for Boosting Throughput on Rule-Based Filtering Systems

the overall time complexity for spam detection is O(1). That
is, the speed of the spam detection algorithm presented in this
paper is independent of rule size and rule term vocabulary.
The experiment results validated the O(1) time complexity as
the spam detection rules and its terms increasing.

We are now working on upgrading the algorithm to make
it much more flexible. Actually, the ! (NOT operator) can be
supported by a simple modification. More operators such as
‘<=’, ‘<’, ‘>=’ or ‘>’ will be supported in the future.
In addition, more technics will be engaged in our future

research to work on incremental rules and their vocabulary,
including one-pass compressing techniques [29] and rough
set [30].
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