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ABSTRACT To make good use of valuable Internet of Things (IoT) data assets, this paper proposes a
trust-aware IoT data economic system (TIDES) with complete IoT data pricing, trading and protection
functions. To ensure reliable and automatic data trading, the entire trading process is automatically performed
by smart contracts on a hierarchical blockchain. Moreover, we develop several sophisticated methods to
ensure the efficiency and service quality of TIDES. First, a complete evaluation model that takes the data
trading profile and reputation into consideration is proposed for both suppliers and demanders to assess
the trustworthiness of their trading partners. Second, a client-centric data value evaluation model and a
game-theory-based pricing model are used to promote win-win transactions in which the demanders obtain
higher quality data at an acceptable price and the suppliers receive higher profits. Third, a dispute arbitration
model is invoked to detect suspicious trading and refund these payments automatically. TIDES further
utilizes a multi-access edge computing (MEC) architecture to alleviate the huge burdens of IoT devices from
blockchain operations, reduce the trading latency, and help mobile devices to trade IoT data. The simulation
results have shown the advantages of TIDES in terms of trading time, storage overhead, data trading profit,
quality data trading, pricing efficiency, and reliability on data asset management and trading.

INDEX TERMS Blockchain, data economy, data trading, edge computing, Internet of Things (IoT).

I. INTRODUCTION
With the emergence of Internet of Things (IoT), various
IoT devices are widely deployed to realize a wide variety
of smart cyber-physical systems (CPSs), such as intelligent
transportation systems and smart grids, where data are the
most valuable assets. However, a large IoT deployment for
only one silo application is not easy to sustain. Additionally,
complex data-intensive applications usually need data from
multiple sources; therefore, IoT service providers tend to
purchase data from multiple sources. Thus, IoT data trading
is becoming active, and the establishment of trustworthy and
reliable IoT data economic systems has become a necessity.

Such systems must be able to efficiently manage the life-
cycle of IoT data, which typically consists of stages: data
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collection, data analytics, data pricing, data trading, and data
protection [1]. During data collection and data analytics, mas-
sive amounts of heterogeneous data are collected and applied
to generate useful knowledge, and the results are called data
services. However, these two stages often suffer from the
problems of inefficient data access and changeable data qual-
ity. To valuate the provisioning of data services, deciding how
to charge for the services occurs in the data pricing stage.
However, in a highly dynamic market, deriving an immutable
pricing strategy for diverse IoT applications is practically
infeasible. In the data trading stage, the demanders decide
their target data and the suppliers ship their commodity.
However, an untrusted supplier might provide counterfeits,
and on the other hand, a deadbeat could bilk, which leads
to unreliable transactions. In addition, because IoT data are
usually sensitive and valuable, cybersecurity for data storage
and data delivery is ensured at the data protection stage.
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Finally, to sustain applicable IoT services, all operations in
these five stages are required to perform automatically [2] and
efficiently and to easily support mobile devices.

A solid IoT data economic system, including the pro-
posed trust-aware IoT data economic system (TIDES), should
be designed to fulfill some critical requirements. The most
important requirement is reliability. For this requirement,
the system should provide stable trading services and further
prevent trading and its records from manipulating and dom-
inating. The confidentiality of data storage and data delivery
also needs to be protected. Finally, when one side in a transac-
tion is malicious, the system should be able to rapidly address
this situation. However, traditional trading systems usually
provide services from centralized servers that are vulnerable
to single points of failure, which might lead to system unreli-
ability. Intelligence is required to guarantee service quality so
that the system can smartly help both demanders and suppli-
ers to make decisions based on their expectations. According
to the hypothesis of rational people [3], suppliers tend to
maximize their profits, and demanders want to obtain the
most satisfactory commodity at an acceptable price. Gener-
ally, a higher price increases profits but reduces the purchase
intention which is also related to commodity quality. The
existence of competitors also influences the probability of
transactions. Thus, for suppliers, providing a pricing strategy
that considers the variable market situation to maximize prof-
its is a necessity. For demanders, the first thing they need to
do before purchasing a data commodity is to assess its value,
which is related to data quality. Automation is an inevitable
requirement for trading, and themassive IoT data necessitates
an algorithmic trading mechanism [4] without manual inter-
vention. Efficiency is also highly demanded; thus, latency and
resource utilization need to be taken into consideration. The
time for a data transaction includes both the trading time and
the access time. The volume of IoT data always leads to heavy
burdens on data access, while a complicated data trading
mechanism takes a very long trading time. Moreover, as most
IoT data are queried locally, not all data need to be delivered
globally. To this end, edge computing is a promising solution
that benefits not only system performance but also network
resource utilization. Finally, the requirement for mobility
management cannot be ignored. As both data suppliers and
data demanders can be either mobile users or IoT devices,
they might need to create transactions when moving.

There have been several blockchain-based solutions for
distributed data trading [5]–[8]. A publish/subscribe frame-
work [5] was proposed by Hashemi et al. Roman and Stefano
proposed a trusted data marketplace architecture by evaluat-
ing user credit [6], and both the demander and the supplier
have to sign a smart contract to manage their operations
by manual intervention. Filecoin [7], similar to Bitcoin [8],
is a data storage service that applies the concept of proof-of-
retrievability. It encourages nodes to contribute their storage
as much as possible. Although these distributed data trading
systems alleviate the problems of centralized systems, they
neither provide IoT data pricing strategies nor handle trading

disputes, and hence fail to fulfill the intelligence and reliabil-
ity requirements as indicated above.

In our previous work [9], the reliable IoT data economic
system (RIDES) was proposed to provide IoT data as a foun-
dation trading service. This paper further presents TIDES,
which carries out the holistic functions of data pricing, trading
and protection. This system also provides secure and tamper-
proof data trading channels with a hierarchical blockchain
that fulfills the reliability requirement. Owing to the decen-
tralization property of blockchain technology, users can trade
fairly without being dominated. The secure design of TIDES
for IoT data lifecycle management also ensures reliable data
storage and delivery. To ensure trading reliability, an inte-
grated evaluation model that takes the data trading profile
and reputation into account is proposed for both suppliers
and demanders to assess the trustworthiness of their trading
partners and further reduce the trading failure rate. Even if
the demander has unfortunately created a transaction with a
malicious supplier, its payment can be refunded automatically
through a dispute arbitration procedure. To fulfill the intelli-
gence requirement, on the supplier side, we propose an intel-
ligent, game-theoretical pricing model in accordance with the
pricing strategies of competitors to determine an appropriate
price. This pricing model gives the suppliers notably higher
profits than other models. On the demander side, a client-
centric data value evaluation model is used to evaluate the
data value and determine which data commodity is worth
purchasing. With this model, the demanders can obtain sat-
isfactory data commodities at acceptable prices. To address
the automation requirement, all trading procedures in TIDES
are algorithmic and performed automatically by exploiting
the smart contract technique. Furthermore, TIDES applies
the multi-access edge computing (MEC) paradigm [12] with
a hierarchical blockchain. With this efficient data trading
architecture, the burden on IoT devices can be alleviated
and the mobility issue can be solved. Therefore, TIDES also
fulfills the requirements of efficiency and mobility. Then,
thorough simulations are conducted. The simulation results
demonstrate that the system performance and storage over-
heads of TIDES are better than those of existing systems. The
increased profit, higher quality data trading and better pricing
efficiency brought by the proposed intelligent pricing model
and the improved trading reliability due to the trustworthiness
evaluation also show the advantage of TIDES. To the best of
our knowledge, TIDES is the first and most complete system
proposed to efficiently provide IoT data commodities with a
reliable, intelligent, and automatic trading environment.

The paper is organized as follows. Section II provides
background information related to this work. Section III
describes the details of the system architecture, and
Section IV presents the proposed methods for reliability
and trust-awareness design. The system flows of TIDES
are described in Section V. Then, the simulation results for
TIDES are shown in Section VI. Finally, the concluding
remarks for this paper are given in Section VII, and the abbre-
viations used in this paper are summarized in the appendix.
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II. BACKGROUND
A. BLOCKCHAIN TECHNOLOGY AND SMART CONTRACT
Blockchain is an emerging technology whose immutability
allows it to reliably store data. Bitcoin [8] is the first suc-
cessful blockchain-based cryptocurrency, and Ethereum [10]
further improves blockchain as a programmable distributed
trusted infrastructure. The core technique making Ethereum
programmable is the smart contract, which is a self-executing
data structure described in high-level languages, such as
Python, compiled into bytecode, and then executed by all
nodes equipped with the Ethereum Virtual Machine. A smart
contract can apply conditional expressions to describe a deter-
ministic environment. When a condition described in a smart
contract is satisfied, an activation transactionwill be deployed
to the blockchain network to activate the smart contract.
Then, the corresponding trading specified in the smart con-
tract will be performed. In an Ethereum smart contract, the
Contract ID and application binary interface (ABI) [11] with
bytecode are the most important information. The former
indicates where the smart contract is, and the latter describes
the content of smart contracts for human reading. In addition,
some trading information, such as data URLs, can also be
stored in a smart contract to detail the trading.

B. MULTI-ACCESS EDGE COMPUTING (MEC)
In the past, cloud computing was widely applied to all
types of services. However, the volume of IoT data has
congested cloud servers leading to the denial of service.
The high network latency between cloud servers and IoT
devices also makes cloud computing technology inapplicable
in high-speed IoT applications. Therefore, the MEC architec-
ture has been proposed to provide additional resources, such
as computing power and storage space, at the edge side, which
can fulfill the low-latency requirement of IoT services while
significantly alleviating the cloud server loads [13]. As MEC
services are usually provided by network service providers,
the roaming problem ofmobile devices can also be addressed.

C. DATA PRICING MODEL
The data pricingmodels can be categorized into two types [1].
The economic-based pricingmodel evaluates the price of data
according to economic principles, such as costs and margins.
The game-theory-based pricing model considers competitor
behaviors before pricing.

1) ECONOMIC-BASED PRICING MODELS
• Cost model [14]: This model considers only the com-
modity costs and profit margins. The simplicity of this
model is a remarkable advantage. However, the lack
of external information leading to market misjudgment
also makes it ineffective in data trading [15].

• Consumer perceived model [16]: The suppliers using
this model take the demander’s feedback into account.
In general, this model is more suitable for data pric-
ing than the cost model. However, ignoring supply

conditions makes it difficult to derive the most appro-
priate price.

• Supply and demand model [17], [18]: In this kind of
model, the relationship between suppliers and deman-
ders is the most important factor for pricing. In [17],
a linear supply function and a linear demand function
are formulated to derive the price. In [18], a pricing
system, called MGA, is proposed by formulating the
willingness of suppliers and demanders as two natural
logarithmic functions. Although the intersection of sup-
plier and demander functions implies the price that has
the best probability to reach a deal, the neglect of market
situations, such as the competition between suppliers,
leads to inappropriate pricing.

2) GAME-THEORY-BASED PRICING MODELS
• Non-cooperative game model [19], [20]: In [19], sup-
pliers do not need to negotiate with each other. Instead,
suppliers derive their prices by referring to the pricing
strategies announced by other suppliers. This model is
applicable in IoT environments but might result in a
price war. Exploiting a centralized broker, the authors
of [20] proposed a pricing method that takes all deman-
ders and suppliers into account to derive appropriate
prices without price cutting. However, since numerous
transactions for IoT data will be created dynamically,
a centralized pricing system, which usually becomes
a performance bottleneck, is unpractical for IoT data
trading.

• Stackelberg game model [21]–[23]: In this kind of
model, each supplier announces its price after the major
supplier does. In the IoT data trading environment, how-
ever, the determination of the major supplier is difficult
and inefficient, which makes this model impractical.

• Bargaining game model [24]: In this model, sup-
pliers and demanders negotiate to reach an agree-
ment. Nevertheless, the negotiation process is usually
time-consuming and resource-wasting. Thus, this model
is not suitable in the IoT data trading scenario.

III. TRUST-AWARE IOT DATA ECONOMIC SYSTEM
Fig. 1 and Fig. 2 show the functional model and system archi-
tecture of TIDES based on the MEC infrastructure where the
data suppliers and data demanders could be human-operated
devices or autonomous IoT devices within each radio access
network (RAN) area. An IoT device or user equipment
may play the roles of both supplier and demander. For
resource-constrained data suppliers and demanders, IoT gate-
ways can be the intermediaries between them and TIDES.
As shown in Fig. 2, TIDES contains the functional enti-
ties of data repositories (DRs), an information broadcasting
station (IBS), data trading agencies (DTAs), a data trading
blockchain (DTB), and a transaction dispute arbiter (TDA)
to constitute a complete ecosystem of the IoT data economy.
DRs implement a decentralized data storage scheme that can
adapt to different requirements for data privacy, access speed,
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FIGURE 1. The functional model of TIDES.

FIGURE 2. The MEC-based system architecture of TIDES.

and storage capacity. DTAs allow data trading stakeholders
to draw smart contracts and accomplish each data transac-
tion. IBS is commissioned to advertise the smart contracts
announced by data suppliers, the service specification of each
DR entity, and the service specification of each DTA. TDA is
authorized to arbitrate the disputes of IoT data transactions.
These four types of functional entities are for public cloud
services with avatars on ME hosts. A cloud-edge coordina-
tion mechanism is designed for each cloud site and its edge
avatars to fully exploit the advantages ofMEC. DTB is imple-
mented on the Ethereum platform to provide a secure and
tamper-proof financial flow for data trading. It also adopts
a hierarchical structure that consists of a main chain over the

Internet and multiple local chains on ME hosts. In TIDES,
IBS, TDA and DTB are public services, while DR and DTA
are contract-based services.

Based on the algorithmic trading mechanism [4], TIDES
realizes a trust-aware algorithmic data trading scenario.
On the supply side, when a supplier acquires a new IoT data
asset, it encrypts the asset, and then deposits the encrypted
asset in a commissioned DR. In addition, the supplier prices
the data asset and draws a smart contract to sell this asset
by consulting a DTA. The contract is then deployed to DTB
through DTA and announced on IBS. On the demand side,
every demander smartly chooses what it wants by referring
to the advertisements announced on IBS. Then, it starts to
purchase the chosen data commodity according to the corre-
sponding smart contact in DTB and accomplishes the pay-
ment to the assigned account. After the payment has been
transferred to the data supplier, the purchased data commod-
ity and its corresponding key can be delivered to the demander
securely. Next, the demander verifies whether the received
data are satisfactory. If any argument occurs, it can request
the TDA to arbitrate, and obtain the refund once this request
is approved. The details of the operational flows will be
introduced in Section IV.

From the viewpoint of commercial business, TIDES can
have multiple DTAs with their own service know-how.
As depicted in Fig. 1, each specific DTA deploys its edge
agents on ME hosts in different RANs to serve nearby sup-
pliers and demanders. These edge agents allow IoT devices
to make local data trades, and each of them deploys smart
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contracts into the local chain of DTB on the same ME
host under the commissions from data suppliers. To provide
its data asset for global usage, the supplier designates its
smart contract to be deployed to the main chain of DTB.
Then, the commissioned DTA edge agent transfers this smart
contract deployment task to its cloud server. Similarly, one
demander delegates a DTA edge agent to purchase a data
commodity from the local chain of DTB in the same RAN.
If the data commodity is supplied by a cloud DR or an
edge DR in another RAN, then the delegated edge agent will
transfer the task to its DTA cloud server to activate the target
smart contract from themain chain of DTB. Purchasing a data
commodity from another RAN requires more collaboration
between the DTA cloud server and the corresponding edge
agents.

As shown in Fig. 1 and Fig. 2, the local interactions
of functional entities on the same ME host can achieve
most of the TIDES functions for the data suppliers and
demanders in the same RAN, which can make data trad-
ing more efficient and even more reliable. The IBS edge
agents and TDA edge agents have similar edge-cloud col-
laboration scenarios to that of DTA. Each IBS edge agent
advertises the smart contracts and the DR edge centers for
local clients in the same RAN, while the IBS cloud server
collects advertisements for global clients. Each TDA edge
agent serves the dispute arbitration requests from demanders
in the same RAN. When receiving an arbitration request
to the data supplier in another RAN, the TDA edge agent
will transfer this task to the TDA cloud server to coordinate
the arbitration procedure between the corresponding edge
agents.

As other functional entities, TIDES also implements a
data repository with a hierarchical structure, which con-
sists of DR cloud centers and their edge agents. Dif-
ferent DRs have different service strategies. For privacy
and security considerations, the traded data commodity
may be stored in the private storage of a data sup-
plier or an IoT gateway. In this case, the traded data
set will be directly delivered from the supplier to the
demander.

The structure of the smart contract for IoT data trading
in TIDES, which is composed of contract ID, contract ABI
with bytecode, and trading information, is shown in Fig. 3(a).
The former two parts follow the rules defined in Ethereum.
The last part consists of four fields. The DR field details the
ID of DR and the location where the data asset is stored.
The DTA field names the ID of the commissioned DTA. The
trading field describes the traded data. The optional field
enumerates additional information about the trade, such as
the supplier’s public key. When the data supplier receives a
payment for a smart contract that it announced, it provides
the DR URL and data wrapped key for this transaction in
the smart contract. Then, the demander can obtain the traded
data from the DR and the data wrapped key from blockchain.
In addition, Fig. 3(b) shows the information described in a
smart contract advertisement.

FIGURE 3. The smart contract and smart contract advertisement in TIDES.

FIGURE 4. Functional structure of the IoT gateway.

IV. SECURITY, PRICING, AND TRUST-AWARENESS
MODELS IN TIDES
A. SECURITY DESIGN FOR IoT DATA LIFECYCLE
MANAGEMENT
TIDES employs multiple data protection mechanisms at the
infrastructure layer and the data layer.

1) SECURITY DESIGN AT THE INFRASTRUCTURE LAYER
In TIDES, all functional entities interact through secure chan-
nels constructed by means of the security architecture of 5G
MEC and the network slicing scheme to ensure communi-
cation security. Blockchain technology also guarantees the
integrity and temporal consistency of all transactions to sus-
tain reliable data trading.

2) SECURITY DESIGN AT THE DATA LAYER
The security design at the data layer intends to prevent
IoT data assets from being disclosed to unauthorized users
or devices, and this design is mainly implemented in IoT
devices, user equipment, and IoT gateways. The functional
components of stand-alone data suppliers and demanders
are depicted in Fig. 1, while the functional structure of the
IoT gateway that helps resource-constrained data suppliers
and demanders to accomplish their data trading operations is
illustrated in Fig. 4.
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TIDES employs a series of encryption schemes to prevent
data assets from unauthorized access while ensuring the orig-
inator identity. Whenever a supplier acquires a new data set,
this device or its IoT gateway invokes the data encryptor to
encrypt the data set with a random key, Keyr , as in (1).

Datae = Es
(
Datap,Keyr

)
, (1)

where Es (x, y) indicates a symmetric encryption operation
to encrypt the data x with the key y, while Datap represents
the plain data set and Datae is the encrypted one. The Datae
will be stored in a data repository, and the Keyr is held
by the supplier. Then, whenever the data supplier receives
the payment notification for an approved data transaction,
it invokes the wrapped key generator to generate the data
wrapped key, Keyw, of Keyr by (2).

Keyw = Ea
(
Ea
(
Keyr ,Key

d
pub

)
,Keyspri

)
, (2)

where Ea (x, y) represents the asymmetric encryption opera-
tion to encrypt the data x with key y, Keydpub is the public key
of the demander retrieved from the payment notification, and
Keyspri is the private key of the supplier.

After receiving Keyw, the demander invokes its data
decryptor to derive Keyr by (3).

Keyr = Da
(
Da
(
Keyw,Key

s
pub

)
,Keydpri

)
, (3)

where Da (x, y) indicates the asymmetric decryption opera-
tion to decrypt the encrypted data x with key y, Keydpri is the
private key of the demander, and Keyspub is the public key
of the supplier retrieved from the smart contact. With Keyr ,
Datae can be decrypted via symmetric decryption, Ds (x, y) ,
where x is the encrypted data and y is the key for obtaining
the original data set Datap by (4).

Datap = Ds
(
Datae,Keyr

)
. (4)

B. TRUSTWORTHINESS EVALUATION MODELS
Trust is a key factor of satisfactory IoT data trading. Thus,
TIDES proposes trustworthiness evaluation mechanisms for
suppliers and demanders to assess the trustworthiness of their
trading partners.

For user d , the trustworthiness Trustds of a potential trading
partner s can be derived in (5)

Trustds = β · OT s + (1− β) · ST
d
s , 0 ≤ β ≤ 1, (5)

whereOT s indicates the objective trustworthiness of s, ST ds is
the subjective trustworthiness of s for d , and β is a weighting
factor. First, user d will consult its DTA, whose trust evalu-
ator provides the trustworthiness evaluation service for data
trading stakeholders. All involved information for the trust-
worthiness evaluation should be tamper-proof and accessible.
Therefore, the trust evaluator refers to only the trading records
and account balance on DTB and the arbitration records on
TDAwhen derivingOT s. Because it is more sophisticated for
a trading partner with more transactions, the trust evaluator
considers the number of transactions that has been completed

by s, Trans, as a parameter. In addition, a trading partner with
more arbitration records means it is not reliable. Hence, the
trust evaluator retrieves the arbitration records Rets of s from
TDA as a parameter. Moreover, a wealthy supplier usually
has less motivation to maliciously provide incorrect data
and has a greater capability to pay compensation, whereas
a wealthy demander usually has less possibility of fraud in
data transactions. Hence, the trust evaluator also takes the
account balance ABs of its trading partner into account. As a
result,OT s can be defined as a linear combination of the three
parameters in (6),

OT s = ε1

(
Trans
Tranall

)
+ ε2(

Rets
Trans

)+ ε3

(
ABs
ABall

)
, (6)

where Tranall and ABall indicates the total number of trans-
actions and amount of crypto-currency in TIDES, respec-
tively, and ε1, ε2, ε3 are the weighting factors such that
ε2 + ε2 + ε3 = 1.
To assess ST ds , the trust evaluator considers the social

relationship between s and d as a key factor because gen-
erally, a trading partner with more common friends is more
trustworthy [25], [26]. In other words, s will be more worthy
of d’s trust if it has more common trading partners with d .
Thus, ST ds is defined as the proportion of common trading
partners between s and d with respect to the number of all
trading partners of d in the trading records of TIDES.

ST ds =
|TPd ∩ TPs|
|TPd |

, (7)

Here, |TPd | and |TPs| respectively denote the number of
trading partners of d and s in their data trading records,
and |TPd ∩ TPs| is the number of common trading partners
between d and s. The information of trading partnership can
be discovered in DTB.

C. DATA VALUE EVALUATION AND PRICING MODELS
Accurately evaluating data values and appropriately deciding
data prices are two important issues for demanders and sup-
pliers to achieve successful data trading. Generally, suppliers
would like to obtain the most profit, which might decrease
the purchase intention [14], and demanders want to buy the
data commodity with better quality at an acceptable price.
Thus, for demanders, TIDES proposes the client-centric data
value evaluation model to assess data values and further
determine what to buy based on data values and data prices.
To ensure a data trading reliability, the trustworthiness of the
data supplier will also be taken into account. For suppliers,
TIDES proposes an intelligent pricing model based on an
enhanced game-theory method.

1) CLIENT-CENTRIC DATA VALUE EVALUATION MODEL FOR
DEMANDERS
Themarket value of a data asset is usually related to its quality
satisfaction (QS) degree with respect to the requirements of
the demander. The QS of a data asset, DA, with respect to the
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quality requirements of demander d,QSDAd , is given by (8):

QSDAd = min
k∈QA

{
qDAs (k)

rqDAd (k)

}
, (8)

whereQA denotes a set of quality attributes such as precision,
granularity and integrity for a data asset, qDAs (k) is the quality
value of attribute k of DA, announced by its supplier s in a
smart contract, and rqDAd (k) is the required quality value of
d on k for DA. According to the evaluation result of QSDAd ,
the value of DA, vDAd , for demander d can be derived as given
by (9).

vDAd =

{
pDAM · Trust

d
s , if QSDAd ≥ 1

0, otherwise
(9)

where pDAM is the average selling price of data commodities of
the same type and quality as DA in TIDES. Since all trading
information is recorded, the selling prices of all data sets can
be inquired in data trading KB, and pDAM can be regarded as the
objective value of DA. For a demander, the value of a data set
is also influenced by the trustworthiness of its data supplier.
Thus, as in (9), Trustds which is the trustworthiness of s for d ,
is also taken into account. Note that QSDAd must be greater
than one because otherwise,DAwould be disqualified for the
demander. As concluded in [18] and [27], demanders intend
to purchase the data commodity with higher C-P ratio. Thus,
TIDES estimates the C-P ratio if d purchases DA as follows,

CPDAd =


vDAd
PDAs

, if PDAs < PLDAd

0, otherwise
(10)

where PDAs is the price of DA set by s, and PLDAd is the
acceptable price of DA set by d . After PLDAd is determined,
it will be delivered by d to its DTA agent for further usage.
For simplification, it is supposed that d will assign the same
acceptable price to the data commodities with the same type
and quality.

In TIDES, a demander first defines the acceptable price for
the data asset that it wants to purchase before performing the
client-centric data value evaluation model. Then, it consults
the data value evaluator of its DTA agent to compute the C-P
ratio of each candidate data commodity. The evaluator will
refer to the value of pDAM from the data trading KB and the
value of Trustds from the client DB. These two values are
maintained by the KB maintainer which continuously ana-
lyzes the trading records and market feedback information in
TIDES. Then, the demander can decide whether it purchases
DA or not by referring to CPDAd .

2) GAME-THEORY-BASED PRICING MODEL FOR SUPPLIER
To construct a smart contract for selling an IoT data asset,
DAs, the supplier s consults with its DTA. Its smart contract
constructor will ask for a suggestion from the DTA’s data
price analyzer about the price of DAs, and then the analyzer
will refer to the data trading KB to respond this inquiry.

In addition, the DTA’s KB maintainer employs the following
game-theory-based pricing model to update the data trading
KB by referring to the historical information of data trading
over TIDES.

For a supplier, both the demand and supply statuses and the
bids from competitors significantly influence the probability
of successful trading. Thus, an appropriate pricing strategy,
such as the game-theory-based pricing model, should take
the market situation into account. However, as mentioned
in Section II, both the Stackelberg game model and the
bargaining game model are impractical in IoT data trading.
Traditional non-cooperative game models are more efficient
but usually lead to a price war. Hence, by combining the
economic-based pricing concept and the non-cooperative
game model, TIDES proposes an enhanced game-theory-
based pricing model that not only considers the market sit-
uation but also avoids low price competition. The proposed
pricing model is introduced in the following section.

Similar to the cost model, the price of any data commodity
offered by the supplier, s, can be formulated into a general
form as described in (11):

PDAs = costDAs ·
(
1+ mDAs

)
, mDAs > 0 (11)

where costDAs denotes the cost spent to acquire and maintain a
data set DA, and mDAs is the margin that s would like to obtain
from selling DA. The main goal of TIDES is to find an mDAs
that makes the decided selling price of DA generate the most
profit for s. However, PDAs considers only the expectation of
the data supplier. Referring to the consumer perceived model,
our pricing model also takes the willingness of demanders
into account. Since the intention that a demander purchases
a commodity is related to its C-P ratio, the supplier should
estimate the C-P ratio for its data commodity to be sold in the
market by (12):

CPDAest =
PDAM
PDAs

(12)

where pDAM can be obtained from the data trading KB.
Then, based on [18], our pricing model proposes an
exponential-based S function as in (13) for the supplier s to
estimate the purchase intention of demanders to buy DA:

PIDAs =

1+ e
−

(
CPDAest −β

γ

)−1 (13)

where γ and β are two pre-defined system parameters.
Then, the probability that a demander decides to purchase

DA can be derived as in (14) by referring to the purchase
intention of all data commodities, which have the same type
as DA, from other suppliers,

PrDAs = PIDAs
/∑n

k=1
PIDAk (14)

where PIDAk denotes the purchase intention to buy a data com-
modity whose type is the same as that of DA and generated
by supplier k , and n is the number of this kind of supplier.
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It can be estimated by the data trading KB by referring to
the historic pricing records. In addition, because TIDES tends
to provide demanders with higher quality data, a calibrating
function that combines both data quality and purchase prob-
ability is further provided in (15),

CPrDAs =
PIDAs

/
QDAs∑n

k=1 PI
DA
k

/
QDAk

(15)

whereQDAi denotes the minimal value of all quality attributes
in a data commodity whose type is the same as that of DA
and supplied by i. Then, the supplier s can derive the expected
profit according to the calibrated probability as in (16),

AEPDAs = costDAs · m
DA
s · CPr

DA
s (16)

Additionally, the margin that can create the most profit for s
by selling DA, called mDAs,max , can be derived as follows,

mDAs,max = argmax
CSWy∈Y ∗

AEPDAs = argmax
CSWy∈Y ∗

costDAs · m
DA
s · CPr

DA
s

(17)

Moreover, as malicious demanders could return commodi-
ties for no reason, suppliers might suffer inestimable losses.
To prevent this type of badmouth attack, suppliers can set
a constraint in smart contracts to exclude untrustworthy
demanders.

D. DISPUTE ARBITRATION MODEL FOR DATA TRADING
Disputes are always issued by the demanders. Three types of
disputes might occur in a data transaction: get_wrong_key,
miss_key, and get_wrong_data. The TDA entities contain two
functional modules, key judge and data judge, to arbitrate
these disputes.

1) KEY JUDGMENT MODEL
After the demanders deliver their payments, they will wait
for the data wrapped key and use it to generate the decryption
key. However, the suppliers might fail to deliver the key or
deliver a wrong key that incurs a dispute. In the miss_key
dispute, if the demanders apply the blockchain paymentmode
to deliver their payments, the data wrapped key should be
stored on blockchain. Thus, it is easy for TDA to determine
the miss_key situation and then perform the refund procedure
by sending a smart contract. In the get_wrong_key dispute,
the demanders need to transmit the received decryption key
to TDA. Then, TDA can discover whether the data wrapped
key is correct and the decryption key can decrypt the data.
Otherwise, TDA will activate the refund procedure.

2) DATA JUDGMENT MODEL
It is also possible that the received data commodity is not
what the demander wants. In such a case, the demander can
transmit this commodity to TDA, which will conduct the
arbitration based on the information in IBS. If the argument
is approved, the refund procedure will then be performed.

FIGURE 5. The service provisioning mechanism of each functional entity
in TIDES.

V. OPERATIONAL FLOWS AND PROTOCOLS OF TIDES
A. SERVICE PROVISIONING, HANDOVER AND
COORDINATION SCHEME OF TIDES
TIDES adopts the service-oriented architecture (SOA).
As shown in Fig. 5(a), all entities employ a subscription-
based service provisioning mechanism to realize various
data trading services in a mobile environment. The ser-
vice provisioning engine (SPE) is used to implement the
protocols illustrated in Figs. 5(b) and (c). Each subscrip-
tion queue records the requests issued from other entities
for a specific service function until the subscribed ser-
vices are completed or aborted, and it has a corresponding
work memory to store the intermediate results generated by
the functional components invoked to implement the sub-
scribed services. These functional components may further
collaborate with other functional entities to complete their
missions.
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The service provisioning protocol is illustrated in Fig. 5(b).
For a functional entity, all the potential collaboration enti-
ties can raise their service requests to its SPE at any time.
Whenever a new request is subscribed, the SPE classifies
this subscription, places it into the corresponding queue, and
sets the service completion event to be matched with the
intermediate service execution results stored in the working
memory. Subscriptions with the same requirement specifi-
cation will be clustered as an aggregated subscription to
deliver the service result concurrently. The SPE persistently
schedules and invokes the responsible functional components
to implement the subscribed services. The invoked functional
components will place their execution results in the corre-
sponding working memory. Whenever a service completion
event is triggered by the content of working memory, the SPE
will be notified and then collect the satisfied subscriptions
from the corresponding queue. The original service request-
ing entities of these subscriptions will be notified to retrieve
the service results from the working memory at its conve-
nience. Obviously, according to the protocol of Fig. 5(b),
the SPE can support asynchronous andmulti-threaded service
provisioning.

In TIDES, functional entities are deployed in both cloud
centers and ME hosts, but data suppliers, demanders, or their
gateways may be mobile devices. Thus, the mobility issue
must be solved. Fig. 5(c) shows the service handover and
coordination protocol executed by SPE to successfully deliver
each service to the requesting device even if it has moved into
another RAN. This protocol is the underlying mechanism of
Fig. 5(b), which is automatically executed to support service
handover based on the operational structure of the ETSI
MEC. When service handover occurs, the SPE also needs
to maintain the continued operation for the collaborations
between its host edge agent and the other edge agents of
different functional entities or the cloud server of the same
functional entity. As shown in Fig. 5(c), the locations of
mobile entities in TIDES are tracked. When a mobile device
was detected moving from one RAN into another RAN, the
SPE of each functional entity that provides service to this
mobile device will be notified to initiate a service migra-
tion procedure. The ongoing service task and the associated
context information will be transferred from the original
edge agent to the current edge agent of the same functional
service. The migration must include those ongoing cross-
entity collaborations. To maintain consistency, the service
record is also sent back to the initial service-providing edge
agent.

All the following workflows are based on the service pro-
visioning mechanism and protocols in Fig. 5.

B. DTA AND DR COMMISSION PROCESSES
When a data supplier, the demander or IoT gateway is
deployed in TIDES, it will sign commission contracts with
one or more DTAs and one or more DRs for future data
trading needs. Fig. 6 illustrates the appointment processes as
follows.

FIGURE 6. The DTA/DR commission process.

DTA Commission Process:

Step 1: The DTA/DR evaluator of the consignor (the sup-
plier, demander or IoT gateway) surveys the DTAs
that advertise their services on the bulletin of the
IBS edge agent, IBSe, in the same RAN area as the
consignor.

Step 2: According to the survey result, the consignor’s
DTA/DR evaluator selects some qualified candidate
DTAs that their service specifications best match
the consignor’s requirements for the service charge,
service level, security policy, etc.

Step 3: The consignor’s DTA/DR evaluator collects the rep-
utation information of the selected candidates from
the IBSe’s ad client reputation analyzer, excludes
inappropriate candidates, ranks the remaining can-
didates, and finally selects one or more top-ranked
candidates to negotiate the commission contract for
data trading. The IBSe can independently provide the
reputation information of candidate DTAs in local
data trading. If the consigner intends to proceed with
global data trading, then the IBSe will ask for the
support from the cloud server, IBSc, to provide the
reputation information of candidate DTAs on global
data trading.

Step 4: For each candidate DTA selected at Step 3, the con-
signor’s DTA/DR evaluator negotiates with the ser-
vice provision negotiator of this DTA’s edge agent
deployed in the same RAN as the consignor. How-
ever, the edge negotiator will work with the same
DTA’s cloud negotiator to achieve a final contract
agreement.

Step 5: If one or more contract agreements are achieved,
the consignor’s DTA/DR evaluator signs commission
contracts with the target DTAs, and then terminates
this procedure. Otherwise, if there is no agreement
achieved, the consignor’s DTA/DR evaluator decides
to go back to Step 1 or terminate this procedure.
At the consignor side, all signed contracts are stored
in the profile and log DB. At the consignee side,
the client DB of DTA cloud server will store all
commission contracts, whereas the local client DB of
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FIGURE 7. The data collection and deposit process.

DTAedge agent stores only the commission contracts
of which the consignors are in the same RAN.

The process of commissioning DRs is similar to the pro-
cess of commissioning DTAs, while the consignor’s DTA/DR
evaluator will negotiate with the repository manager of DRs.

C. DATA COLLECTION AND DEPOSIT PROCESS
Fig. 7 illustrates the data collection and deposit process of a
data host (a data supplier or its gateway) in TIDES.
Step 1: The data encryptor encrypts the acquired data set Di

according to (1).
Step 2: The data dispatcher decides the storage scheme for

the encryptedDi, based on the host’s data manage-
ment policy. If the private storage scheme is adopted
due to high privacy concern, go to Step 3. On the
other hand, if the third-party storage scheme is
adopted to promote data aggregation and trading,
go to Step 4.

Step 3: (Private storage scheme) The data dispatcher deposits
the encrypted Di in the private data repository, and
DRs, logs the URL of DRs in the profile and log DB
and then terminates this process.

Step 4: The data dispatcher further considers the sales policy
for Di. If the local sales policy is adopted, go to Step
5. Otherwise, go to Step 6.

Step 5: (DR assignment for edge storage scheme) The data
dispatcher negotiates with those DRe edge centers
that have signed a commission contract with the host,
in the sequence of their ranks until the destination
DRe is decided or all candidateDRes are run out. If no
DRe can provide storage service for the encryptedDi,
the host may have the following alternative decisions:
(a) change to the private storage scheme and go back
to Step 3, (b) re-invoke theDR commission process to
delegate newDR and then repeat this step, (c) change
to the cloud storage scheme and go to Step 6.
Each candidate DRej performs the following actions.
Step 5a: The data dispatcher inquires the DRej ’s

repositorymanager of the service availabil-
ity. If the repository manager admits this
service request, go to Step 5b. Otherwise,
go back to Step 5 to determine the next
candidate DRe.

FIGURE 8. The smart contract construction process.

Step 5b: The data dispatcher submits the profile of
Di to the local management DB of DRej .
A copy of the profile will also be saved
in the global management DB of the same
DR’s cloud center (DRcj ).

Step 5c: The data dispatcher delivers the encrypted
Di to the IoT data store of DRej , logs the
URL of DRej in the profile and log DB, and
then terminates this process.

Step 6: (DR assignment for the cloud storage scheme) The
assignment process is similar to Step 5, but those
commissioned DRc cloud centers participate in nego-
tiation. If no DRc can provide storage services for
Di, then the host may have the following alternative
decisions: (a) change to the edge storage scheme and
go back to Step 5, (b) change to the private storage
scheme and go back to Step 3, (c) re-invoke the DR
commission process to delegate a new DR and then
repeat this step. During the negotiation, the candidate
DR’s edge center in the same RAN as the data host
will play the role of the service proxy between the
host and the candidate cloud DR.
Each candidateDRcj performs the same actions on the
cloud side as the DRej in Steps 5a-c and invokes the
repository manager of DRej as a proxy.

D. SMART CONTRACT CONSTRUCTION PROCESS
Fig. 8 illustrates the process by which the supplier’s smart
contract constructor executes to establish the smart contract,
as shown in Fig. 3, for data set Di.

Step 1: (Activate DTAi) Negotiate with the commissioned
DTAs in the sequence of their ranks until the destina-
tion DTA, sayDTAi, is decided or all candidate DTAs
are run out. If a DTAi is available, activate it and then
go to the next step. Otherwise, if no DTA is available,
the supplier either waits until some DTA is available
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(this process is temporally pended) or drafts the smart
contract for Di by itself (this process is terminated).

Step 2: Employ the DTAei ’s data price analyzer to obtain the
reference price ofDi according to the aforementioned
data pricing model. If the local sales policy for Di
is adopted, the reference price is estimated with the
parameter values of the data pricing model from the
DTAei ’s data trading KB. However, if the global sales
policy for Di is adopted, then the inquiry for the
reference price is forwarded to the DTAci ’s data price
analyzer which estimates the reference price ofDi by
referring to the DTAci ’s data trading KB.

Step 3: Based on the reference price of Di, decide the final
price ofDi to be announced in the contract according
to the supplier’s sales strategies and experiences that
are accumulated in the profile and log DB.

Step 4: Fills the values of all fields in the smart contract of
Di based on the information recorded in the supplier’s
profile and log DB and the execution results achieved
at previous steps.

Step 5: Activate the smart contract deployment process to
compile the complete smart contract of Di.

Step 6: (optional) Activate the smart contract advertising
process for the smart contract of Di.

Step 7: Store the smart contract and advertisement of Di into
the supplier’s profile and log DB and then terminate
this process.

The DTAei ’s data trading KB is continuously updated by
its local KB maintainer based on the analytical results of the
smart contract announcements on the IBSe, the data trading
records in the DTB local chain (DTBe), and the local dis-
pute arbitration records. The maintainer also refers to the
knowledge of interest from the DTAci ’s data trading KB to
fine tune the local KB. DTAci applies the same mechanism
for maintaining its global data trading KB by referring to
the smart contract announcements on IBSc, the data trading
records in the DTBmain chain (DTBc), and the global dispute
arbitration record.

E. SMART CONTRACT DEPLOYMENT PROCESS
Fig. 9 shows the details of this process. It is a subprocess of
Fig. 8. To initiate this process, the supplier’s smart contract
constructor sends a contract deployment request with the
trading information of Di to the commissioned DTAei .

Step 1: DTAei reviews the supplier’s request; if a global con-
tract deployment is requested, go to Step 6. Other-
wise, go to the next step.

Step 2: TheDTAei ’s contract compiler generates the bytecode
and ABI according to the trading information of Di,
and sends them to the contract deployer.

Step 3: DTBe responds the contract deployer with a
contract ID.

Step 4: The contract deployer deploys the bytecode of the
Di’s local smart contract to DTBe.

FIGURE 9. The smart contract deployment process.

Step 5: The contract deployer sends the complete local smart
contract of Di back to the supplier’s smart contract
constructor, and then terminates this process.

Step 6: The trading information of Di is sent to the DTAci ’s
contract compiler through DTAei . Then, the follow-
ing actions used to generate the global smart con-
tract of Di are the same as those described in
Steps 2∼5. However, the smart contract of Di is
deployed in DTBe.

F. SMART CONTRACT ADVERTISING PROCESS
Fig. 10 shows the details of this process. It is a subprocess
of Fig. 8. Initially, the supplier’s smart contract constructor
sends an advertisement request with the smart contract of Di
to the commissioned DTAei .

Step 1: DTAei reviews the supplier’s request; if a global
advertisement is requested, go to Step 6. Otherwise,
go to the next step.

Step 2: The DTAei ’s advertisement deployer sends an adver-
tisement request with the smart contract of Di to the
IBSe’s ad planner.

Step 3: The IBSe’s ad planner evaluates the Di’s smart con-
tract and creates an advertisement for Di by referring
to the ad KB which is maintained by the ad perfor-
mance evaluator according to the analytical results
for the trading records of the smart contracts inDTBe.

Step 4: The IBSe’s ad planner gets approval for the advertise-
ment of Di from the DTAei ’s advertisement deployer.

Step 5: The IBSe’s ad planner announces the advertisement
ofDi on the ad bulletin and logs it in the ad client DB.
Then, this process is terminated.

Step 6: The Di’s smart contract is sent to the DTAci ’s adver-
tisement deployer throughDTAei . Then, the following
actions to generate the global advertisement ofDi are
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FIGURE 10. The smart contract advertising process.

FIGURE 11. The trust-aware data trading process.

the same as those at Steps 2∼5. However, the adver-
tisement ofDi is announced on IBSc’s the ad bulletin.

G. TRUST-AWARE DATA TRADING PROCESS
Fig. 11 illustrates the entire data trading flow over TIDES,
which can be divided into the qualified contract sifting sub-
process and the trading approval, payment and data delivery
subprocess. When a demander is going to purchase data
set Di, it activates a DTAid by a procedure similar to Step 1
of the smart contract construction process, and then the two
subprocesses are executed as follows.

1) QUALIFIED CONTRACT SIFTING
Step 1: The demander’s contract dealer sends the data

purchase requirements for Di to the activated
DTAeid .

Step 2: The DTAeid
′s contract mediator reviews the

demander’s requirements; if global trading is
requested, then go to Step 6. Otherwise, go to the
next step.

Step 3: TheDTAeid ’s data value evaluator collects the data
contract advertisements that meet the demander’s
requirements from the local IBSe, and evalu-
ates the collected data trading contracts based

on the data value evaluation model proposed in
Section IV.C. The evaluation results are then sent
to the contract mediator as a reference for decid-
ing the qualified data contracts to proceed with
data transactions.

Step 4: The DTAeid ’s trust evaluator employs the model
proposed in Section IV.B to estimate the suppli-
ers’ trustworthiness of the contracts collected at
Step 3. The evaluation results are then sent to
the contract mediator as a reference for deciding
the qualified data contracts to proceed with data
transaction.

Step 5: According to the evaluation results from Steps 3
and 4, the DTAeid ’s contract mediator abandons
the contracts with untrustworthy suppliers, and
then ranks the remaining contracts according to
their valuations. If at least one qualified contract
exists, then go to the trading approval subpro-
cess. Otherwise, the contract mediator notifies
the demander’s contract dealer for no qualified
data contract, and goes to Step 9.

Step 6,7,8: Respectively similar to Steps 3, 4 and 5, but
executed by the cloud-side entities and referring
to cloud-side information.

Step 9: The demander’s contract dealer makes one of the
following two decisions:
(1) Abort the data purchase request and terminate
the data trading process.
(2) Change the data purchase policy from local
trading to global trading and go to Step 6 (this
decision is considered only when the previous
step is Step 5).

2) TRADING APPROVAL, PAYMENT AND DATA DELIVERY
The following procedure describes the operational flow for
local data trading. Global data trading has a similar opera-
tional flow. This subprocess is executed for each of the quali-
fied contracts according to their ranks decided at the previous
subprocess until the data purchase request is approved by a
supplier or declined by all suppliers of the qualified contracts.

Step 1: The DTAeid ’s contract mediator obtains the contact
windowDTAeis from the advertisement of the target
contract.

Step 2: The DTAeid ’s contract mediator notifies the
DTAeis’s contract mediator for the purchase request
for Di.

Step 3: The DTAeis’s trust evaluator employs the evaluation
model proposed in Section IV.B to estimate the
demander’s trustworthiness on data trading.

Step 4: The DTAeis’s contract mediator notifies the supplier
for the evaluation result obtained in Step 3.

Step 5: According to the evaluation result, the supplier’s
contract manager approves or declines the request,
and then notifies DTAeis of the decision.
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Step 6: The DTAeis’s contract mediator notifies DTAeid of
the supplier’s decision. Then, the DTAeid ’s contract
mediator forwards this decision to the demander.

Step 7: If the request is declined, the demander terminates
this process; otherwise, it executes one of the fol-
lowing two actions:
(1) If the blockchain payment mode is adopted,
the demander’s contract dealer activates the corre-
sponding smart contract in DTBe to pay for pur-
chasing Di. Then, DTBe notifies the supplier with
a payment completion message.
(2) If the off-chain payment mode is adopted, then
the demander’s contract dealer contacts the sup-
plier’s contract manager to complete the payment
directly.

Step 8: After receiving the payment completion message,
the supplier’s contract manager generates the data
wrapped key of Di according to (2). Then, if the
blockchain payment mode is adopted, the data
wrapped key will be updated on blockchain by
smart contract; otherwise, the data wrapped key
will be sent to the demander through the con-
tract mediators of DTAeis and DTA

e
id . At the same

time, the private or third-party DR that stores
Di is instructed under the supplier to deliver the
encrypted Di to the demander.

Step 9: The demander’s data decryptor decrypts the
received Di by applying (3) and (4) with the sup-
plier’s public key announced in the dealt smart
contract.

Step 10: The demander’s contract dealer judges whether the
decryptedDi is the desired ones. If yes, this process
is terminated. Otherwise, the demander’s dispute
arbitration negotiator will apply for the dispute
arbitration process through TDAe to refund the pay-
ment.

H. DISPUTE ARBITRATION PROCESS
Fig. 12 illustrates the details of this process as a subprocess of
the trust-aware data trading process. The following procedure
describes only the operational flow for local data trading.
Global data trading has a similar operational flow.

Step 1: The demander’s dispute arbitration initiator asks its
DTAeid to file an arbitration request for the trading of
Di.

Step 2: The DTAeid ’s contract mediator files an arbitration
request to TDAe with related evidence.

Step 3: The TDAe’s arbitration processor notifies the supplier
of Di of the arbitration request through DTAeis, and
collects the other evidence from IBSe and DTBe.

Step 4: The TDAe’s arbitration processor activates the key
judge and data judge and gives the collected
evidence.

Step 5: The TDAe’s key judge and data judge employ
the judgment models proposed in Section IV.D to

FIGURE 12. The dispute arbitration process.

arbitrate the dispute, and then reply to the arbitration
processor.

Step 6: According to the received judgment results,
the TDAe’s arbitration processor makes the final
arbitration for the dispute, records the result in the
arbitration result DB, and notifies the demander and
supplier through DTAeid and DTAeis.

Step 7: After receiving the arbitration result, the demander
and the supplier must proceed to the arbitration result
handling procedure as follows:
(1) If the dispute does not stand, the trading of Di is
reserved.
(2) If the miss_key or get_wrong_key dispute stands,
the demander can ask the supplier to resend the data
wrapped key or refund the payment.
(3) If the get_wrong_data dispute stands, the supplier
refunds the payment.

VI. SIMULATION
A. SIMULATION SETTINGS
TIDES has been implemented in blade servers equipped with
Intel Xeon E5-2620 2.1 GHz processors with 32 cores and
4 cores to simulate the operational environments of the cloud
servers and MEC hosts, respectively. In all simulations, both
the main chain and local chain of DTB are implemented by
Ethereum technology; the former is executed in cloud servers
and the latter in MEC hosts. The simulation environment
is composed of 10 RAN areas, and each area contains ten
ME hosts and several IoT gateways. Each area generates
50 local transactions per second for local data, and only ten
percent of these local data will be further queried for global
usage by default. Referring to the setting of the Ethereum
public chain [28], each transaction requires approximately
320 bytes of storage, and each block contains 150 transactions
at most. Additionally, Geth1.6 is utilized to implement the
Ethereum client. Twei is applied as the trading unit. Twei is a
denomination of ether, ETH, which is the crypto-coin applied
on the Ethereum network, and 1 Twei = 10−6 Eth.

VOLUME 8, 2020 85851



I.-H. Chuang et al.: TIDES: TIDES With Blockchain-Enabled MEC

FIGURE 13. Comparison of total trading time under different numbers of
areas.

Two types of simulations are performed in the paper,
including the system performance simulation and the trading
efficiency simulation. The system performance simulation
shows the improvement of TIDES in terms of trading time
and storage costs. The trading efficiency simulation demon-
strates that suppliers in TIDES can make higher profit. In the
meantime, the data quality of purchased data and pricing effi-
ciency can also be improved. Additionally, when the environ-
ment is malicious, TIDES can make more successful transac-
tions than other pricing models because TIDES considers the
trustworthiness of both demanders and suppliers.

B. SIMULATION FOR SYSTEM PERFORMANCE
In the following simulation, assume that each area acquires
data to trade lasting for 140 seconds, respectively. Different
from the Ethereum public chain, TIDES applies a hierarchical
blockchain in which only the global transactions need to be
carried out through the main chain and delivered around the
world.

1) TRADING TIME
Generally, trading time is the most important criterion for
performance evaluation. A smaller trading time means that
the demanders can obtain their desired data commodities
more quickly and that more transactions can be made during
the same time period. The trading time includes the time to
perform PoW operation and the time to deliver block to all
full nodes. As estimated in [28], the Ethereum public chain
spends 2 seconds on the PoW operation and 12 seconds on
global block delivery. Thus, in the system performance sim-
ulation, each global transaction takes approximately 14 sec-
onds. For a local transaction, 2 seconds are also assumed to
be spent in the PoW operation and 1 second is spent on local
block delivery.

The total trading time indicates that the time to complete all
global transactions, which can be regarded as the capability
of a trading system. As shown in Fig. 13, compared to the
Ethereum public chain that spreads all transactions to all full
nodes around the world even though most data transactions
are done locally, the total trading time of the TIDES hierar-
chical blockchain is much smaller. It can be discovered that

FIGURE 14. Comparison of total trading time under different global
transaction ratios.

FIGURE 15. Comparison of storage costs for different numbers of areas.

the Ethereum public chain can easily become a performance
bottleneck because too many transactions are required to be
stored in global chain. Moreover, as the number of RAN
areas increases, more transactions are made, which increases
the difference between the hierarchical blockchain and the
Ethereum public chain.

Fig. 14 shows the total trading timewith respect to different
global transaction ratios from 10% to 100%. Although the
total trading time of the TIDES hierarchical blockchain grows
and becomes close to the Ethereum public chain when the
global transaction ratio increases, it is still much less than that
of the Ethereum public chain in most cases. In practice, most
transactions are made locally.

2) STORAGE COST
For an IoT data trading system, the storage cost is mainly
spent in recording the IoT data transactions. Since most
data transactions are made locally, it is a waste to log all
transactions in a global chain. As shown in Fig. 15, the total
storage cost of the TIDES hierarchical blockchain is always
much lower than that of the Ethereum public chain. The
enormous storage cost will severely increase the mainte-
nance expense, which might lead to system monopolization.
As a result, the reliability of the data trading system will be
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FIGURE 16. Comparison of total profit under different pricing models.

compromised. Thus, the proposed hierarchical blockchain is
more applicable as an IoT data trading system.

C. SIMULATION FOR TRADING EFFICIENCY
This simulation evaluates the data trading efficiency of vari-
ous pricingmodels under two different settings for the trading
environment, including an ideal one and a malicious one. The
former indicates that all participants are honest and the latter
assumes that malicious suppliers exist. In the simulation, five
suppliers with different pricing models are used to provide
data commodities continuously. The data quality is randomly
set as low, medium or high. The costs of data commodities
are set between 500 and 50,000 based on their data quality.
The initial margin is randomly set between 1.0 and 2.0. The
acceptable price of the demanders is set between 1,000 and
150,000 based on the quality of their desired data. The pur-
chase intention is assumed to be related to the C-P ratio of
data commodities.

1) TRADING IN AN IDEAL ENVIRONMENT
In this simulation, all suppliers are assumed to be honest. The
five suppliers respectively apply the TIDES’s pricing model,
the cost model [15] with a static margin, the RIDES’s [9] and
MGA’s [18] pricing models which ignore the market situa-
tion, and the conventional non-cooperative game model [20]
which refers to the information of the competitors. For the
last pricing model, if the supplier fails to reach a deal in this
round, it will decrease its margin compared with the margin
of a successful competitor.

As shown in Fig. 16, TIDES always obtains the higher total
profit because it takes the market situation into consideration.
The conventional non-cooperative game model obtains the
least profit as it continuously decreases its margin.

Fig. 17 compares the average profits in a single transaction
under different pricing models. It is clear that the cost model
assigns a static margin, and therefore, the average profit in
a single transaction is also fixed. In addition, as RIDES and
MGA do not consider other competitors, their average profits
remain the same. TIDES has lower profits in a single transac-
tion than the cost model, RIDES andMGA because it consid-
ers the market situation and adjusts its margin to undercut all

FIGURE 17. Comparison of average profit in a single transaction.

FIGURE 18. The transaction ratio of different pricing models.

competitors in a timelymanner. Even so, TIDES still achieves
the highest total profit. For the non-cooperative game model,
the profit in a single transaction decreases steadily, which
indicates that it falls into the price war.

As shown in Fig. 18, although more than half the trans-
actions are performed by the non-cooperative game model,
its total profit is not as high as that of TIDES. By contrast,
TIDES performs the secondmost transactions and obtains the
most profit.

Moreover, the pricing efficiency denotes the profit
obtained from per pricing effort, which is achieved by divid-
ing the profit by the time spent on pricing. As shown
in Fig. 19, TIDES has the best pricing efficiency although
it takes some effort to derive an appropriate price. The cost
model has the second best pricing efficiency due to its sim-
plicity. Although RIDES is slightly faster than MGA, the
latter makes more profit and thus has better pricing efficiency
than RIDES. The non-cooperative game model has worse
performance and the worst profit leading to the worst pricing
efficiency.

In the simulation, although suppliers randomly generate
data of three different qualities, demanders also randomly
define a minimal quality limit. Hence, data of higher quality
will be purchased more than that of lower quality. As shown
in Fig. 20, demanders in TIDES purchase more high-quality
data (55.4%) and less low-quality data (9.5%) than other
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FIGURE 19. The pricing efficiency of different pricing models.

FIGURE 20. The trading ratio of various pricing models for different data
qualities.

FIGURE 21. The trading failure rate with different average
trustworthiness.

pricing models. Thus, it can be seen that TIDES provides not
only the highest profits for suppliers but also better quality
data for demanders; thus, the result is a win-win situation.

2) TRADING IN A MALICIOUS ENVIRONMENT
Generally, the demanders are eager to successfully obtain
what they want. However, in a malicious environment,
the suppliers might provide counterfeits, which leads to the
failure of trade. To solve this problem, TIDES considers
suppliers’ trustworthiness to eliminate malicious suppliers.

TABLE 1. Acronyms and abbreviations.

In this simulation, the trustworthiness of a supplier indi-
cates the probability that this supplier is honest. As shown
in Fig. 21, when the average trustworthiness of the sup-
pliers is 90, which means that the trading environment is
friendly, the trustworthiness evaluation model can decrease
by 5% of the trading failure rate. As the average trust-
worthiness of the suppliers decreases, which indicates that
the trading environment becomes unreliable, the trustwor-
thiness evaluation model can reduce the trading failure rate
by approximately 40%. Apparently, the trustworthiness eval-
uation mechanism significantly improves trading reliability.
Therefore, the demanders in TIDES are more likely to obtain
what they want.

VII. CONCLUSION
This paper proposes and further implements TIDES to pro-
vide users an automatic, reliable and intelligent IoT data
trading environment. Further with blockchain technology and
smart contracts, IoT data trading can be automatically per-
formed. The trustworthiness evaluation model can eliminate
malicious suppliers and demanders to ensure data transac-
tions. In addition, the client-centric data value evaluation
model and game-theory-based pricing model help the deman-
ders to obtain higher quality data commodities at an accept-
able price and the suppliers to obtain the highest profits.
With the hierarchical blockchain, the system performance is
increased, and the storage cost is greatly reduced. The MEC
technology also makes TIEDS satisfy the mobility require-
ment. The simulation results have demonstrated that TIDES
ensures the efficiency, intelligence and reliability of IoT data
trading.

APPENDIX
Abbreviations in this paper are summarized in TABLE 1.

85854 VOLUME 8, 2020



I.-H. Chuang et al.: TIDES: TIDES With Blockchain-Enabled MEC

REFERENCES
[1] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, ‘‘A survey on

big data market: Pricing, trading and protection,’’ IEEE Access, vol. 6,
pp. 15132–15154, 2018.

[2] J. Rose, O. Rehse, and B. Rober. (2012). The value of our digital
identity. Liberty Global website. [Online]. Available: http://www.
libertyglobal.com/PDF/public-policy/The-Value-of-Our-Digital-
Identity.pdf

[3] G. Katona, ‘‘Rational behavior and economic behavior,’’ Psychol. Rev.,
vol. 60, pp. 307–318, Sep. 1953.

[4] G. Nuti, M. Mirghaemi, P. Treleaven, and C. Yingsaeree, ‘‘Algorithmic
trading,’’ Computer, vol. 44, pp. 61–69, Nov. 2011.

[5] S. H. Hashemi, F. Faghri, P. Rausch, and R. H. Campbell, ‘‘World of
empowered IoT users,’’ inProc. IEEE 1st Int. Conf. Internet-ThingsDesign
Implement. (IoTDI), Apr. 2016, pp. 13–24.

[6] D. Roman and G. Stefano, ‘‘Towards a reference architecture for trusted
data marketplaces: The credit scoring perspective,’’ in Proc. 2nd Int. Conf.
Open Big Data (OBD), Aug. 2016, pp. 95–101.

[7] Filecoin. Filecoin: A Cryptocurrency Operated File Storage Network.
Accessed: Jul. 2017. [Online]. Available: https://lecoin.io/lecoin.pdf

[8] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed:
Oct. 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[9] I.-H. Chuang, T.-C. Weng, J.-S. Tsai, M.-F. Horng, and Y.-H. Kuo, ‘‘A reli-
able IoT data economic system based on edge computing,’’ in Proc. IEEE
29th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC),
Sep. 2018, pp. 1–5.

[10] Ethereum White Paper. A Next-Generation Smart Contract and Decen-
tralized Application Platform. Accessed: Jun. 2019. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[11] G. Wood. Ethereum: A Secure Dencentralised Generalised Trans-
action Ledger. Accessed: Oct. 2019. [Online]. Available: https://
ethereum.github.io/yellowpaper/paper.pdf

[12] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[13] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, ‘‘When mobile
blockchain meets edge computing,’’ IEEE Commun. Mag., vol. 56, no. 8,
pp. 33–39, Aug. 2018.

[14] A. Roncoroni, ‘‘Commodity price models,’’ ’ in Encyclopedia of Quanti-
tative Finance. Hoboken, NJ, USA: Wiley, 2010.

[15] E. F. Fama and K. R. French, ‘‘Commodity futures prices: Some evidence
on forecast power, premiums, and the theory of storage,’’ in The World
Scientific Handbook of Futures Markets. Singapore: World Scientific,
2016, pp. 79–102.

[16] R. Harmon, H. Demirkan, B. Hefley, and N. Auseklis, ‘‘Pricing strategies
for information technology services: A value-based approach,’’ in Proc.
Hawaii Int. Conf. Syst. Sci. (HICSS), 2009, pp. 1–10.

[17] T. F. Bresnahan, ‘‘The oligopoly solution concept is identified,’’ Econ.
Lett., vol. 10, nos. 1–2, pp. 87–92, Jan. 1982.

[18] H. Oh, S. Park, G. M. Lee, H. Heo, and J. K. Choi, ‘‘Personal data trading
scheme for data brokers in IoT data marketplaces,’’ IEEE Access, vol. 7,
pp. 40120–40132, 2019.

[19] J. Nash, ‘‘Non-cooperative games,’’ Ann. Math., vol. 54, no. 2,
pp. 286–295, 1951.

[20] Z. Li, Z. Yang, and S. Xie, ‘‘Computing resource trading for edge-cloud-
assisted Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3661–3669, Jun. 2019.

[21] X. Kang, R. Zhang, and M. Motani, ‘‘Price-based resource allocation
for spectrum-sharing femtocell networks: A Stackelberg game approach,’’
IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 538–549, Apr. 2012.

[22] K. Liu, X. Qiu, W. Chen, X. Chen, and Z. Zheng, ‘‘Optimal pricing
mechanism for data market in blockchain-enhanced Internet of Things,’’
IEEE Internet Things J., vol. 6, no. 6, pp. 9748–9761, Dec. 2019.

[23] H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, and Y. Qian, ‘‘Resource trading
in blockchain-based industrial Internet of Things,’’ IEEE Trans. Ind. Infor-
mat., vol. 15, no. 6, pp. 3602–3609, Jun. 2019.

[24] Y.Mao, T. Cheng, H. Zhao, andN. Shen, ‘‘A strategic bargaining game for a
spectrum sharing scheme in cognitive radio-based heterogeneous wireless
sensor networks,’’ Sensors, vol. 17, no. 12, p. 2737, 2017.

[25] L. Atzori, A. Iera, G.Morabito, andM.Nitti, ‘‘The social Internet of Things
(SIoT)—When social networks meet the Internet of Things: Concept,
architecture and network characterization,’’Comput. Netw., vol. 56, no. 16,
pp. 3594–3608, Nov. 2012.

[26] S. Yang, U. Adeel, and J. A. McCann, ‘‘Selfish mules: Social profit
maximization in sparse sensornets using rationally-selfish human relays,’’
IEEE J. Sel. Areas Commun., vol. 31, no. 6, pp. 1124–1134, Jun. 2013.

[27] L. Rittenberg and T. Tregarthen, ‘‘Principles of economics,’’ FlatWorld,
Boston, MA, USA, Tech. Rep., 2014.

[28] Ethereum. Clique PoA Protocol & Rinkeby PoA Testnet #225.
Accessed: Mar. 2017. [Online]. Available: https://github.com/ethereum/
EIPs/issues/225

I-HSUN CHUANG (Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
and information engineering from National Cheng
Kung University, in 2006 and 2014, respectively.
He is currently working as a Postdoctoral Fel-
low with National Cheng Kung University. His
research interests include Blockchain, network
security, wireless networks, and cognitive radio.

SHIH-HAO HUANG (Student Member, IEEE)
received the B.S. degree in computer science and
information engineering from the National Uni-
versity of Tainan, in 2017, and the M.S. degree
in computer science and information engineering
from National Cheng Kung University, in 2019.
His research interests include information security
and mobile networks.

WEI-CHU CHAO (Student Member, IEEE)
received the B.S. degree in computer science and
information engineering from the National Yunlin
University of Science and Technology, in 2017,
and theM.S. degree in computer science and infor-
mation engineering from National Cheng Kung
University, in 2019. His research interests include
Blockchain and wireless networks.

JEN-SHENG TSAI received the Ph.D. degree
in computer science and information engineering
from National Cheng Kung University (NCKU),
Tainan, Taiwan, in 2012. He is currently work-
ing as a Postdoctoral Fellow with the Center for
Research of E-Life Digital Technology, NCKU.
His research interests include multimedia security,
edge computing, and intelligent computing.

YAU-HWANG KUO received the Ph.D. degree
in electrical engineering from National Cheng
Kung University (NCKU), Taiwan, in 1988. He is
currently a Distinguished Professor with the
Department of Computer Science and Informa-
tion Engineering and the Director of the Cen-
ter for Research of E-Life Digital Technology,
NCKU. In his career, he is persistently active in
the academia, education, and government policy
planning of digital innovation and digital equality.

He has served as the Executive Secretary of the Board of Science and Tech-
nology, an Executive Yuan (Cabinet), the Board Chairman of the Institute
for Information Industry, the Director of the Engineering and Technology
Promotion Center and the Director of the Computer Science Program in
National Science Council, the Director of the Computer Center in the Min-
istry of Education, the President of the Taiwanese Artificial Intelligence
Association, and the Dean of the College of Science, National Chengchi
University, Taiwan. His research interests include mobile communication,
the Internet of Things, intelligent computing, and context-aware computing.

VOLUME 8, 2020 85855


