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ABSTRACT The paper proposes using a predictive model to optimize the use of electricity in the V2G
(vehicle to grid) service. The novelty of the mechanism as a kind of model predictive control (MPC) is that
it seeks an effective way of managing electric energy in an Electric Vehicle (EV). Additionally, it proposes
a new method of predicting the electricity consumption which allows the battery of an electric vehicle to
reconcile two sides: both the system’s and the user’s demand will be met at the same time. The model allows
for very precise determination of the vehicle’s demand for the energy related to the progressive movement,
taking into account the parameters characteristic of a given vehicle model, its suspension structure and
aerodynamics. In addition, the machine learning algorithmwas proposed for the prediction model as a hybrid
(offline and online) of supervised learning. As the first part of the research, by usingMatlab/Simulink/dSpace
software, a prediction of EV energy consumption was created on a selected route at different times of the
day (offline data matrix). At the same time, the simulated route was travelled by a BMW i3 EV (online data
matrix). Based on the developed machine learning algorithm the results of the electric energy consumption
were compared. The research confirms that if the correct mechanism for prediction of energy consumption
by the EV is used, it is possible to define the amount of energy needed for a V2G service. The measurement
error was obtained at 0.5%. The added value is setting up the EV energy security of customers after the V2G
service and a correct WIN-WIN relation between the Low Voltage grid and EV customers’ needs.

INDEX TERMS V2G, electric vehicle, MPC, machine learning.

Symbol Decision variable description
d offset term;
EEVS the prediction of future energy consumption by

EV (kWh);
EId8 recuperation energy (kWh);
EV2G energy demand in the V2G service;
FB braking force;
L proportional element of the regulator;
p brake pedal position;
PDSR the active power value obtained at time t via

Demand Side Response DSR (kW);
Pload the active power value for the V2G service at

time t (kW);
PV2G the active power value available with EV at

time t for the V2G service (kW);
SOC+CH storage capacity available for the V2G service

– charging to the grid;

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Li .

SOC−DCH storage capacity available for the V2G service
– discharging to the grid;

SOCV2G n local storage capacity required for the V2G
service;

t the duration of the V2G and DSR service;
tk ending time of the V2G service;
tp starting time of the V2G service;
x brake pedal depth;
z, n, y, w the value of the argument (e.g. the contract

number for i - iteration);

I. INTRODUCTION
The growing awareness of the dangers to our civilization
based on fossil fuels is causing the generators of electricity to
switch from the conventional sources to the renewable ones
which do not degrade the natural environment. The European
Council has approved and proposed a complete decarboniza-
tion process in all EU Member States by 2050 [1]. The
indicated process will be subject to additional arrangements
and clarification in mid-2020 (f.ex. in conjunction with the
position of the Polish authorities), but key regulations will
be developed in 2020 (European Commission incentive) [2].
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At the same time, the global technological transformation
forces customers to respect electricity, offering access to pro-
duction taking into account environmental conditions. There-
fore, the customer’s future value local chain will be based on
the energy generation, storage and consumption.

Currently, the energy efficiency for customers is beginning
to take on a different meaning, the more conscious among
them already using renewable energy sources in the form
of e.g. solar panels. Thus, the customer is technically able
to cover the daily energy demand through own production.
However, the potential local electricity shortages encourage
customers to connect with the electricity grid, where the
prosumer profile is balanced.

Simultaneously, there is a slow technological retreat from
the use of fossil fuels in transport. Electromobility allows
customers to store up electricity from their own generation
sources or from the electricity network and to shift the peak
of the power system load to the night hours when the electric
vehicle (EV) is charging [3]. This concept defines the new
function of an electric vehicle as a mobile energy storage,
which with the support of appropriate procedures can signif-
icantly contribute to improving the energy system balance.
The specificity of the use of EVs use by customers imposes
significant restrictions on the amount of energy that can be
transferred from the vehicle to the energy system, because it
always involves limiting the maximum range of the vehicle.

Vehicle-to-Grid (V2G) is a technology that enables the
mobile supply of electricity at electric car charging points,
primarily in the low voltage power networks [4]. It is
implemented through a bidirectional energy transfer using
an isolated AC/DC converter and a buck-boost DC/DC
converter [5].

Recently, the V2G technology has been applied to the
market mechanism for stabilising the electricity demand and
smoothing the peak demand [6]. The technology allows diver-
sification and balances the local demand of customers in
another part of the power grid without distribution losses.
From the point of view of the consumer, it is possible
to use the electrical energy stored in an electric vehicle
for transport or inject it in any part of the low voltage
network.

Reasonable and effective management of electricity by
customers in the technology of bidirectional energy exchange
constitutes a new approach to building a central electricity
power grid and the value of the available power consump-
tion. This is a change in the direction of production and
consumption of energy in one area of customer activity [7].
It limits the costs of maintaining a centrally managed sys-
tem and effectively uses the technologies available locally.
In addition, technology can be a support system for the local
reconstruction of the energy distribution system [8]. Due to
the short-circuit conditions and the power available from
electric vehicles, this technology can be used exclusively in
some part of the installation, e.g. a building in the island
operation mode. The current literature presents the examples
of the V2G algorithms for low voltage networks [9], however,

they lack the examples of how to calculate the energy needs
of EV users in this service process.

The authors of the article assumed that the effectiveness
of the V2G process is possible (effective) when the EV user
is sure that theirs as well as the grid demand will be met at
the moment. The authors’ motivation for the research was
to find an effective way of managing the electric energy
available in the electric vehicle battery and reconcile two
sides: the system’s demand for energy and the demands of
EV users. There are currently scientific articles presenting
the ways of managing the V2G technology from the point
of providers, the so-called aggregators [10]. For the whole
process to be efficient one should still take into account the
needs of customers who provide their infrastructure (as much
as possible to achieve the destination target).

The purpose of the research is to point out:
The purpose of the research is to point out:
• developing a process for the V2G service supplemented
with the EV demand (chapter II.B);

• developing a mechanism for predicting energy con-
sumption in the process of providing V2G services
including a machine learning algorithm (chapter III);

• developing an EV kinetic model to build the X vector
database to teach the offline algorithm [chapter III.A];

• developing a proposal of machine learning algorithms
for predicting energy mechanism in the process V2G
[chapter IV.C];

additionally:
• the relation between the external conditions (environ-
mental, traffic volume, driving style), the EV’s technical
parameters of a EV, as well as demonstrate the possi-
bility of reconstructing these quantities by a computer
simulation [chapter V];

II. IDEA OF THE V2G PROCESS WITH PREDICTION
The key to using the V2G technology is to look for the low
voltage grid flexibility mechanisms. There is a reasonable
possibility of sharing the energy resources between the trans-
port and the energy system [11].

A. V2G IDEA
The stability of the power system is permanently balancing
between power generation with energy system restriction and
load demand in real time t . The idea of V2G is available
as scattered energy storage system that would support this
process of service [12].

The availability of active power P for aggregates is crucial
as an element of network flexibility in the form of a V2G
or Demand Side Response (DSR) service [13]. This means
that both parties (e.g. V2G Operator & Customer) of a V2G
contract must know their technical capabilities available to
the service, according to the following formula:∑n

i=1
Pload (z)× t ≥

∑z

i=1
PV2G(n)× t

+

∑y

i=1
PDSR(y)× t +

∑w

i=1
· · · (w)× t (1)
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Therefore, based on Equation 1, it becomes important to
look for the technical solutions to improve the energy bal-
ancing efficiency in the power grid, and the V2G service is
potentially available for use and would be support the power
system. The challenge for the future is to ensure an increase in
the use of V2G services by EV users and thus by aggregators
of such systems.

B. THE V2G PROCESS WITH THE PREDICTIVE MODEL
The starting point for the conducted research is to develop a
proposal for the process of relationship in the V2G service
between the V2G Operator (e.g. aggregator) and the EV user.
The new process idea includes an element supporting the
matching of the EV user needs and the needs of the energy
system. This element is a module for predicting the energy
consumption of the described EV vehicle before starting the
service (predictive model). This is a first step to describe a
mechanism for predicting the energy consumption in the V2G
service provision process, proposed in Figure 1.

FIGURE 1. The V2G process with the prediction of the EV demand.

It can be assumed that the calculation engine for predicting
the EV demand (future energy consumption by EV) can be
implemented on both sides of the service [14]; however,
it seems rational to locate it with the V2G service provider
because:

– the customer will not incur additional costs for the
on-board EV equipment;

– the model needs to be updated with new data;
– the maintaining solution is independent of the customer.
Thus, according to Figure 1, having a prediction of future

energy consumption by EV (EEVs), the process of cooperation
and assessment of the contract potential can be described by
the following equations [15]:

1. EV2G = EEVs, when a single V2G service form n
balances the demand

SOCV2G = SOC−DCH & SOC+CH = 0,

lim
tk→tp

PV2G(n) ∼= 0 (2)

2. EV2G > EEVs, when a single V2G service form n does
not balance the demand

SOCV2G > SOC−DCH & SOC+CH = 0,

PV2G(n) < 0 (3)

Other services, such as DSR [16], must be run to achieve
power balance in time tε(tp : tk ).

SOCV2G < SOC−DCH + SOC
+

CH

PV2G(n) > 0 (4)

3. EV2G < EEVs, when a single V2G service form n
balances the demand and there is an excess of energy
that can be transferred as part of the service

In the most favorable situation, there is a balance and
the second direction of energy transfer is launched, i.e. the
possibility of transferring a temporary surplus of energy from
the electricity system.

PV2G(n) =
n∑
i=1

(
SOCV2G(n)
tk − tp

)× η (5)

where: η - system efficiency [17].

III. PREDICTIVE MODEL
The predictive model of the sought-after value of EV con-
sumption is based on the iterative optimization at three-time
intervals:
t -1: the past tense, first prediction based only on simulation

data without experience EEVS0;
t: the present, the decision on the V2G process, where:
– for the first iteration: EEVS = EEVS0;
– for the next one iteration base on experiences;
t + 1: future prediction time, E’EVS estimate based on real

measurement and simulation data. The mechanism coincides
with the Model Predictive Control solution [18], [19].

The purpose of the prediction model is to evaluate the E ′EVS
value at the boundary conditions declared by the user (e.g.
travel time, route, type of EV vehicle, etc.) and based on
the iterative EEVR value of measuring the real object. The
comparison of the estimated value with the real value through
iteration allows for a precise definition of the value attributes
– Id . The model assumes the repeatability of selected Id
attributes for the given states. The mechanism has the possi-
bility of simple learning based on the experience gathered in
iteration. The output prediction of consumption EV dynamics
is then governed by the following form equation [19]:

E ′EVS = EEVS + Ld (6)

d = (EEVR − EEVS ) (7)

The diagram of the prediction model seeking optimal
future electricity consumption by EV is presented in Figure 3.

There are one basic deviations from a typical MPC:
– control dynamics, the value sought is estimated once for

the requirements of the V2G process. As in MPC, the J cost
function [20] will still be used for optimization the values of
the Id attributes.
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FIGURE 2. The work horizon of the predictive model.

FIGURE 3. The predictive model for V2G service.

A. ELEMENTS OF THE PAST
In order to formulate the element of ‘‘PAST’’, the dSPACE
Automotive Simulation Model - (ASM) element is used along
with a database matrix (look-up table) [21]. The range of
configuration options for the EV energy prediction is shown
in Figure 4 [22].

FIGURE 4. The block diagram of the EV plant simulation model.

The value of electricity available from an EV is influenced
by many Id attributes, such as [23]:

• Id1 – route to be travelled by the EV user after complet-
ing the V2G service (length, height);

• Id2 – technical parameters of the EV storage (e.g. kWh);

• Id3 – technical parameters of the EV (weight, drag
attributes, vehicle dimensions, etc.);

• Id4 – environmental conditions (surface condition, tem-
perature);

• Id5 – time of day when the route is travelled (possibility
of reaching the nominal electric motor rated torque);

• Id6 – number of passengers;
• Id7 – system efficiency: electric engine, inverter, battery,
charging-discharging;

• Id8– recuperation value;
• Idn – n-th arbitrary attributes.
In addition, the Vehicle dynamics system was modified in

terms of brake pedal operation as a recuperative element in
the simulation in accordance with the following equation:

p(x) =

{
x < Id8→ FB = 0, EId8 = f(x)
x > Id8→ FB = 0, EId8 = const · Id8

(8)

Implementation of dependency equation 8 was added to
ASM as Figure 5 [24], [25].

FIGURE 5. The Simulink block of recuperation.

The task of ASM is to develop a matrix of potential solu-
tions in accordance with the following equation:

EEVS = f (Id ), EEVSεRn x n (9)

Knowing how to correctly parameterize the Id value
attributes is key to developing a matrix of potential solutions.

B. ELEMENTS OF THE PRESENT TIME
At this stage, the potential solutions for EEVS are already
prepared for the defined Id attributes, which can be divided
into two groups. The first, by far the largest group are the
attributes, the value of which known, Id1→ Id6 (user declara-
tion in the V2G process). The second group comprises of the
attributes values of which are unknown and their uncertainty
results comes from the inability to describe the physical
phenomenon dependent on many variables, is Id7, Id8. Thus,
at time t , EEVS is predicted with potential offset – d , as shown
in Figure 3.

C. ELEMENTS OF FUTURE TIME
In order to optimize the predictionmodel for the V2G service,
the first iteration is followed by the correction of the Id7, Id8
attributes in regard to the actual value of the EEVR measure-
ment. The algorithm selects, looks for new values of I ′d7, I

′

d8
for which the value of E ′EVS is within the limit of the assumed
offset d . The historical values in subsequent iterations of the
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TABLE 1. The technical parameters of the BMW i3.

scenarios are the starting point for other predictions. In this
way the V2G process with the predictive model is capable of
learning. This solution allows improvement in regard to the
efficiency of the V2G process, working closer to the limits of
the technical constraints.

IV. STUDIES OF PREDICTION MECHANISM
In order to verify the purpose of the research, sequences of
actions were carried out to confirm the idea of electricity
prediction for the V2G process.

A. INPUT DATA FOR PREDICTIVE MODEL
The BMW i3 electric car was selected for testing as a plant
(Figure 3), the basic technical parameters of which are pre-
sented in Table 1. The vehicle decides about the attributes:
Id2Id3.

FIGURE 6. The course of the EV passage route.

The EV course & route was chosen (Figure 6), which
determines the values for attributes: Id1, Id4.
(1-2) Nadbystrzycka, (2-3) Lipowa, (3-4) Krakowskie

Przedmieście, (4-5) Dolna 3 Maja, (5-6) Aleja Solidarnoś ci,
(6-7) Aleja Unii Lubelskiej, (7-8) Lubelskiego Lipca 1980,
(8-9) Aleja Józefa Piłsudskiego, (9-1) Nadbystrzycka. The
length of the route was 8km.

The course of the EV passage route was selected to
achieve the urban driving conditions including short and long
travel sections. In addition, the selection of a route allowed
achievement of nominal torqueM for the HSM BMWi3 syn-
chronous motor which, depending on the scenario, should
improve the efficiency of the energy consumption by the EV.

The height profile of the route was developed using the
Geocontext application, implemented in the ASM model of
the dSPaceModelDesc environment.

On the basis of the above-mentioned technical parameters
within the chosen real route, prediction of energy consump-
tion EEVS was developed using the ASM. At this stage, only
the information regarding ASM is missing Id7 & Id8. There-
fore, according to the prediction model (Figure 3), a database
of potential solutions EEVS was built. It was assumed that:
• Id1, Id2, Id3, Id4, Id6 – known data;
• Id7 – controlled in the range (57.5-65) %;
• Id8 – controlled in the range (5-30) %.

At this moment, the prediction model enables data to be built
for the first t-1 interval.

In order to start the first iteration as the second interval
t , select the initial values Id07 and Id08. When the predictive
model has no historical data, the assessment is subjective. The
learning element allows choosing the initial values correctly
based on several iterations.

B. VEHICLE & MEASUREMENT
Due to the limited accuracy of the vehicle’s on-board mea-
surement systems, the measuring equipment was used to
determine the amount of energy consumed by the vehicle on
the route.

For measuring the EEVR values, two recorders were
applied. The first one was a C.A 8336 CHAUVIN ARNOUX
IP53, accuracy class B, power and quality analyser; the sec-
ond – a PQ Box 150 a – Eberle, accuracy class A (Fig. 7). The
BMW i3 was charged by means of a 230 VAC, 16 A on-board
charger.

FIGURE 7. The measuring system.

FIGURE 8. BMW i3 - EV.

Each time before the start of the EV BMW i3 (Fig. 8)
driving route, Fig. 6, it was charged to the full battery capacity
SOC= 18.8 kWh – Id3. After completing the route, the BMW
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i3 EV’s on-board energy storage was again charged to the
maximum SOC. The above-mentioned measurements took
place on November 15th and 16th, 2018.
It is calculated, that the maximum permissible error was

1pX = 0.005. Therefore, the prediction model assumes the
same error value d as 1pX .

C. ALGORITHM MACHINE LEARNING
As shown in Figure 3, the algorithm machine learning
(AML) after the first iteration determines the new value of
the EV’s energy consumption as E ′EVS (formula 6). There-
fore, the structure of AML, supported by the kinetic model
of the EV, becomes indispensable for supervised learning.
Figure 10 shows the AML sequences. From step 1-9, these
are tasks to determine the predictive values of Id7 and Id8.
AML has features of offline learning algorithms (data is
downloaded from dSpace) and online too (real object EV).
Thus, AML is hybrid (offline+ online) for correct prediction
with an acceptable error.

FIGURE 9. EV charging characteristics on 15th and 16th 2018.

The ML Steps Are Described Below:

• 1’st step

1. Defining initial weight values and their quantity [26].
2. The defined threshold value – 	 as a multi-class clas-

sification and setting the if condition [26].

• 2’nd step

1. According to Fig. 1, the AML loads data form the V2G
process.

2. According to Fig. 3, the AML loads initial values for
Id7 – Id8 from dSpace. The values are stored according
to the driver ID.

• 3’rd step

For each j iteration, the z value is determined, in accordance
with the following equation:

z = 6n=0(XjWj) = W TX (10)

where: X – input value matrix based on Id attributes.

FIGURE 10. The algorithm machine learning.

• 4’th step
1. The activation function φ(z) is selected and must be

continuous, e.g type: ReLU [27].
2. Using the activation function φ(z) to calculate the net

output in the class.
• 5’th step

Each on iteration j presents its own set of Id7 – Id8 assigned
to a class. The first machine prediction.
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TABLE 2. Matrix EEVS for Scenario I.

TABLE 3. Obtained simulation values, scenario II.

• 6’th step
EEVS is calculated by dSpace using the vehicle’s kinetic
model (fig. 4) for j and Id7 – Id8(step 5).
EEVR is taken from the environment, real measurement.
The machine database (EEVR) for the real object is com-

pleted each time the EV passes for the driver ID.
• 7’th step

Calculation of the value of error – δ, in accordance with the
following equation:

δ(j) = EEVR − E
(j)
EVS

limδ → d(equation 7) (11)

• 8’th step
Use of the cost function, in accordance with the following
equation:

J = 1/26j=1(δ(j))2 (12)

• 9’th step
The learning gradient for step j:

W (j+1)
= W (j)

+1W (j)
= −ηdJ (j)/dW (j) (13)

where:
η – the learning rate;

V. RESULTS OF RESEARCH
The vehicle’s energy consumption depends on many factors
that are independent of each other. The basic factors are:
terrain, weather conditions, types of manoeuvres and driving
style of the driver. Including all these factors in the math-
ematical model is extremely difficult and prompts that the
calculation algorithms be equipped with an element that can
fine-tune the algorithm to these parameters. To assess the
impact of traffic intensity and driving style on the amount
of energy consumed, a series of experiments were carried out
on an electric vehicle traveling the same route under different
conditions.

FIGURE 11. EEVS function flow for scenario I.

FIGURE 12. E’EVS function flow for scenario I.

As part of the research work, three scenarios for measuring
the EEVR were designed in order to verify the correctness of
the predicted EVmodel BMW i3 with the EEVs measurement.
The starting point of the research is the common route for
the passage of Figure 6, but at different times of the day. The
simulations and real measurements were performed for the
following scenarios where:

Scenario I – morning drive on November 16th, 2018y;
Scenario II – noontime drive on November 15th, 2018y;
Scenario III – evening drive on November 15th, 2018y;
The summary of the values obtained from the simulation

measurements and the real measurements for the above-
mentioned scenarios is presented below.

A. SCENARIO I
The ride was interrupted with numerous stops due
to the inability to synchronise with the traffic lights.
At least two longer stops along with driving in a stop-go
manner.

An example of the simulation energy consumption for
the creation of the EEVS matrix, scenario I is presented
below.
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FIGURE 13. EEVS function flow for scenario II.

FIGURE 14. E’EVS function flow for scenario II.

On the basis of the EEVR value measurement and the
acceptable error d , the algorithm searches for a potential
solution E ′EVS .
EEVR = 2.163kWh, d < 0.5%
E ′EVS = 2.170kWh for Id7 = 63.75 & Id8 = 10;

B. SCENARIO II
Driving a smooth option on straight sections to reach the
maximum speed.

An example of the simulation energy consumption for the
creation of the EEVS matrix, scenario II is presented below.

On the basis of the EEVR value measurement and the
acceptable error d , the algorithm searches for a potential
solution E ′EVS .
EEVR = 1.98 kWh, d < 0.5%
E ′EVS = 1.972 kWh for Id7 = 61.25 & Id8 = 15;

C. SCENARIO III
A smooth drive with the possibility of synchronization with
the traffic lights. Along the longer sections of the route
it was possible to achieve the rated value of the nominal
electric motor torque. However, there were several stop-go

FIGURE 15. EEVS function flow for scenario III.

TABLE 4. Obtained simulation values, scenario III.

approaches to traffic lights due to the increased urban traffic
in the evening.

An example of the simulation energy consumption for the
creation of the EEVS matrix, scenario III is presented below.
On the basis of the EEVR value measurement and the

acceptable error d , the algorithm searches for a potential
solution E’EVS .
EEVR = 2.06 kWh, d < 0.5%
E’EVS_1 = 2.062 kWh for Id7 = 61.25 & Id8 = 30;
E’EVS _2 = 2.058kWh for Id7 = 62.5 & Id8 = 15;
The considered Scenario III has two solutions. The algo-

rithm rejects extreme values.
Based on the measurements and calculations, it can be

seen that with properly selected Idn parameters, the calculated
and real values are very similar. It has been shown that by
appropriate selection of parameters in the calculation model,
it is possible to fine-tune the parameters of the prediction
model using AML. This allows accurate prediction of the
amount energy for EV user demand.

VI. APPLICATION OF THE SOLUTION
The algorithm developed allows a precise determination of
the vehicle range, taking into account its technical parame-
ters as well as the weather conditions and those related to
the anticipated traffic volume. Its considerable complexity
makes it difficult to directly implement in the EV and EVSE
(Electric Vehicle Supply Equipment) management systems.
It was assumed that high-level communication protocols (ex
ISO151818) are able to mediate between EV and EVSE
and the central server on which the solution developed will
ultimately function. An example of the IT architecture for
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FIGURE 16. E’EVS function flow for scenario III.

FIGURE 17. IT architecture for the implementation of model predictive.

the implementation of the mechanism is shown below in
Figure No. 17 [28], [29].

VII. CONCLUSION
The effectiveness and popularity among the EV users of the
V2G service will depend on the correct definition of the
demand for EV electricity after implementation. The cor-
rectness of prediction on the V2G service engine side is a
function of many Id variables, which should be collected
and processed on a current basis to establish a favorable
balance for PV2G at the service point. Regarding the way of
simulating the calculations and energy consumptionmeasure-
ments in real urban traffic, it can be stated that the electric
vehicle model developed reflects well the energy phenomena
occurring in it while driving under various environmental
conditions (EEVR: the morning = 2.163 kWh, the noontime
= 1.98 kWh, the eventing = 2.06 kWh). There is a clear
correlation between coverage and system efficiency, environ-
mental conditions and traffic (correctly defined or calculated
Id attributes). This makes it necessary to use such a tool when
calculating the parameters of the V2G process.

Relieving the user from the necessity to define the abstract
energy value that can be given away from theirs simplifies the
use of the V2G technique, contributing to its popularisation
and consequently to improving the balance of the power grid.
It should be emphasized that the travel time has a small
influence on the prediction of the energy consumption of the
forward EV motion and due to the random events during the
actual crossing, it is burdened with the error in the simulation.

The simulations of the computational model and verification
of the actual measurements of energy consumption on a given
route of passage indicate that it is possible to predict it at the
level of the determination of error d by using a predictive
model. In this study the value of d was less than 0.5%,
confirmed on the three scenarios.

The case-by-case studies indicate the need to conduct fur-
ther research using other EV vehicles and other additional
external factors that may be relevant in a different environ-
ment than the one being studied.
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