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ABSTRACT Power-grid faults pose a great threat to the economy and to social stability. In this paper,
the detrended fluctuation analysis method is used to investigate the scaling properties of power grid faults
and the correlation between faults and meteorological factors that are closely related to power grid faults.
Multifractal detrended fluctuation analysis showed that the fault time series were multifractal. Further
investigations revealed the origins of multifractality in power-grid fault time series, and the results showed
that the temporal correlations in the data represent the distribution of the returns, which are a significant
source of multifractal scaling. Then, cross correlations between the fault and the four meteorological factors
were investigated using the detrended cross-correlation analysis method. The results showed that maximum
wind speed has a considerable impact on the number of transmission system line faults per day, whereas
daily precipitation, daily mean air temperature, and maximum wind speed have a considerable impact on the
number of distribution system line faults per day.

INDEX TERMS Cross correlation, fault, meteorological factors, multifractality.

I. INTRODUCTION
Electric power transmission systems are a key element of
national infrastructure, and blackouts of these systems have
major direct and indirect consequences for the economy and
national security. Major faults or blackouts of these power-
grid systems have serious consequences. Extreme weather
is partially responsible for the increase in power outages
because an increase in the frequency and severity of extreme
weather events [1]–[4], such as hurricanes [5], [6], floods
[7], [8], wildfire [9] and winter storms [10], leads to damage
to power systems.

Due to the special terrain and climatic conditions of Hunan
Province, the percentage of faults caused by meteorologi-
cal disasters in the Hunan power grid is greater than 90%.
Individually, these faults can be attributed to specific extreme
weather causes such as lightning strikes, ice storms, wild-
fires, or conductor galloping [8], [9]. In particular, ice and
wildfire disasters last a long time and have widespread effects
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on the power grid. In 2008, an ice disaster in Hunan destroyed
the power grid, and millions of people lost power for one
month [10].

It is important to study the distribution law for power-grid
faults for the design, operation, and maintenance of trans-
mission lines. However, power-grid faults include several
subsystems, such as the climate subsystem (faults caused by
disasters) and human agency and lifestyle (faults caused by
wildfires). Therefore, the power grid is a typically complex
artificial system.

An exclusive focus on these individual causes can overlook
the global dynamics of a complex system in which repeated
major disruptions from a wide variety of sources are a virtual
certainty. Duan et al. (2010) has calculated long-term correla-
tions and probability distribution functions of faults in several
power utilities and has revealed the self-organized criticality
of fault time series in both transmission and distribution sys-
tems [11]. Dobson et al. (2004) stated that North American
blackout data suggest that the frequency of large blackouts
is governed by a power law [12]. Newman et al. (2011)
suggested that blackout size distributions have a power-law

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79935

https://orcid.org/0000-0001-8904-6977
https://orcid.org/0000-0003-4448-5698


T. Zhou et al.: Fractal Analysis of Power Grid Faults and Cross Correlation for the Faults and Meteorological Factors

form over much of their range and that the simulation of
evolving network with cascading transmission line outages
model shows that apparently sensible efforts to reduce the risk
of smaller blackouts can sometimes increase the risk of large
blackouts [13]. Five blackout models capturing various crit-
ical properties of power systems at different time scales are
listed in [14]. Ren et al. (2008) analyzed the long-term effects
of various policies such as the n-1 criterion and upgrading
lines on the probability distribution of outage size [15].

The existing literature analyzes power law using R/S anal-
ysis and the detrended fluctuation analysis (DFA) method
based on power-grid disturbance events. The indicators used
to describe the seriousness of power-grid blackouts are loss
of load [13], [16], [17], power outage interval [16], time of
power outage [17], loss of power generation [17], number of
line outages [18], and others.

However, no study has analyzed whether time series
of power-grid faults have multifractal characteristics and
revealed their origin. Second, the research just described
was focused on time-series analysis of grid power outages
and did not attend to the time series of meteorological fac-
tors that caused the power-grid disturbance events. In other
words, the correlation between the fault time series and the
meteorological-factor time series was not analyzed. Third,
the differences in the impact of meteorological factors on
different voltage grades on the power grid have not been
analyzed. Fourth, there has been no study of how the time
lags of meteorological factors affect the cross-correlation
behavior between time series. If the above four problems can
be effectively solved, power companies can assess power grid
operation risks and then guide the operation and maintenance
of transmission lines and improve the ability of the grid to
resist extreme disasters. Furthermore, power companies can
guide the design of transmission lines based on the global
climate change trend and improve the level of differentiated
design for transmission line bodies.

The paper is organized as follows. Section II describes
the study area and data resources. The fractal and multi-
fractal features of time series for power grid faults are dis-
cussed in Section III. The periodic uncertainty changes in
cross-correlation exponents are examined in Section IV, and
Section V concludes the paper.

II. STUDY AREA AND DATA RESOURCES
Hunan Province is situated between 24.62–30.13 degrees
North latitude and 108.78–114.27 degrees East longitude.
The province is tilted from south to north, with the east, south,
and west sides surrounded by mountains and the central
and northern parts relatively low-lying in a U-shaped basin.
Mountains and hills occupy more than 80% of the province
and plains less than 20%. About 4.3 percent of its surface
area is higher than 1000 m above sea level, and large parts
of it lie between 100 and 800 m above sea level. Hunan’s
climate is classified as humid subtropical, with short, cool,
damp winters, very hot and humid summers, and plenty of
rainfall. January temperatures typically range from −2 ◦C

to 8 ◦C, whereas July temperatures typically range between
27 ◦C and 40 ◦C. The transition from spring into summer
is a period of heavy rain and lightning strikes. Lightning
activity in Hunan Province is mainly concentrated in April to
September each year, during which 95.7% of total lightning
strikes occur. Fifty percent of lightning strikes have a current
amplitude greater than 24 kA, and 1%of strikes have a current
amplitude greater than 130 kA. The risk of wildfires is partic-
ularly high every year in February to April. Sweeping tombs
on Qingming Festival and land-clearing fires for plantations
increase the potential sources of ignition. During the period
of high wildfires, the number of wildfires can reach more
than 1,000 per day. There are strong winds in the winter, with
frequent ice disasters.

The Hunan power grid consists of 531 transmission lines
of 110 kV and above (110, 220, 500, ±500, and ±800 kV)
and 5217 distribution lines with voltage levels of 35 kV and
10 kV. By deriving fault data from the power production
management system of the Hunan power grid, it was found
that there were 2497 fault occurrences from January 2015 to
June 2018. The frequency of faults was 1.54 times/day. The
three main causes of faults were lightning strikes, wildfires,
and ice storms, accounting for 46.8%, 16.04%, and 10.11%
respectively [19].

The meteorological data came from the China Meteoro-
logical Data Service Center (http://data.cma.cn). The study
used observed daily datasets closely related to power grid
faults, which included average relative humidity, daily pre-
cipitation, daily mean air temperature, and maximum wind
speed data from 37 ground meteorological stations in Hunan
Province, including Xinhua, Sangzhi, and Huaihua. There
were 81,030 Chinese records that covered the period from
2013 to 2018, with a continuous record over six years.

III. FRACTAL ANALYSIS OF POWER GRID FAULTS
AND THEIR ORIGIN
A. SCALE EXPONENT CHARACTERISTICS OF FAULT
TIME SERIES
The external manifestation of scale exponent characteristics
is that self-organized criticality may govern the complex
dynamics of power grid faults by proving that there is a long
tail feature between frequency and event scale [17], [18],
[20], [21], leading to autocorrelation between specific event
scales. This paper further examines the hypothesis that var-
ious autocorrelation features may also reflect the dynamic
characteristics of the time series at different time scales. The
fluctuation of the number of transmission line faults has a
seasonal, cyclical trend but exhibits random and other factors.
If a sequence is to be studied in depth, it is important to
decompose or remove its interference components. DFA is
more effective than the traditional sequential analysis method
at determining these features [22].

Suppose that there is a time series {xk , k = 1, . . . ,N },
where k represents the time interval. The DFA method per-
forms the following five steps:
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Step 1: Calculate the accumulated deviations of sequence
from the mean:

Y (i) =
i∑

k=1

(xk − 〈x〉), (1)

where 〈x〉 =
(∑N

k=1 xk
)
/N .

Step 2: The sequence Y is equally divided into Ns
non-overlapping intervals of equal time length s, where
Ns = [N /s]. The same is done for the reverse order of the
sequence Y , giving 2Ns intervals of equal length for better
use of the data.
Step 3: The data are fitted using the least squares method

to obtain a local trend for each interval. The time series after
removing local trends are recorded as Ys(i), which represents
the difference between the original series and the fitted val-
ues pv(i),:

Ys(i) = Y (i)− pv(i). (2)

Step 4: Calculate the variance after removing the trend
for each interval. The order and reverse order sequences are
calculated separately using Eqs. (3) and (4):

F2
s (v) = 〈Ys(i)〉 =

1
s

s∑
i=1

Y 2
s [(v− 1) s+ i]

v = 1, 2, . . . ,Ns (3)

F2
s (v) =

1
s

s∑
i=1

Y 2
s [N − (v− Ns) s+ i]

v = Ns + 1,Ns+, . . . , 2Ns. (4)

Step 5: Mean and square of the variances for all equal-
length intervals are calculated to obtain the standard DFA
fluctuation function:

F(s) =

√√√√ 1
2Ns

2Ns∑
ν=1

[
F2(ν, s)

]
. (5)

Obviously, as s becomes larger, the variance will also
increase. If the sequence x is long-dependent, then F(s) has a
power-law relationship:

F(s) ∼ sλ. (6)

where λ is the Hurst exponent.
In Figure 1, the parameter s represents the time scale and

the function F(s)r epresents the fluctuation magnitude. The
parameter R denotes the correlation coefficients to the fitted
line. Figure 1 shows significant autocorrelation in the number
of transmission system line faults per day (TSLF) time series
when the time scale is > 8 days and < 230 days and number
of distribution system line faults per day (DSLF) time series
when the time scale is> 8 days and< 530 days, respectively.
This means that the current and future numbers of faults per
day are affected by fault occurrences in the past. The positive
correlation is in accordance with the scale exponent. The
larger the scale exponent, the stronger the positive correlation
will be. As shown in Figure 1, there are two crossover time

FIGURE 1. Scaling behaviors of fault time series.

TABLE 1. Hurst exponent and correlation to the fitted line.

scales n× in the log-log plots of F(s) versus s. These two
crossovers divide F(s) into three regions. The existence of
these regions is due to the competition between noise and
sinusoidal trend. For s < n1 and s > n2, the noise has the
dominating effect. For n1 < s < n2, the sinusoidal trend
dominates [23]–[25]. Therefore, the inflection point n2 of
the scale curve may correspond to a natural cycle taking
0.6 years or 1.5 years. The Hurst exponent and the correlation
coefficient of the fluctuation function and fitted lines were
calculated and are listed in Table 1.

B. MULTIFRACTAL CHARACTERISTICS OF FAULT
TIME SERIES
The power-law relationship between the covariance function
of the fault time series after eliminating the trend and the scale
can only indicate the scale invariance of the series, which can
be described by a scale exponent. When a sequence has a
multifractal feature, the heterogeneity of the time distribution
for power grid faults cannot be described. Therefore, sev-
eral scale indices or exponential spectra are needed to fully
describe its scale behavior.

An existing method called multifractal detrended fluctua-
tion analysis (MFDFA) [26] can study the multifractal char-
acteristics of non-stationary time series. Compared to DFA,
MFDFA revealed a q-order fluctuation function Fq(s) that
varies with the parameter q introduced at the fourth step,
as shown in Eqs. (7).

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[
F2(ν, s)

] q
2

} 1
q

, (7)
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where Ns represent the number of sections into which the
TSLF, DSLF, or meteorological time series is segmented and
Ns = [N/s]. When q = 2, it is the standard DFA calculation
formula, or in other words, DFA is a special case of MFDFA.

Log-log plots of parameter s versus function Fq (s) make
it possible to study the scale behavior of the fluctuation
function. If the time series has autocorrelation features, then
the fluctuation function Fq (s) and the variable s satisfy the
power-law relationship, which is defined as Fq (s)∼ sh(q),
where h(q) is the generalized Hurst exponent. In the case
of q < 0, the magnitude of the small fluctuation deviation
F2 (v, s)) determines the magnitude of Fq (s). However, in the
case q > 0, the magnitude of the large fluctuation deviation
F2 (v, s)) determines the magnitude of Fq (s).
Kantelhardt (2002) found that the relationship between the

scaling exponents τ (q) and the generalized Hurst exponent
h(q) and the relationship between the multifractal spectrum
f (α) and the generalized Hurst exponent h(q) are as shown in
Eqs. (8) and (9) respectively:

τ (q) = qh (q)− 1, (8)

When the time series has monofractal features, the graph of
τ (q) is approximately linear with changing q. When the time
series has multifractal features, τ (q) is nonlinear with chang-
ing q, and the stronger the non-linearity of τ (q), the greater
will be the multifractal strength:

f (α) = qα − τ (q) , (9)

where α is the singular exponent, which can be used to
describe the different degrees of singularity in each interval
for transmission-line faults. The value of the multifractal
spectrum f (α) reflects the fractal dimension with α. If the
time series studied is monofractal, f (α) takes on a certain
value. If the time series is multifractal, the f (α) curve takes
on a unimodal bell shape [27].

The MFDFA method was used to study the multifractal
characteristics of power grid faults. Then the generalized
Hurst exponent curve, scaling exponent curve, multifractal
spectrum curve, and fluctuation function curve were calcu-
lated, as shown in Figs. 2(a)–2(d).

Figure 2(a) shows the curves of h(q) versus q for the fault
time series in the Hunan power grid. Clearly, h(q) decreased
nonlinearly as q increased, indicating significant multifractal
characteristics of the fault time series, which could not be
characterized by monofractality.

From Fig. 2(b), it is clear that τ (q) increased nonlinearly as
q increased, indicating significant multifractal characteristics
of the fault time series.

As shown in Fig. 2(c), the multifractal spectrum has a long
right tail and left tail, reflecting that the multifractal structure
of time series is sensitive to the local fluctuations with large
magnitudes and to those with small magnitudes, respectively.
The width of multifractal spectrum (1αL+1αR) is 1.186.
These results demonstrated that the fault time series in the

FIGURE 2. Scale-free features of fault time series based on the MFDFA
results: (a) generalized Hurst exponent for power grid fault time series;
(b) τ (q) for fault time series; (c) multi-spectrum parameter f (α) and
singular exponent α changes in the fault time series; (d) fluctuations in
function Fq (s) and s changes in the fault time series.
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Hunan power grid was characterized by multifractality. The
shape of the multifractal spectrum f (α)–α curve is truncated
on the right. Then the asymmetry parameter Aα was intro-
duced to quantify the asymmetric [30]. The value of Aα
means that the faults of Hunan power grid are sensitive to
the large magnitude of local fluctuations [27]–[29].

As q takes on different values, the fluctuation function
curve varies over a distinctly linear interval. Figure 2(d)
shows that in the scale-free range between 8 days and N /4,
i.e., 404 days, when the time scale is short, the logarithmic
value of the fluctuation function changes greatly when the
order q is negative, but the numerical change is small when
the number q is positive, indicating that a small fluctuation
deviation plays a determining role in power-grid fault series
in the short time. When the time scale is long, the logarithmic
value of the fluctuation function changes little when the order
q is negative, but the numerical change is much larger when
the number q is positive, indicating that a large fluctuation
deviation plays a determining role in power grid fault series
over the long term.

Ninety percent of transmission line faults in Hunan
Province are caused by lighting, wildfires, storms, ice storms,
and similar causes [19]. The above causes are closely related
to meteorological factors. However, meteorological factors
have a lower probability of change in Hunan Province over
a short period of time, during which the number of faults
remained similar. The fluctuation deviation was small over
the short period of time studied. As time scales become
longer, the variability of meteorological factors may become
significant and dominant, causing the number of faults to vary
greatly and leading to large differences and fluctuations.

C. ORIGINS OF MULTIFRACTALITY
It is generally accepted that there are two possible sources of
multifractal scaling in time-series data [26]. It can be predom-
inantly due to (1) long-term correlations of small and large
fluctuations or to (2) the fact that the data are drawn from
a heavy-tailed probability distribution. Both these influences
can individually be removed from the data to reveal what
impact they have on the multifractality of the time series.

A simple way to check whether correlations in the data
produce any scaling is to shuffle the data using the method
as suggested by Kantelhardt et al. [26]. Shuffling removes
time correlations, and any scaling that remains must be
due to the probability distribution from which the data are
drawn. The distribution of the values is not affected by
reordering the series. Any individual shuffle may still con-
tain some correlations, and therefore, to be sure to com-
pletely rid the data of all correlations, the fault data were
shuffled for a number of times equal to twenty times the
length of the time series, each random permutation beginning
with a new random number generator seed in MATLAB
(https://jp.mathworks.com/help/matlab/ref/rng.html). Phase
randomization of time series can weaken the non-Gaussian
nature of a distribution. Hence, a Fourier transform of the time
series was taken, after which the phases were randomized,

FIGURE 3. Phase-randomized surrogates of fault time series based on
Fourier transform.

and an inverse Fourier transform was performed. The result
was a surrogate time series for the power grid fault time series,
as shown in Fig. 3.

(1) As shown in Figs. 4(a)–4(c), the generalized Hurst
exponents of the surrogate time series, hsurr(q), and of the
shuffled time series, hshuf(q), decreased with increasing q
(Fig. 4(a)). τ (q) of the shuffled sequence and the surrogate
sequence for the Hunan power-grid fault time series were
nonlinear with q. τ (q) of the shuffled sequence and the sur-
rogate sequence for the Hunan power-grid fault time series
were nonlinear with q, but their nonlinearities were obvi-
ously weaker than that of the original sequence. (Fig. 4(b)).
The f (α) curves of the shuffled sequence and the surro-
gate sequence are unimodal bell-shaped images. Figure 4(c)
shows that the multifractal spectrum widths of the shuf-
fled sequence, fshuf(α), and the surrogate sequence, fsurr(α),
are significantly smaller than that of the original sequence,
forigin(α), indicating that rearrangement and phase random-
ization of the sequence both weakened the multifractal time-
series characteristics. These showed that the long-range
correlation and the fat-tailed distribution of the fault time
series for transmission lines in the Hunan power grid both
caused multiple fractal features.

(2) The extent of the decrease was less for hsurr(q) than for
hshuf(q), and the extents of decrease for hsurr(q) and hshuf(q)
were less than that of horigin(q) (Fig. 4(a)). The nonlinearity
of the surrogate data τsurr(q) was weaker than that of the
rearranged data τshuf(q) (Fig. 4(b)). Moreover, the width of
the multifractal spectrum, fshuf(α), of the shuffled sequence
(1αLshuf + 1αRshuf = 0.836) was significantly larger than
the width of the multifractal spectrum, fsurr(α), for the sur-
rogate sequence (1αLsurr + 1αRsurr = 0.717) (Fig. 4(c)).
As seen in upper panel of Figs. 4(c), the scaling exponents
of the shuffled sequence (slope of Fq(s)) slightly depend on
q for q < 0 while weakly for q > 0. The scaling exponents
of the surrogate sequence (slope of Fq(s)) visibly depend on
q for q < 0 while very weakly for q > 0. The opposite is
true for scaling exponents of the origin sequence (Fig. 2(d)).
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FIGURE 4. Comparison of scale-free features for shuffled, surrogate, and
original fault time series: (a) generalized Hurst exponent for shuffled,
surrogate, and original fault time series; (b) τ (q) for shuffled, surrogate,
and original fault time series; (c) changes in the multispectral parameters
f (α) and the singular exponent α for shuffled, surrogate, and original
fault time series.

This correlates with orientations of asymmetries seen in left
panel of Figs. 4(c) [30]. These indicate that the fat-tailed
probability distribution plays an important role in the multi-
scale changes in transmission-line faults in the Hunan power
grid and that the effect of long memory on the multiscale
changes of transmission-line faults in the Hunan power grid is
relatively weak, which is consistent with the result that heavy-
tailed pdf is responsible for apparent multifractality for short
time series [31], [32].

IV. ANALYSIS OF THE EFFECT OF METEOROLOGICAL
FACTORS ON FAULTS
A. DETRENDED CROSS-CORRELATION ANALYSIS (DCCA)
BETWEEN FAULTS AND METEOROLOGICAL FACTORS
Podobnik and Stanley proposed the DCCA method [33],
which describes the power-law correlation between two non-
stationary time series. The principle of the method is to min-
imize the impact of external trends on the cross-correlation
calculations by eliminating trend covariances. It is a general-
ization of the DFA method. The long-range cross-correlation
characteristics of the two sets of time series depend not only
on their own set’s past values, but also on the historical values
of the other set’s variable [34]. If the correlation between the
two time series is strong, it indicates that the consistency of
wave direction between the two time series is strong.

The research results in [35] indicate that average relative
humidity, average daily precipitation, mean temperature, and
extreme wind-speed data have fractal characteristics on the
time scale ranging between 25 and 366 days. Therefore,
the time-scalemaximum for analyzing time-series correlation
is 366 days when investigating the cross correlation between
meteorological factor time series and TSLF/DSLF.

Suppose there are two time series {xk , k = 1, . . . ,N } and{
x ′k , k = 1, . . . ,N

}
, where k represents the time interval.

This method performs the following six steps:
Step 1: Calculate the accumulated deviation of sequences

from the mean:

Y (i) =
i∑

k=1

(xk − 〈x〉), (10)

Y ′(i) =
i∑

k=1

(x ′k −
〈
x ′
〉
), (11)

where 〈x〉 =
(∑N

k=1 xk
)
/N ,

〈
x ′
〉
=

(∑N
k=1 x

′
k

)
/N .

Step 2: The sequences Y and Y ′(i) are equally divided into
Ns non-overlapping intervals of equal time length s, where
Ns = [N/s].
Step 3: The data are fitted using the least squares method

to obtain a local trend for each interval. The time series after
removing local trends are recorded as Ys(i) and Y ′s(i), which
represent the difference between the original series and the
fitted values pv(i) and p′v(i):

Ys(i) = Y (i)− pv(i),Y ′s(i) = Y ′(i)− p′v(i). (12)

Step 4: Calculate the variance after removing the trend for
each interval using Eq. (13):

f 2DCCA(s, v) =
1
s

s∑
k=1

(Yk − pν(i))(Y ′k − p
′
ν(i)). (13)

Step 5: Calculate the mean and square of the variances
for all equal length intervals to obtain the detrended cross-
correlationmagnitude FDCCA(s), which is defined in Eq. (14):

FDCCA(s) =

√√√√ 1
2m

2m∑
ν=1

[
f 2(ν, s)

]
(14)
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Step 6: Develop the FDCCA(s) to s relationship in double
logarithmic coordinates. Then fit a curve to FDCCA(s) and s
using the least squares method, so that the scaling exponent
λ can be obtained:

FDCCA(s) ∼ sλ. (15)

The scaling exponent λ is a parameter to evaluate the degree
of correlation between the time series xk and x ′k .

This study used the DCCA method to study the cross cor-
relation between TSLF/DSLF and the meteorological factors
that influence the two [36], [37], [38].

To perform a quantitative analysis of the long-range cross
correlation between the time series for meteorological factors
and TSLF/DSLF, an indicator of the inter-correlation signifi-
cance level is needed. The relationship F2

f+g− (F2
f +F

2
g ) ≈ 0

should hold true when two time series, f (i), g(i), have no
cross correlation [40]. Therefore, this study used |(F2

f+g−

F2
f − F2

g )/F
2
f+g| as the indicator of the inter-correlation

significance level.
In Figs. 5(a), 5(b), and 5(c), the cross correlation did not

satisfy the power-law property. Although each individual
time series (TSLF, daily average precipitation, daily aver-
age temperature, and daily average humidity) has long-range
correlation characteristics, the TSLF and the daily average
precipitation, daily average temperature, and daily average
humidity time series have weak cross correlation, with no
long-term memory behavior. The long-range correlations
between the time series for TSLF and maximum wind speed
are stronger than those between the time series for TSLF
and daily mean air temperature, average relative humid-
ity, or daily precipitation. The value of the scaling exponent
λ is 1.05 (Fig. 5(d))
In Figs. 6(a), 6(b), and 6(c), the inter-correlation signifi-

cance levels between the time series for TSLF and daily mean
air temperature, average relative humidity, and daily precip-
itation remained between 0 and 0.1. Most inter-correlation
significance levels between the time series for TSLF and
for maximum wind speed remained between 0.15 and 0.30,
which is consistent with the linear fitting confidence results
shown in Fig. 5(d).

One of the reasons for these results was the transmission
system line to withstand the high relative humidity, high
daily precipitation and high daily mean air temperature, while
unable to withstand disasters related to extreme winds. As far
as the Hunan power grid faults data is concerned, strong
winds cause transmission-line faults in several ways. The
main mechanism is windage yaw discharge of the transmis-
sion line due to the phase distance under the lower parameter.
Strong winds also raise up foreign materials, such as plastic
belts and kites lying on the ground, causing discharge of
transmission lines. It may be that transmission lines become
iced up in winter and that strong wind causes the ice-covered
line to gallop. Wind-based faults and gallops are directly
related to the magnitude of the extreme wind speed. The other
reason is that the change trends of the TSLF are not consistent

FIGURE 5. Cross-correlation analysis of TSLF and meteorological factor
time series based on DCCA: (a) average relative humidity and TSLF time
series; (b) daily precipitation and TSLF time series; (c) daily mean air
temperature and TSLF time series; and (d) maximum wind speed and TSLF
time series.
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FIGURE 6. Significance levels of the correlation coefficients between TSLF
and meteorological data time series: (a) TSLF and average relative
humidity; (b) TSLF and daily precipitation; (c) TSLF and daily mean air
temperature; and (d) TSLF and maximum wind speed.

with that of average relative humidity, daily precipitation
and daily mean air temperature. Although many faults, such
as ice-flashing trips, are caused by ice disasters, the factors
affecting ice disasters include precipitation, average temper-
ature, and humidity. The mechanism of these multiple factors
acting on the grid may havemultiple aspects that may at times
oppose each other. Extremely high and low temperatures can
cause the load to increase, causing transmission-line trips.
Low temperatures can also cause the lines to become covered
with ice and the towers to break.

When the results in Figs. 7 and 8 are combined, the sig-
nificance levels of the correlation coefficient between dis-
tributed line faults and average relative humidity are below
10%, which means that they are only weakly correlated. The
significance levels of the correlation coefficients between
distributed line faults and daily precipitation, between dis-
tributed line faults and daily mean air temperature, and
between distributed line faults and maximum wind speed
are greater than 20%, which shows that they are all strongly
correlated.

The ability to withstand extreme weather disasters may
be the major reason for the correlation difference of TSLF
and DSLF. As for the transmission lines of the Hunan power
grid, the structure of the power grid with voltage levels
of 110 kV and above is relatively strong, and therefore it is
unusual that the transmission lines become overloaded due to
excessively high or low temperatures, which tend to increase
the electrical load sharply. Furthermore, the Hunan power
grid belongs to the state-owned electric utility monopoly of
China. The construction, operation, and maintenance stan-
dards of the backbone network (voltage levels of 110 kV and
above) are very high. The clearance distances to the ground
of the transmission lines are high enough to protect against
floods. High average relative humidity has limited impact on
the operation of the power grid. Therefore, the long-range
correlation between the time series of temperature, average
relative humidity, and daily precipitation and the time series
of transmission-line faults in the 110 kV and above network is
not obvious. However, for the distribution lines of the Hunan
power grid, the structure of the distribution-line grid is still
relatively weak due to insufficient investment. Its ability to
withstand natural disasters is still very inadequate. Extremely
hot weather has increased the temperature-related load, and
distribution lines are becoming more heavily loaded in sum-
mer and winter. Moreover, China has a huge population,
but inadequate land. Many distribution lines and substations
are not fully equipped for floods and geological disasters
(which mainly refers to landslides in Hunan). Once heavy
rains occur, they are likely to cause large-scale blackouts.
Similarly, high winds can cause faults in the distribution
system network or even break ice-covered towers. Therefore,
unlike TSLF, the long-range correlations between the time
series of temperature, daily precipitation, and extreme wind
speed and DSLF are obvious.

79942 VOLUME 8, 2020



T. Zhou et al.: Fractal Analysis of Power Grid Faults and Cross Correlation for the Faults and Meteorological Factors

FIGURE 7. Cross-correlation analysis of DSLF and meteorological factor
time series based on DCCA: (a) average relative humidity and DSLF time
series; (b) daily precipitation and DSLF time series; (c) daily mean air
temperature and DSLF time series; and (d) maximum wind speed and
DSLF time series.

FIGURE 8. Significance levels of the correlation coefficients between
DSLF and meteorological data time series: (a) DSLF and average relative
humidity; (b) DSLF and daily precipitation; (c) DSLF and daily mean air
temperature; and (d) DSLF and maximum wind speed.
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B. DCCA ANALYSIS BASED ON TIME DELAY (TLDCCA)
The previous subsection described the dynamics of the cross
correlation of power grid faults and meteorological data at a
single point in time. The long-range correlations between the
time series of temperature, daily precipitation, and extreme
wind speed and DSLF are obvious, and the long-range corre-
lation between the time series for TSLF and maximum wind
speed is strong.

Therefore, this subsection will describe the application of
DCCA to cross correlate these four pair datasets based on a
time lag, τ , as shown in Table 2.

TABLE 2. Pair datasets for cross correlation based on a time lag.

The covariance of DCCA based on a time delay [40], [41]
between time series xk and xk ’ is defined as:

f 2DCCA(v1, s) =
1
s

s∑
i=1

(Yk − pν1(i))(Y ′k+τ − p
′

ν1,τ (i)), (16)

where τ is the time delay, which was varied between
−600 days and −1 day by a step of 1 day.

FIGURE 9. Scaling exponents of DCCA based on time lag for TSLF and
maximum wind speed.

As shown in Figs. 9 and 10, for any time lag, the scaling
exponents between the transmission-line faults (TSLF and
DSLF) and the meteorological factor time series range from
0.8 to 1.9. This shows that there is a strong cross correlation
between the above four sets of time series. The scaling expo-
nent changes periodically with the time lag τ , with a period of
about 180 days. The reason may be that the affecting factors
have a semi-annual impact on the Hunan power grid, which
is consistent with actual meteorological events. However,
the scaling exponents of DCCA based on time lag τ for

FIGURE 10. Scaling exponents of DCCA based on time lag for DSLF and
meteorological factors: (a) DSLF and daily precipitation; (b) DSLF and
daily mean air temperature; (c) DSLF and maximum wind speed; and
(d) DSLF and average relative humidity.
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DSLF and average relative humidity are not periodic, which
is consistent with the results in the previous subsection.

V. CONCLUSION
Most of the faults were caused by meteorological disasters
in the Hunan power grid, and the time series for power-grid
faults have non-stationary characteristics. The fractal features
of faults were studied by using DFA, MFDFA, DCCA, and
TLDCCA methods.

1) The DFA method was used to study the time series
for power grid faults. The time series had stable positive
correlations over shorter time scales (<230 days for TSLF
and <530 days for DSLF).
2) The power grid fault time series were analyzed using

the MFDFA method and were found to have multiple fractal
components. Further investigations revealed that the multi-
fractal features of the fault time series of transmission lines in
the Hunan power grid are due to long-range correlation of the
grid and its fat-tailed distribution. The results showed that the
fat-tailed distribution’s contribution to multiscale behavior is
greater than that of the long-range correlation to multiscale
behavior. Given enough data over several years, it is possible
to forecast how large the average 10- or 50-year faults will be.

3) The DCCA and TLDCCA methods were used to study
the cross correlation between the time series for TSLF, DSLF
and meteorological factors. The results shown that TSLF and
maximum wind speed are strongly correlated. Unlike TSLF,
the long-range correlations between DSLF and temperature,
daily precipitation, and extreme wind speed are obvious. One
interesting finding was that the cross-correlation exponents
have periodic uncertainty changes with time lag. The affect-
ing factors have a semi-annual impact on the Hunan power
grid. With the trend of global climate change, the results of
this study can help assess the risk of large-scale grid failures
in the future.
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