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ABSTRACT Turbulent combustion is one of the key processes inmany energy conversion systems inmodern
life. In order to improve combustion efficiency and suppress emission of pollutants, many efforts have been
made by scholars to investigate turbulent flames. In the present study, Artificial neural network (ANN) was
first employed for the storage and interpolation of the flamelet library in flamelet generatedmanifolds (FGM)
model, in which Eulerian stochastic field (ESF) model was used to directly consider the probability density
function of the control variables. This new model had been implemented in OpenFOAM and was validated
by simulation of the Sandia Flame D under consideration of the detailed chemical reaction mechanism.
By comparing the results of numerical simulations and experimental measurements of the temperature and
the mass fraction of main components, the accuracy of the proposed ANN-ESFFGM model was verified.
Through the use of ANNs to characterize the chemical reactions, the flame simulation accuracy of the new
model is higher than that of the original ESFFGMmodel, especially in the prediction of the ignition position.
With the increase in the number of stochastic fields, the simulation accuracy of the new turbulent combustion
model is continuously improved until a certain value of stochastic fields was reached. Moreover, excessively
high FGM table resolution has limited improvement in numerical simulation accuracy.

INDEX TERMS Artificial neural network, Eulerian stochastic field methods, Flamelet generated manifold
model, OpenFOAM, turbulent combustion.

I. INTRODUCTION
Combustion system is widely used in the field of energy,
transportation industries and aerospace, which has brought
rapid socio-economic development. It also triggered a series
of serious environmental issues, such as resources and pol-
lution problems. The accurate prediction of turbulent flames
therefore becomes a critical challenge, and its numerical sim-
ulation has been paid more and more attention by researchers
from all over the world [1]–[3]. The fundamental mecha-
nism of turbulent flow has not been fully understood yet,
and it has a strong nonlinear coupling relationship with the
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simultaneous chemical reaction, which makes the prediction
of turbulent combustion even more complicated.

Based on how to address the challenge posed by the cou-
pling between chemical reactions and molecular diffusion,
the current mainstream combustion models can be divided
into Transported probability function (TPDF) models and
Flamelet-based models [4]. The TPDF models have the
advantages of being free from the limitation of the combus-
tion model and of high calculation accuracy at the cost of
consuming a large amount of computing resources [5]. The
flamelet models assume that all chemical reactions happen
on a thin layer, for which only the changes perpendicular to
the flame front is important, the other two dimensions are
negligible. These models have successfully decoupled the
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calculations of turbulent flow and chemical reaction process,
which makes the simulation of turbulent flame more com-
putationally efficient even when a detailed chemical reaction
mechanism is employed [6].

Proposed by vanOijen and deGoey [7], flamelet-generated
manifolds (FGM) is one of the most popular flamelet-based
models for turbulent combustion in recent years [8]–[11].
In FGM model, scalar properties of combustion system are
precalculated by computing a series of 1D laminar flame,
in which detailed chemical reaction mechanisms are taken
into account, and the results are typically stored in a struc-
tured table as a function of the reduced set of reaction coordi-
nates such asmixture fraction, progress variable and enthalpy.
Currently, Presumed-PDF (P-PDF) method is widely used for
expanding the laminar flamelet look-up table into a turbulent
one by considering the interaction between turbulence and
chemical reaction [12], [13]. However, evidence shows that
there is a noticeable gap between the most widely used PDFs
and the actual direct numerical simulation (DNS) data [14].
Then, an investigation on the applicability of the presumed
β− PDF approach to modeling of turbulent flames was car-
ried out by a comparison between the DNS data and the
corresponding a priori large eddy simulation [15]. The results
show that mean and variance are not sufficient as control
parameters by means of presumed PDF. To overcome this
shortage, a modified laminar flame PDF was proposed by
Jin et al. [16], and this model was then used by Luo et al. [17]
to model the reaction rate of premixed turbulent flames.

Recently, our group abandon the P-PDF method and com-
bine the Eulerian stochastic field (ESF) model with FGM
model to directly consider the probability density function
of the control variables [18]. The new ESFFGM model over-
comes the limitations of using the P-PDF model in the orig-
inal FGM model and reduces the size of the flamelet library
since this method does not need to integrate the precomputed
table over probability density function. Soon after, a similar
work was conducted by Mahmoud et al. [19], in which the
ESFmodel was combined with another flamelet-based model
termed as Flamelet Progress Variable (FPV) model to inves-
tigate turbulent combustion.

However, the storage requirements of FGM lookup table
are still extremely large when the table is to be extended to
incorporate more physics when required, for example, adding
enthalpy h to account for the heat loss/gain [10], adding air
dilution level γ to take into account the effect of recirculated
burnt gases in a flameless combustion system [20] and adding
a second mixing fraction to represent a different stage of
combustion in the simulation of pulverised coal combustion
(PCC) [21], [22]. In this case, the storage requirement of a
look-up table can be as high as several GBs per core and due
to the limitation of the computermemory, the resolution of the
flamelet library must be reduced, which leads to a decrease
in the accuracy of the simulation.

Artificial neural network (ANN), a framework for many
different machine learning algorithms to work together and

process complex data inputs, is an attractive alternative to
tabulation techniques for the representation of chemical reac-
tions [23]–[26]. The most outstanding advantage of ANN
over traditional tabulation method is their negligible memory
requirements, since only the architecture and the parameters
of the network need to be stored during the simulation. It is
reported that this approach reduces the storage size of the
chemistry library by three orders of magnitude [27]. At the
same time, the smooth function representation of ANN is
likely to provide more accurate chemical reaction results over
the linear interpolation method used in tabulation techniques.

Therefore, in this study, ANNwas first used for the storage
and interpolation of the flamelet library in ESFFGM model.
Subsequently, the characteristics of thememory requirements
and prediction accuracy of this model were analyzed. The rest
of the paper is organized as follows: Section II introduces
the main models used in this study. Section III gives the
simulation setups, the calculated results of Sandia Flame D
and gives some discussions. Finally, several conclusions are
drawn.

II. METHODOLOGY
A. FGM MODEL
In the FGM model, the chemical reactions in turbulent
combustion are thought to occur in low-dimensional man-
ifolds, which means that only a few independent variables
are required in the entire component space to characterize
chemical reaction in turbulent combustion. Therefore, there
is no need to solve a large set of scalar transport equations and
chemical reactions, and temperature and chemical species
mass fractions at each point are identified by referring to
the flamelet library. In the present study, the ‘‘mixture frac-
tion,’’ denoted as Z , which describes the mixing state of
fuel and oxidizer, and the ‘‘progress variable,’’ denoted as C ,
which characterizes the progress of the chemical reaction,
are elected as control variables in the flamelet look-up table.
The FGM turbulent combustion model under the Reynolds
Averaged Navier-Stokes (RANS) method can be expressed
as follows:
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∂t
+
∂ρ̄ũiũj
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In equation(1)-(6), (.̃) stands for a density-weighted or
Favre average quantity and (.̄) for time average quantity. ρ is
the density; ui is the velocity component of the flow field in
different directions (i = 1, 2, 3); p is the pressure; µ is the
dynamic viscosity; D is diffusion term and subscript t indi-
cates turbulence; Sij is strain rate tensor and τij is Reynolds
stress, closed with Standard k − ε model in the current study.
Z is mixture fraction, and is defined by Bilger’s method
of element definition with the same diffusion coefficient of
all components; YC is progress variable, which denotes the
progress of chemical reaction from pure mixing (YC = 0)
to fully burnt (YC = 1), and its definition in this study is as
follows:

YC =
YCO2

WCO2

+
YH2O

WH2O
+

YH2

WH2

(7)

where Yi and Wi is mole fraction and molecular weight of
species i respectively.

Then, a normalized progress variable is introduced as:

C =
Yc − Y uc
Y bc − Y uc

(8)

In this way, the high-dimensional chemical reaction system
has been projected to a two dimensional manifold:

φ = φ (Z ,C) (9)

where φ can be any of the scalar properties, such as tem-
perature, mass fraction of a certain species, of this chemical
system. This two dimensional manifold is hereinafter referred
to as the FGM table (i.e., flamelet library for FGM model).
In the present study, the FGM table was created by solving
laminar counterflow diffusion flame at different strain rates
in physical space and then transfer the results to control
variables (i.e., mixture fraction and progress variable) space.

B. ESF MODEL
Probability density function (PDF) method [28] has been
demonstrated as one of the predictive and robust approaches
for accommodating the effect of turbulence on the reaction
rates in turbulent combustion. In this method, transported
PDF equations are to be solved and multiple strategies have
been developed. Eulerian Stochastic Field (ESF) method in
the transported probability density function class model is
employed to consider the influence of turbulent fluctuation on
the chemical reaction. In the ESF method, the reactive fields
are represented byNf stochastic fields for each of scalars, and
it can be expressed as [29]

fφ
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1
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δ
(
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(10)

where ϕα,n is the value of scalar α under −→x position under t
time in nth field. δ is the Dirac delta function. In this model,
ϕα = [Z ,C], each stochastic field evolves according to
the stochastic partial differential equations (SPDE) derived

from transport equations of the joint-composition PDF. These
SPDE can be expressed as [30]:
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The first three terms on the right side of the equation
correspond to the convection term, turbulence diffusion term
and source term of the mean flow, respectively. The fourth
term indicates micro-mixing due to the attenuation of scalar
fluctuations. The last term is the Wiener term, which is vary-
ing in time and denotes a random term caused by turbulence.

By solving the stochastic differential equations of each
stochastic field, the evolution law of the mixture fraction and
the progress variable over time in each stochastic field con-
sidering the influence of turbulence is obtained. A statistical
average is then used to find the control variables for the ANN,
which is used for the storage and interpolation of the flamelet
lookup table.

C. ARTIFICIAL NEURAL NETWORKS
Artificial neural network is a machine learning algorithm that
attempts to mimic how the human brain processes informa-
tion. It consists of a large number of neurons, which are con-
nected together and are arranged in layers. Generally, neural
networks are structured into three layers: one input layer,
one or more hidden layers, and one output layer, as shown
in Figure 1, and this network will be described in detail in
next section.

III. NUMERICAL SIMULATIONS
A. CHEMISTRY REPRESENTATION
1) SETUP
In order to obtain scalar parameters which are required by
the RANS model, a neural network, consisting of five hid-
den layers of non-linear neurons, was created. As shown
in Figure 1, mixture fraction and normalized progress vari-
able were selected as inputs, and a vector of the chemi-
cal state, the components of which includes temperature,
dynamic viscosity and source term of normalized progress
variable, was defined as outputs.

The dataset of the ANN, i.e., the laminar flamelets library,
was computed by CHEM1D code [31]. As the resolution in
the settings of CHEM1D code increases, which also requires
an increase in the number of the nodes of flamelet library,
the precision of FGM table will be improved. However,
it should be pointed out that the library size increases lin-
early with the number of table nodes in the control vari-
able space, and the time for ANN training and forward
propagation will also increase significantly. In the present
study, two different levels of table nodes with resolutions of
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FIGURE 1. Sketch of a multi-layer perceptron that represents the steady flamelet library.

TABLE 1. Memory requirements of different chemistry representation methods.The table size for ANN-ESFFGM refers to the size of the table used for
ANN training.

200 × 200 (coarse table) and 500 × 500 (fine table) in the
mixture fraction and progress variable spaces, respectively,
were applied to check the quality of the ANN-ESFFGM
model. Additionally, the number of FGM table nodes in our
previous study [18] is the same as the number of the coarse
table.

Before training, standardization of all data was performed,
which rescales data to have a mean of zero and a stan-
dard deviation of unit variance. After a grid search, two
different ANNs were selected to be trained with the coarse
FGM table and fine FGM table, and the numbers of neurons
in each layer in these two ANNs are 30-30-20-20-15 and
30-25-25-30-30, respectively. The network was trained by
a multi-layer perceptron regressor with Adam method [32]
as the solver for weight optimization. Moreover, 10-fold
cross-validation method was used to detect over-fitting, and
the scores of 10 tests are all greater than 0.99.

2) MEMORY REQUIREMENT OF CHEMISTRY
REPRESENTATION METHODS
Table 1 compares the memory requirements between three
structured tables and ANNs. The size of the FGM table
for P-PDF method is four orders magnitude than that for
ESFFGM method, since both first moment and the second
moment of two control variables are needed to generate the
flamelet library. Regarding ESFFGM method, library size
increases linearly with the number of table nodes in the
control variable space, so the cost of memory is affordable
when the number of independent variables is less than three.
Compared with the previous two FGM table, the memory
requirement of ANN is negligible, since only the architecture

and the parameters of the network need to be stored, and as the
number of FGM table nodes increases, the memory require-
ments for the trained ANN does not increase significantly.

B. SIMULATION OF THE SANDIA FLAME D
1) NUMERICAL SETUP
Sandia Flame D in the series of piloted CH4/air jet
flame [33] has been a target of numerous model calcula-
tions [18], [19], [27]. The burner investigated was
designed by Masri [34] and scalar data was obtained
by Raman/Rayleigh/LIF measurements [33], [35]. The
Sydney burner consists of a long fuel-pipe that delivers the
methane-air mixture with a volume ratio of 1:3 and the
Reynolds number is 22400 (average fuel velocity is 49.6m/s
and nozzle diameter d =7.2mm). The experimental database,
which includes temperature, velocity and specie mass frac-
tion distributions in both axial and radial directions.

A 2D computational domain (720 × 150mm) with
51957 nodes was used for simulation and a symmetry bound-
ary condition was employed in order to save computational
costs. The RANS simulation method used a standard k − ε
model and a grid independence study was performed before
the numerical investigations.

The simulations were performed with a RANS solver
called ANN-ESFFGM, which is based on the open-source
finite-volume CFD code OpenFOAM-v2.3.1. Since pres-
sure and velocity are coupled, the solution of both fields
were obtained with a two-step approach. The PIMPLE algo-
rithm that originates from merging PISO and SIMPLE was
employed in the present study. Second order central differ-
encing scheme was applied for the divergence terms and
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FIGURE 2. Comparison of predicted and measured mean axial temperature and main components mass
fraction under the condition of NF = 48.

laplacian terms. The first order Euler integration method was
used for the time derivative terms for RANS.

2) RESULTS AND DISCUSSION
In this section, a discussion on the memory requirement
of chemistry representation methods was first presented.
Then, in order to validate the proposed ANN-ESFFGM
model, the simulation results from different table nodes in
the flamelet library were compared with the experimen-
tal data, including the temperature distribution and species
concentrations. To show the advantages of the developed
ANN-ESFFGMmodel, consistent comparisons with our pre-
vious numerical results [18] obtained with ESFFGM model
were also conducted.

To examine the convergence of the number of stochastic
fields NF , simulations had been carried out for different
numbers of NF (32, 40, 48, 56). Figure 2 shows the compari-
son of predicted and measured mean axial temperature and
main components mass fractions between ANN-ESFFGM
model and original ESFFGM model under the condition of
NF = 48. The measurement data in the rest of this paper
refers to the experimental data in [36]. In general, the pro-
posed ANN-ESFFGM predicts better temperature distribu-
tion than the original ESFFGM model and the accuracy of
the prediction results of the mass fraction of the main com-
ponents of the twomodels is comparable. It is noteworthy that
the shortcoming of the original model, which is a delay error
of the flame ignition, has been greatly improved. As shown
in Figure 2, the ignition position, where the axial tempera-
ture began to increase rapidly and CH4 and O2 mass frac-
tions began to decline and other products started to appear,
was accurately predicted. This advantage of the proposed
model can be quantitatively shown in table 2. At the position
where x/d= 20, the temperature prediction error is shortened

TABLE 2. Comparison of prediction errors of mean axial temperature
between different models.

to 40%. The season for this improvement may be that the
ANN is able to provide more accurate chemical reaction
results over the linear interpolation method used in tabulation
techniques, and this advantage is more significant in the
flame ignition position where the gradients of scalar prop-
erties are relatively large. However, the predicted increase
rate of temperature is also a bit faster than the experiment,
as reported in our previous study [18], and so are the rates
of fuel consumption and the product formation. As can be
seen from the average prediction error in Table 2, the usage of
ANN to represent chemical reactions significantly improves
the accuracy of turbulent combustion simulation under the
studied condition. Moreover, it should be noted that the
ANN-ESFFGM model with a higher flamelet table resolu-
tion (i.e. ANN-ESFFGM fine) does not show a noticeable
improvement over the one with a moderate flamelet table
resolution (i.e. ANN-ESFFGM coarse).
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FIGURE 3. Comparison of predicted and measured mean radial temperature at different axial locations.

FIGURE 4. Comparison of predicted and measured mean radial CH4 mass fraction at different axial locations.

Figure 3 shows a comparison of predicted and measured
mean radial temperature at the different axial location under
the condition of the different number of stochastic fields,
The calculated results of the proposed ANN-ESFFGMmodel
with different numbers of stochastic fields and the original
ESFFGM with NF = 48 are presented. Overall, there two
models show close predictions of the temperature near the
fuel inlet (i.e., x/d < 7.5), but the ANN-ESFFGM model is
better than the original model in prediction of the temperature
distribution where flame ignition appears, and both models
need to be improved for the temperature prediction of the
midstream of the flame. From the results of ANN-ESFFGM

model calculation alone, the temperature distribution can be
predicted accurately in 40 fields, which is relatively larger
than 24 fields, the number of stochastic fields required by
the original model [18]. As shown in Figure 3, with the
increase of the number of stochastic fields, the accuracy of
the calculated results is constantly improving until the NF
reached to a certain value, 40 in this case, the model results
are stable within a certain stage, which indicates that the
probability density function of the control variables obtained
by the ESF model achieves a statistical convergence.

Figure 4, 6, 5, 6 and 7 show the comparison of predicted
and measured mean radial CH4, O2, CO2, and H2O mass
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FIGURE 5. Comparison of predicted and measured mean radial O2 mass fraction at different axial locations.

FIGURE 6. Comparison of predicted and measured mean radial CO2 mass fraction at different axial locations.

fraction at six axial positions respectively. The radial distribu-
tions of different axial positions of the ANN-ESFFGMmodel
under different NF and the original ESFFGM model are
presented. As shown in these figures, the more the number of
stochastic fields, the more calculated results meet the actual
measured values. However, as the distance from the fuel inlet
increases, the simulation error continuously increase and the
predicted chemical reaction rate is larger than the experiment,
and this leads to undervalued mass fraction of reactants and
overvalued mass fraction of products. Actually, the predic-
tion of downstream of turbulent flame has always been a
challenge, especially for the flamelet-based model, because
the flow there is very complicated, and the local chemical

reaction state is difficult to be accurately characterized by a
pre-calculated table.

Figure 8 shows the comparison of predicted and mea-
sured mean radial OH mass fraction at six axial positions
respectively. The radial distributions of different axial posi-
tions of the ANN-ESFFGM model under different NF and
the original ESFFGM model are presented. OH is one of
the most important intermediate products in the combus-
tion process of hydrocarbon fuels. The detection of OH
in a flame can effectively reflect the ignition process of
gas fuel. As shown in Figure 8, the accuracy of the pre-
dicted OH distributions near the fuel inlet has been greatly
improved, so it can be concluded that the ANN strengthens

80026 VOLUME 8, 2020



J. Zhang et al.: ANNs for Chemistry Representation in Numerical Simulation of the Flamelet-Based Models

FIGURE 7. Comparison of predicted and measured mean radial H2O mass fraction at different axial locations.

FIGURE 8. Comparison of predicted and measured mean radial OH mass fraction at different axial locations.

the ability to deal with the ignition process of the original
model.

IV. CONCLUSION
In the present study, ANN was first employed for the stor-
age and interpolation of the flamelet library in ESFFGM
model. In comparison with traditional tabulation method
in flamelet-based model, the usage of ANN to store the
chemical reactions greatly reduces the memory requirements
while ensuring the calculation accuracy. By comparing the
results of numerical simulations and experimental measure-
ments of the Sandia Flame D, the accuracy of the proposed
ANN-ESFFGM model was verified. Through the numerical
investigations on Sandia flame D with different stochastic
fields, the following conclusions are obtained:

1) By using the ANN to characterize the chemical reac-
tions, the flame simulation accuracy of the new model
is higher than that of the original ESFFGM model,
especially in the prediction of the ignition position.

2) With the increase in the number of stochastic fields,
the simulation accuracy of the new turbulent combus-
tion model has been continuously improved until a
certain value of NF is reached.

3) Excessively high FGM table resolution has limited
improvement in numerical simulation accuracy.

The results presented in this study show that ANN can
reliably to characterize the chemical reactions in the
flamelet-based models for turbulent combustion simulations.
Future work can be carried out from the following two direc-
tions. One is to study the applicability of this method in more
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complex situations, like spray and coal particles combustion.
The second is to employ deep learning method to promote the
synergistic melding of physics-based modeling of the gov-
erning equations and data-driven modeling of experimental
data [37].
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