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ABSTRACT The optimization of rolling schedule is themain content of tandem cold rollingwhichwill affect
the quality of products directly. A rolling schedule with the objectives of minimum energy consumption,
relative power margin and slippage preventing is established. First, in order to make the rolling schedule
more accurate in the calculation process, a mathematical model combines with deep neural network is
proposed to calculate the rolling force. Second, a multi-objective particle swarm optimizer with dynamic
opposition-based learning is proposed to optimize the rolling schedule. It has a new particle learning strategy
to update the moving position of particles. Moreover, opposition-based learning is proposed to make the
particles jump out of local optima. Finally, the experiments are carried out based on the field data. Simulation
results demonstrate that the accuracy of the rolling force is greatly improved. The proposed algorithm has a
promising performance on both diversity and convergence. At the same time, the optimized rolling schedule
can well balance the rolling power and prevent slipping between five stands comparing with the original
rolling schedule.

INDEX TERMS Multi-objective optimization, tandem cold rolling, deep neural network, rolling force,
rolling schedule.

I. INTRODUCTION
With the development of economy, the demand for cold-
rolled strip in the steel market is growing rapidly. The require-
ment of consumers for the quality of products has increased.
Steel strip manufacturing is a complex and large industrial
process. It covers multiple levels of control and multiple pro-
cedures [1]. The cold rolling process equipment, measuring
instruments and their installation positions of a five-stand
UCM tandem cold rolling mill in a factory are shown in
Figure 1. The setting of rolling schedule affects the quality
of products and energy consumption. Rolling schedule is an
important aspect of the cold rolling process. A reasonable
setting of rolling schedule can fully utilize the equipment
capabilities, which not only improves the production and
quality of steel but also reduces the consumption of rolling
energy. Therefore, the optimization of rolling schedule is a
typical multi-objective optimization problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Olga Fink.

There are a lot of references that transforms the rolling
schedule into a single-objective optimization problem by
weighted method. Qi et al. integrated relatively equal load
and good strip crown and flatness into one objective function
in [2]. Chen et al. transformed the multi-objective opti-
mization problem into a single-objective optimization prob-
lem in [3]. The optimization of rolling schedule needs to
meet the constraints such as rolling force, rolling torque
and rolling power. By introducing a penalty term into the
objective function, the rolling schedule was transformed
into an unconstrained problem. The function was solved
by the Nelder-Mead simplex method. Compared with the
rolling schedule optimized by empirical formula, the pro-
posed method can well balance the rolling force and rolling
power simultaneously. Poursina et al. integrated power dis-
tribution cost, tension cost function, perfect shape condition
into one cost function in [4]. They used the genetic algorithm
to optimize the cost function and achieved a good result.
The case-based reasoning-Tabu search hybrid algorithm was
proposed to optimize the rolling schedule in tandem cold
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FIGURE 1. Equipment layout of a five-stand tandem cold mill.

rolling in [5]. The improved iterative method reduced the
number of iterations by about half compared with the ordi-
nary tabu search algorithm. However, in practice, because the
objective functions of multi-objective optimization contradict
each other and the number of optimization targets is large,
it is difficult to determine the weight coefficients. In recent
years, the multi-objective optimization algorithm provides
a solution for solving the problem of rolling schedule. The
multi-objective fuzzy theory and method was proposed to
optimize the rolling schedule in [6]. Li et al. proposed a
MODE/D algorithm to optimize the rolling schedule in [7].
The results showed that it can obtain a good Pareto-optimal
front which made a good trade-off among the three objec-
tive functions. A differential evolution algorithm based on
the evolutionary direction was proposed to solve the multi-
objective optimization model of the rolling schedule. The
results showed that the profile was improved and rolling
energy consumption was reduced compared with the actual
rolling schedule [8]. Although there have been many multi-
objective optimization algorithms proposed to calculate the
rolling schedule, the diversity and convergence of the solution
set is not good enough. As a result, there will be problems
such as the quality of products decline and high energy
consumption.

The rest of this paper is organized as follows. In section 2,
a hybrid rolling force model of deep neural network
model combines with a mathematical model is introduced.
In section 3, the mathematical models of the rolling schedule
are introduced. A multi-objective particle swarm optimizer
with dynamic opposition-based learning which is named
MOPSO-DOL is proposed to optimize the rolling schedule.
In section 4, the proposed model is used to predict the rolling
force and the comparative experiment is carried out. The pro-
posed MOPSO-DOL is tested on benchmark problems with
other multi-objective optimization algorithms and it is used
to optimize the rolling schedule. The optimal solutions are
chosen by the weighted-sum approach as the set values of the
rolling schedule. Finally, section 5 presents the conclusion.

II. THE ROLLING FORCE MODEL
The rolling force is a very important parameter in the cold
rolling process. The accuracy of the rolling force model

directly affects the accuracy of the output thickness. The pre-
setting of the rolling force controls the setting of the rolling
schedule.

The traditional mathematical model is a model based
on the internal mechanism of objects and production pro-
cesses. A new approach was proposed to predict the rolling
force of cold rolled sheet based on the plastic mechanics
in [15]. Most of the errors fallen within the range of ±10%.
However, due to the complexity of the working environ-
ment and the coupling relationship between variables, the
traditional mathematical model requires many assumptions
in practice. Thus, it can’t reflect the influence of disturbance
factors on the rolling force.

In order to predict the rolling force more accurately,
intelligence-based models are widely introduced into the
field of rolling. AziGuLi et al. used the extreme learning
machine and self-learning model to predict the rolling force
in [16]. The artificial neural network model was used to
predict the rolling force and acquired a high precision in [18].
Mahmoodkhani et al. developed an online rolling force pre-
diction tool by combining the finite element model with the
artificial neural network in [19]. The error of rolling force was
reduced to 10%. But these models are all shallow machine
learning models whose express ability to the complex func-
tion is restricted.

The past several years have seen increasingly rapid
advances in the field of deep learning, deep neural network
has a good nonlinear fitting ability, which can reflect the
influence of disturbance factors on rolling force accurately.
Wei et al. tried to apply deep learning to the prediction of
rolling force in [20]. An MLP rolling force prediction model
based on deep learning method was proposed. Simulation
results showed that the model could reduce the relative error
between the predicted results and the measured data to less
than 3%. Many models have been established to improve
the prediction accuracy of the rolling force. These models
either consider only data-driven models or only mathematical
models. A method combining artificial neural network and
physical model was proposed to calculate the rolling force
in [17], where deformation resistance and friction coefficient
were calculated by physical models. The Bland-Ford-Ellis
rolling force model was used to calculate the rolling force.
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In this paper, we propose a method combining the mathemat-
ical model and the deep neural network to calculate the rolling
force.

A. TRADITIONAL MATHEMATICAL MODEL
In this paper, the SIMS mathematical model is applied to
calculate the rolling force. The SIMS model is expressed as:

F = Bl ′cQpKKT (1)

where F is the rolling force; B is the strip width, mm; l ′c is
the roll contact length, mm; K is the deformation resistance
of metals,K = 1.15σ ;KT is the influence coefficient of front
and back tensile stress on the rolling force.

The calculation formula of the contact arc length after
flattening is as follows.

l ′c =
√
R′(h0 − h1) (2)

where R′ is the flattened roll radius, h0 and h1 are the entry
thickness and exit thickness, mm.

The flattened roll radius calculated by the Hitchcock
formula is:

R′ = R
(
1+ 2.11× 10−5

F
B(h0 − h1)

)
(3)

whereR is roll radius, mm.R′ can be calculated by an iterative
method. Then Hill’s simplified external friction stress state
coefficient formula is:

Qp = 1.08+ 1.79µε
√
1− ε

√
R′/h1 − 1.02ε (4)

where ε is the relative reduction rate, µ is the coefficient of
friction.

KT = 1−
(αTb − (1− α)Tf )

K
(5)

where Tb and Tf are the back tension and forward
tension, MPa.

For a cold-rolled strip, the magnitude of the deforma-
tion resistance depends on the chemical composition and
cumulative deformation of metal materials. The deformation
rate and deformation temperature have less influence on the
deformation resistance. Therefore, the selected deformation
resistance model is shown in (6).

σ =
2
√
3
(A+ B · ε6)(1− C · e

−D·ε∑ ) (6)

where ε6 is cumulative deformation resistance, ε6 =

2/
√
3 × ln(H0 − h); H0 is the thickness of raw material,

mm; h is the target thickness, mm; A, B, C, D are the coeffi-
cients of deformation resistance model associated with steel
grades.

The traditional SIMS is the most commonly used rolling
force model in the field. Using the SIMS model only will
cause a large deviation. The coefficients in the model are con-
stant and the model makes many assumptions that it doesn’t
consider the impact of disturbance factors on the rolling force.

The rolling force and the flattened roll radius need to be
calculated by the iterative method, which also causes the
deviation of the rolling force. Therefore, it is not appropriate
to use the SIMS model only to calculate the rolling force.
It needs to be corrected to adapt to the field application.

B. AGGREGATION MODEL OF DNN AND SIMS
In this paper, the method of training deep neural network
in [20] is used to predict the rolling force. Roller radius,
entrance thickness, initial thickness, objective thickness, for-
ward tension, back tension, deformation resistance are chosen
as the inputs of the deep neural network according to the
SIMS model.

Three kinds of SIMS model combines with deep neural
networks are proposed. The first combination method is
marked as DNN combines with SIMS I. The mathematical
model is used to calculate the main value of the rolling
force, and the deep neural network is used to predict the
deviation of the rolling force. The rolling force deviation is
the actual rolling force minus the rolling force calculated by
the mathematical model. The second combination method
is marked as DNN combines with SIMS II. The deep neu-
ral network is used to predict the deviation of the rolling
force. The rolling force deviation is the ratio of rolling force
calculated by the mathematical model divided by the actual
rolling force. The final rolling force is obtained by multiply-
ing the calculated value of the mathematical model and the
predicted ratio. The third combination method is marked as
DNNcombineswith SIMS III. The rolling force calculated by
the mathematical model is regarded as one of the inputs of the
deep neural network. The third combination method is shown
in Figure 2.

FIGURE 2. DNN combines with the SIMS III rolling force model.

III. THE ROLLING SCHEDULE MODEL
In this part, the objective functions, constraints and decision
variables are established firstly. Then a multi-objective parti-
cle swarm optimizer with dynamic opposition-based learning
is proposed to optimize the rolling schedule.
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A. THE OBJECTIVE FUNCTIONS OF THE
ROLLING SCHEDULE
The rolling schedule for five-stand tandem cold mill was
established in [22]. The rolling power model is expressed as:

P = Mω (7)

where P is the rolling power, KW; M is the rolling torque,
KN · m;ω is the rated speed of motor, rad/s; The model of
rolling torque is as follow:

M = 2Fl ′cψ (8)

where ψ is the coefficient of the rolling force arm, in this
paper, ψ = 0.5.

For minimizing the energy consumption generated during
the rolling process, the minimum energy consumption objec-
tive function is established. The objective function can be
defined as in (9).

f1 =

5∑
i=1

Pi
Pri

5
(9)

where Pi is the actual power of stand i; Pri is the rated power
of stand i.

In order to increase productivity and fully exploit equip-
ment capabilities, the relative power margin objective
function is established which is expressed as follows:

f2 =
5∑
i=1

5∑
j>i

∣∣∣∣Pri − PiPri
−
Prj − Pj
Prj

∣∣∣∣ (10)

For the purpose of preventing the occurrence of slipping
during the process of rolling, a function to prevent slipping
is established. Slipping refers to the phenomenon of rela-
tive movement between rolls and strips which easily causes
scratches on the surface of strips. The objective function for
preventing slipping is shown in (11).

f3 = β

√√√√√ 5∑
i=1

(
9i −

1
5

5∑
i=1

9i

)2

+ (1− β)
1
5

5∑
i=1

9i (11)

where β is the weighted coefficient, and generally β is 0.4.
9i is the slip factor of stand i. And 9i is shown in (12).

9i =
1
4µi

∣∣∣∣∣
√
h0i − h1i

R′i
+
Tbi − Tfi

Fi

∣∣∣∣∣ (12)

The rolling mill can effectively prevent slipping when
0 < 9i < 0.5. Obviously, the smaller the slip factor, the
smaller the probability of slippage occurs.

B. THE CONSTRAINTS OF THE OBJECTIVE FUNCTIONS
When optimizing the rolling schedule, the selection of the
rolling schedule must meet the constraints. According to the
reasons for the constraints, it can be divided into equipment
constraints and process constraints.

The equipment constraints are as shown below.

0 ≤ Fi ≤ Fimax

0 ≤ Pi ≤ Pimax

0 ≤ Mi ≤ Mimax (13)

where Fi, Pi, Mi are the rolling force, rolling power, and
rolling torque of ith stand respectively; Fimax, Pimax, Mimax
are the maximum rolling force, rated power of the motor and
maximum rolling torque of the ith stand respectively.

The process constraints are as follows.

εimin ≤ εi ≤ εimax

Timin ≤ Ti ≤ Timax (14)

where εi and Ti are the reduction rate and tension of each
stand; εimin, εimax and Timin,Timax are the minimum and
maximum of the reduction rate and tension of ith stand.

C. THE SELECTION OF DECISION VARIABLES
The rolling schedule for tandem cold mill involves multiple
rolling parameters, and the reduction rate and tension of each
stand are two important parameters. After the reduction rate
and tension are determined, the rolling force, rolling torque,
rolling power can be calculated according to the relevant
models.

For a five-stand tandem coldmill, the entry thickness of the
first stand and the exit thickness of the fifth stand are known;
The entry tension of the first stand and the exit tension of
the fifth stand are given according to the process conditions.
Therefore, a total of eight variables that are thickness and
tension between each stand are selected [3].

X = (h1, h2, h3, h4,T1,T2,T3,T4)T (15)

where X is the optimization vector, h1, h2, h3, h4 are thick-
ness between each stand; T1,T2,T3,T4 are tension between
each stand.

D. MULTI-OBJECTIVE OPTIMIZATION MODEL
The diversity and convergence of solution set of traditional
multi-objective optimization algorithms have poor perfor-
mancewhen optimizing the rolling schedule. The competitive
mechanism based multi-objective particle swarm optimizer
(CMOPSO) [9] has fast calculation speed and high conver-
gence accuracy, but the diversity of the solution set is poor,
and it is easy to fall into local optima. To address the above
problems, a new algorithm called MOPSO-DOL is proposed.
The algorithm has three main components: the random parti-
cle learning strategy, the dynamic opposition-based learning
strategy, and the environmental selection.

The random particle learning strategy is composed of elite
particle selection and random particle learning. The elite
particles are selected from the non-dominated sorting and
crowding distance based sorting. In CMOPSO, γ elite parti-
cles are selected in order from the ranking results as the elite
solution set L. After the elite solution set L is determined,
the algorithm performs a pairwise competition strategy.
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Suppose the particles a and b are two randomly selected
particles from the elite solution, the particle p is the current
particle to be updated, and θ1 and θ2 are the angles between
the particle p and the elite particles a and b. The angles θ1 and
θ2 are calculated separately. Particle with a smaller angle with
the particle pwill be used as the winning particle. The particle
a is marked as a winning particle if θ1 < θ2 for guiding the
update of the particle p.
When the winning particle is selected, the particle p

updates its position and velocity by learning from the winning
particle. Assume that the position of the particle p is Pi,
the velocity is Vi, and the position of the winning particle
is Pw. Then the velocity update formula and position update
formula of particle p are:

V ′i = R1V1 + R2(Pw − Pi) (16)

P′i = Pi + V ′i (17)

where R1 and R2 are randomly generated vectors in the
interval [0,1]. After that, all particles perform polynomial
variations to enhance the ability to search for optimal regions.

FIGURE 3. The flying direction of particles in an ideal situation based on
competition mechanism.

It’s obvious that the competition-based method can make
the particle flying faster to its convergence direction. When
the ideal situation occurs, the flying direction of each particle
is shown in Figure 3. It can be seen from the picture that all
of the particles are flying towards their nearest convergence
direction. It is assumed that the feasible particle solutions
are evenly distributed in space. Thus, the particles gradually
decrease from the middle to the sides. The number of par-
ticles that eventually converge on the real Pareto front will
gradually decrease from the middle to the sides, which will
undoubtedly reduce the distribution and convergence of the
final solutions.

In order to make the particles converge to the real Pareto
front more quickly, a new learning mechanism is proposed.
The way of learning from the first γ elite particles is still
used. The difference is that the competition based learning
will not be used. A particle from the first γ elite particles

is randomly picked and then let the rest of the particles learn
from it by formula 16 and 17. ThePw in formula 16 is changed
to the position of the selected particle. Thus, the particles
distribute more evenly on the real Pareto front and the con-
vergence speed is improved. At the same time, the quality
of the solution is higher when decision-makers select the
rolling schedule setting parameters on the final Pareto optimal
solution set.

When some of the first ten particles sorted by Pareto level
and crowding distance fall into local optima, the other parti-
cles learning from them will also fall into the local optima.
To solve this problem, the opposition-based learning (OBL)
is proposed tomake the particles jump out of the local optima.

The OBL was first proposed as a scheme in the field of
machine intelligence in [10]. It was widely spread in the field
of evolutionary computation and proved to be efficient. But
its theoretical studies are still immature in multi-objective
optimization [11]. Gao et al. proposed a velocity-free multi-
objective particle swarm optimizer with centroid in [14].
The OBL was applied to generate the initial swarm and the
better particle was chosen from the solution and its opposite
solution. The OBL can increase the diversity of particles and
accelerate the convergence rate of the population. Supposing
x is a real number belonging to [a,b], its opposite solution x̂
is defined as follows:

x̂ = a+ b− x (18)

Let P(x1, x2, . . . , xD) be a point in D-dimensional space,
xi ∈ [ai, bi], i = 1, 2, . . . ,D. The opposite solution P̂ is
defined by P̂(x̂1, x̂2, . . . , x̂D) where

x̂1 = ai + bi − xi (19)

When there are particles in the first ten particles fall into
local optima, the OBL method is applied to make them jump
out of the local optima after every certain number of genera-
tions. In this paper, the OBLmethod is performed everyMax-
Gen/10 generations, whereMaxGen is the maximum number
of generations. After that, the non-dominated sorting and
crowding distance sorting are re-performed. Then the random
particle learning strategy is implemented and update the next
generation. The environmental selection is still adopted from
the SPEA2 [25]. The pseudo-code of MOPSO-DOL is shown
in Algorithm 1.

To verify the effectiveness of the proposed algorithm, the
computational complexity is calculated. It has the same com-
putational complexity whether considering using the OBL to
jump out of local optima or not. The worst computational
complexity of non-dominated sorting is O(MN2) where M
is the number of objects and N is the population size. The
computational complexity of the crowding distance based
sorting is O(MN log N ). Because the proposed algorithm
does not use external archive to store the best particles,
the worst computational complexity of environment selection
is O(N 3). Therefore, the worst computational complexity of
MOPSO-DOL is O(N 3). In practice, the setting of rolling
schedule varies with different incoming strips which shows
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TABLE 1. The parameters of the rolling mills.

Algorithm 1 Pseudo-Code of MOPSO-DOL
Input: P(initialized population), MaxGen (maximum

number of generations), Gen = 1, γ (number of
elite particles), N (population size)

Output: P(final population)
1: while Gen ≤ MaxGen do
2: Perform the non-dominated sorting and

crowding distance sorting to P;
3: Select γ particles from P by ranking;
4: if mod(Gen, MaxGen/10) == 0
5: Update the positions of γ by formula 19;
6: Perform the non-dominated sorting and

crowding distance sorting to P;
7: Select γ particles from P by ranking;
8: end if
9: for each particle pi ∈ P do
10: Randomly choose one elite particle from γ ;
11: Update the position and velocity of pi by

formula 16 and 17;
12: P′← P′ + pi;
13: end for
14: P′← PolynomialVariations (P′);
15: P← EnvironmentalSelection(P,P′);
16: end while
17: return final population P

that the proposed algorithm can meet the demands of pro-
duction. Finally, the flowchart of the optimization of rolling
schedule is shown in Figure 4.

IV. SIMULATION RESULTS AND ANALYSIS
The following simulation results consist of three parts. The
first part is to verify the effectiveness of the proposed
mathematical model combines with deep neural network.
The second part is to illustrate the validity of the proposed
MOPSO-DOL on benchmark problems. The third part is to
verify the application of the MOPSO-DOL on the optimiza-
tion of rolling schedule.

A. THE SIMULATION OF THE ROLLING FORCE MODEL
The field data are used to verify the accuracy of the proposed
model. The material of the steel is MRT4 and the width
is 910 mm. The parameters of the rolling mills are shown

FIGURE 4. The flowchart of the rolling schedule optimization.

in Table 1. After many experiments, the number of hidden
layers of deep neural network is selected as five. The batch
size is taken as 100. The activation function of the hidden
layer is the ReLU and the output layer uses the sigmoid
activation function. The number of training data is 40000, and
1000 data are used for testing.

In order to further explore the prediction accuracy of
the proposed model, the deep neural network and GA-BP
[20], [21] are chosen for comparison. Mean absolute per-
centage error (MAPE) and root mean square error (RMSE)
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TABLE 2. Prediction accuracy of rolling force by different prediction models.

FIGURE 5. The rolling force calculated by the SIMS model.

is used as the comparison standard of accuracy. All of the
test accuracies are the average value of 30 times of training
in Table 2. And the minimum value is shown in bold. It can be
seen that most of the calculation accuracy of the rolling force
model of DNN combines with the SIMS III is higher than
that of the other rolling force models. When the SIMS rolling
force model is added to the output of the DNN, the noise
will be produced. Taking the calculated value of the SIMS
rolling force as one of the inputs of the DNN is equivalent
to increasing the input characteristics of the neural network.
Therefore, the prediction accuracy of the neural network will
be improved.

The rolling force calculated by the SIMS model and
DNN combines with the SIMS III model are shown in
Figure 5 and Figure 6. As can be seen from the figures,
the rolling force error calculated by the traditional method
is within 10%. But the rolling force error is within 5% by
the proposed model. And the proposed rolling force model is
applied to the optimization of rolling schedule.

B. SIMULATION RESULTS ON BENCHMARK PROBLEMS
The proposed MOPSO-DOL is tested on the benchmark
problems to confirm its performance. Since the problem of
rolling schedule to be solved in this paper is a three-objective
problem, this paper only tests on three-objective benchmark
problems. The three-objective test functions DTLZ1-DTLZ7
and WFG1-WFG9 are selected for testing. The number of
decision variables for DTLZ2-DTLZ6 and all WFG test
problems is set to 12, DTLZ1 is set to 7, and DTLZ7 is

FIGURE 6. The rolling force calculated by the DNN combines with the
SIMS III model.

set to 22. The inverted generational distance (IGD) metric
is used to evaluate the performance of the algorithm. The
smaller the IGD value, the better the performance of the
algorithm. The proposed algorithm is compared with several
state-of-the-art multi-objective particle swarm optimization
algorithm, MMOPSO [12], MPSOD [13], CMOPSO [9],
and three famous multi-objective evolutionary algorithms
(MOEAs), NSGA-II [24], MOEA/D [23], and IBEA [26].
All parameters are set as suggested in the original refer-
ences. The population size is set to 100, and the maxi-
mum evolutionary generation of the population is used as
the termination condition of the algorithm. Except that the
maximum evolution generation of DTLZ3 is set to 1000,
the rest of the test problems are set to 300. Each test prob-
lem runs independently 30 times. The test functions and the
source code of the compared algorithms are provided by
PlatEMO [27].

Table 3 and Table 4 show the mean and standard deviation
of IGD metric of each algorithm on standard test problem.
The Wilcoxon rank sum test at the significance level of 5%
is adopted, and the symbol ‘+’, ‘–‘ and ‘≈’ represent the
compared algorithm is significantly better than, worse than
and similar to the proposed MOPSO-DOL. The best average
of each test function is marked with a gray background.
It can be seen from the tables that comparing with the other
algorithms, the proposed MOPSO-DOL performs well on
most benchmark test problemswhich proves the effectiveness
of the algorithm. The proposed MOPSO-DOL is applied to
the optimization of rolling schedule.
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TABLE 3. IGD values of the proposed MOPSO-DOL and three multi-objective PSO algorithms on DTLZ and WFG.

TABLE 4. IGD values of the proposed MOPSO-DOL and three MOEAs on DTLZ and WFG.

C. APPLICATION ON THE OPTIMIZATION OF
ROLLING SCHEDULE
In this section, the field data are used to verify the opti-
mization results of the proposed MOPSO-DOL. The specific
parameters of the cold rolling mills are shown in Table 1. The
population evolution number Maxgen of MOPSO-DOL is set
to 500 and the population size is set to 100. The number of
elite particles is adopted as 10. The PlatEMO [27] platform
is used for verification experiments.

After the Pareto optimal solution set is obtained, decision-
makers need to select a set of solutions as the final rolling
schedule settings. The weighted-sum approach in [28] is used
to select the trade-off solution which is shown as follows:

min f = w1 ·
f1 − f1min

f1max − f1min
+ w2 ·

f2 − f2min

f2max − f2min

+w3 ·
f3 − f3min

f3max − f3min
(20)

where w1,w2 and w3 are the weight coefficient of the three
objectives and w1+w2+w3 = 1; fimax and fimin(i = 1, 2, 3)
are the maximum and minimum value on the Pareto optimal
solution set of the ith objective.

Decision-makers can determine the rolling schedule by set-
ting the values of w1,w2 and w3. For rolling power balance,
set w1 = 0.2,w2 = 0.5,w3 = 0.3; to prevent slippage, set
w1 = 0.2,w2 = 0.3,w3 = 0.5.
In order to verify the results of the multi-objective

optimization of rolling schedule, the rolling schedule calcu-
lated by the multi-objective optimization algorithm is com-
pared with the original rolling schedule. The optimized
rolling schedules are marked rolling schedule No.1 and
rolling schedule No.2, respectively. The comparison results
are shown in Table 5. In order to make a clearer compari-
son between the original rolling schedule and the optimized
rolling schedule, Figure 7 and Figure 8 show the distribu-
tion of the slip factors and the rolling power of five stands.
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TABLE 5. The original schedule and the optimized rolling schedule.

FIGURE 7. Comparison of the distribution of slip factors under different
rolling schedules.

FIGURE 8. Comparison of rolling power distribution under different
rolling schedules.

It can obviously see that the optimized rolling schedule can
well balance the slip factor and rolling power between the
five stands. Because the proposed algorithm can improve
the diversity and convergence of particles in the evolution

process. And OBL can make particles jump out of local
optima.

V. CONCLUSION
In this study, to solve the problem that it is difficult to
choose the coefficients when optimizing the rolling schedule
by single-objective optimization, a multi-objective particle
swarm optimizer with dynamic opposition-based learning is
proposed. A new particle learning strategy is proposed to
update the moving position of particles. Opposition-based
learning makes particles jump out of local optima. It not
only improves the quality of cold-rolled products, but also
reduces the rolling energy consumption. The method based
on deep neural network and mathematical model is used to
calculate the rolling force. The simulation results show that
the proposedMOPSO-DOL performs better than other multi-
objective optimization algorithms on benchmark problems.
It can improve the diversity and convergence of particles.
The accuracy of the rolling force calculated by the proposed
method is higher than that of the other models. Most errors of
the rolling force fall within the range of±5%. Compared with
the original rolling schedule, the optimized rolling schedule
performs better on the rolling power and slippage preventing
between five stands.
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