
Received March 11, 2020, accepted April 22, 2020, date of publication April 28, 2020, date of current version May 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990980

Building a Comprehensive Automated
Programming Assessment System
IGOR MEKTEROVIĆ , LJILJANA BRKIĆ , BORIS MILAŠINOVIĆ , (Member, IEEE),
AND MIRTA BARANOVIĆ , (Member, IEEE)
Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: Boris Milašinović (boris.milasinovic@fer.hr)

This work was supported by the European Regional Development Fund under Grant KK.01.1.1.01.0009 (DATACROSS).

ABSTRACT Automated Programming Assessment Systems (APAS) are used for overcoming problems
associated with manually managed programming assignments, such as objective and efficient assessing in
large classes and providing timely and helpful feedback. In this paper we survey the literature and software in
this field and identify the set of necessary features that make APAS comprehensive – such that it can support
all key stages in the assessment process. Put differently, comprehensive APAS is generic enough to meet the
demands of ‘‘any’’ computer science course. Despite the vast number of publications, the choice of software
turns out to be very limited. We contribute by developing Edgar, a comprehensive open-source APAS which,
to the best of our knowledge, exceeds any other similar free and/or open-source tool. Edgar is the result of
three years of development and usage in, for the time being, eight courses dealing with various programming
languages and paradigms (C, Java, SQL, etc.). Edgar supports various text-based programming languages,
multi-correct multiple-choice questions, provides rich exam logging andmonitoring infrastructure to prevent
potential fraudulent behaviour, and subsequent data analysis and visualization of students’ scores, exams,
question quality, etc. It can be deployed on all major operating systems and is written in a modular fashion
so that it can be adjusted and scaled to a custom fit. We comment on the architecture and present data from
real-world use-cases to support these claims. Edgar is in active use today (1000+ students per semester) and
it is being constantly developed with new features.

INDEX TERMS APAS, computer science education, courseware, educational technology, software archi-
tecture, scalability.

I. INTRODUCTION
It’s been nearly 60 years since Hollingsworth [1] reported
the first use of automated program for code testing, but the
reality is that programming assignments are still managed
manually in most classrooms [2]. Teachers assess submitted
code, performing compilation and testing or just visually scan
the solutions. The fact that a single problem can be described
with different algorithms and the same algorithm can be
implemented in a number of different ways burdens the grad-
ing process when the grading is done manually. Well known
problems of manual evaluation of programming assignments
are the objectivity and consistency of the criteria as well as the
quality and timeliness of the feedback received by the student.
The lack of feedback can discourage students if they often fail
and do not receive assistance to improve [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

On the other hand, CS schools all over the world, even
the Ivy league faculties, are facing a shortage of staff, while
the number of students increases. As Singer [4] states: ‘‘the
surge in student demand for computer science courses is
far outstripping the supply of professors, as the tech indus-
try snaps up talent.’’ The number of students enrolled in
higher education programming courses is regularly counted
in hundreds [5] and is often in opposition with the number of
teachers and teaching assistants responsible for conducting
the course. When the grading for the large class sizes is
performed manually, the workload can grow to unmanage-
able extent. Shortage of staff paired with advantages and
convenience that Automated Programming Assessment Sys-
tems (APAS) bring are the reasons why APASs are now more
relevant than ever and will be used even more in the future.

Four years ago, we were faced with the challenge of
introducing an APAS in the university environment with
thousands of students per year. The very first courses on

81154 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9813-1935
https://orcid.org/0000-0002-6345-8735
https://orcid.org/0000-0002-7889-3131
https://orcid.org/0000-0002-8941-5485

I. Mekterović et al.: Building a Comprehensive APAS

TABLE 1. Edgar’s usage statistics for the top five courses.

which the system was to be used were the undergraduate
course Databases and graduate course Advanced Databases,
with, on average, 431 and 87 students enrolled respectively.
We wanted to automate the assessment of programming
assignments for the SQL query language and MongoDB’s
MapReduce. SQL query evaluation fundamentally differs
from the evaluation of general-purpose code (such as C,
Java, etc.) as one must compare obtained record sets in a
parametrized fashion (e.g. whether the row ordering mat-
ters, whether column names matter, etc.). Additionally, some
SQL statements create, alter or delete database objects
such as tables, indexes, etc. and their correctness cannot
be checked with a predefined output data. Following the
database courses, the plan was to support other courses using
interpreted or compiled programming languages like C or
Java. From a more generic perspective, we wanted a stan-
dalone solution that can support all stages in the assessment
process (see the Section III on APAS requirements). Beside
these functional requirements, APAS should also be robust
and scalable, able to support hundreds of students working in
parallel with logging and monitoring facilities.

The problem is that, for those set of requirements, there has
not been and there still isn’t any publicly available APAS –
only different systems targeting particular use cases.

As a solution, we created Edgar – an open-source APAS
developed at University of Zagreb Faculty of Electrical Engi-
neering and Computing (abbreviated FER) and presented in
this paper. Besides SQL and MongoDB’s MapReduce, Edgar
supports any programming language that can be executed
on a Linux machine (C, C#, C++, Java, Python, etc.) and
meets the aforementioned requirements. The novelty of our
approach is that it is designed from the ground up in a general
and comprehensive way to support a wide range of users, that
is, any programming language or paradigm, and accompanied
with necessary modules for management (monitoring, log-
ging, analysis) often neglected in the literature. Such generic
approach calls for modular and scalable architecture that
Edgar is founded on.

Edgar has been in use since the spring semester
of 2016/2017, is still used today and it is going to be used
in the foreseeable future. It has become an indispensable tool
for programming courses at FER – Table 1 shows the usage
statistics for top five courses with respect to the number of
enrolled students.

We believe that automated and online assessment tools
present a modern addition to the classic methods of

programming skills assessment and that they will become a
standard tool to CS teaching in the future. For instance, in our
courses we typically combine several automated assessments
(exams in a laboratory), several automated homework assign-
ments, tutorials, adaptive exercises and two handwritten and
human assessed exams per semester. All the while, we collect
the underlying data (answers, logs about students’ behaviour
during automatic assessment etc.) which can be used in dif-
ferent ways, e.g. to improve the content and process, to profile
students, predict success [5], etc. Although Edgar is presented
here as APAS it is more than that – it has been extended with
LMS features such as tutorials and adaptive exercises which
will not be covered here for the sake of focus and clarity.

The rest of the paper is structured as follows: Section II
comments on related work, Section III focuses on functional
aspects – it defines the requirements of a comprehensive
APAS and comments on Edgar’s implementation. Section IV
deals with non-functional aspects - Edgar’s architecture and
scalability. Section V compares our work with similar stud-
ies, discusses Edgar’s educational aspects and comments on
future work, followed by the conclusion.

II. RELATED WORK
Many APASs have been developed since the appearance
of computer program assessment by automated assessment
systems, such as the Rensselaer grader [1]. Their popularity
has increased with the appearance of online coding con-
tests [6] and challenges and Massive Open Online Courses
(MOOCs) [7]. The benefits of using APAS have been widely
examined and reported in scientific literature, as shown by
the large number of published reviews of various facets of
automated assessment tools, e.g. [8]–[16]. They are particu-
larly well accepted in computing education [17], but rarely
used outside the institutions in which they were developed,
although lecturers in other institutions recognize their advan-
tages. According to Roßling et al. [3] teachers are often too
busy to find, learn, design exercises and integrate APAS into
their courses, especially when the notation and methodology
of the system do not precisely match those of the course.
In [10] authors noted that (too) many new systems have been
developed every year sharing common subset of features with
a small number of new ones. Although the authors suggest
that new features should be added to an existing system rather
than developing own one, they recognize the plea for develop-
ment of a new system due to existing systems (un)availability,
lifespan, distribution (un)suitability, and lack of examples
and explicit explanation how an existing system work. For
instance, some systems and tools that have appeared in almost
every literature review on automated assessment in computer
programming and gained significant impact by number of
citations (with more than 100 citations on Google Scholar)
were either not updated in a decade (BOSS [17], [18]), not
available (AutoLep [19]) or based on obsolete technology
(CourseMarker [20]).

Amelung et al. [21] noted that components of an automatic
assessment systems are usually strongly coupled making a

VOLUME 8, 2020 81155

I. Mekterović et al.: Building a Comprehensive APAS

monolithic system impossible to extend and that assessment
tools should be developed in service-orientedmanner. Among
the automatic assessment tools they reviewed, Amelung et al
noted that only Moodle is extendable and open source.
In addition to Amelung’s research, two modular systems for
automatic assessment should be noted: JACK and Web-CAT.
Web-CAT is open-source and ‘‘as of March, 2019, had been
used across 39 universities’’ [22] while JACK is proprietary
and available only to German universities [23]. However,
both JACK and Web-CAT lack features for our use-case (e.g.
exam logging and monitoring, SQL evaluation, etc., see the
following section). Additionally, some recent remarks from
Web-CAT users point to drawbacks of its user interface and
a feedback usefulness [24].

Thus, we identified Moodle as the only potentially viable
option. Some courses at FER useMoodle and sowe find it rel-
evant to compareMoodle andCodeRunner pluginwith Edgar.
Moodle can run CodeRunner [25], a free and open-source
question-type plug-in that lets teachers set questions where
the answer is program code. CodeRunner is capable of eval-
uating programming assignments in Python, C, JavaScript,
PHP and almost any other text-based programming language.
CodeRunner can assess SQL assignments as well, but in
an unsatisfactory way. SQL is assessed through its templat-
ing system and dynamic testing is administered: CodeRun-
ner compares string/console representations of recordsets as
expected input-output pairs. This is unnatural and inadequate
for SQL: it is not possible to allow for different row and/or
column order and consequently it is impossible to give good
feedback; not to mention that it is closely bound to SQLite
database and its string representation of a recordset. Should
one change the database provider all questions (test-cases)
would have to be changed! It is also not possible to test
DDL constructs like ALTER TABLE, CREATE INDEX,
etc., all of which is possible in Edgar. SQL simply has a dif-
ferent output data structure and demands custom treatment.
Less importantly, MapReduce programming assignments in
Mongo or any other DBMS are not supported in CodeRunner.

In both systems, in addition to programming assignments,
other computer-graded question types like multiple choice
or short answers are supported. The grading options, includ-
ing penalizing fails on some test-cases and ignoring fails
on others, as well as the format of the feedback presented
to the student are pretty much alike in both systems. Even
some limitations are similar, like the one that restricts the
answer to a single compilation unit (segment of code). In
conclusion, while they are comparable to a great extent, Edgar
exceeds Moodle+CoreRunner capabilities when SQL and
MapReduce evaluation is concerned. Also, Edgar provides
better exam logging and monitoring, and data analysis facil-
ities, as discussed in the following section.

III. COMPREHENSIVE APAS
A comprehensive APAS supports different stages in the
assessment process in a typical course: from course admin-
istration, content authoring, exam conducting, logging and

FIGURE 1. Minimal APAS feature set.

problem mitigation to subsequent data export and analysis.
Comprehensive APAS should be flexible and extendable in
order to support heterogeneous requirements in the computer
science domain. Teachers should be empowered to indepen-
dently administer the entire course through the user-friendly
GUI and potentially export all the data collected. In order
to classify an APAS as ‘‘comprehensive’’ we’ve identified
necessary or minimal feature set. Some of these features are
often neglected or not discussed in the literature, namely
the first two rows in Fig. 1. This feature set is compatible
with the Abello et al’s requirements for e-assessment system
(‘‘allow the delivery of assessment activities, the record-
ing of responses, timely feedback, automatic grading, and
weighted-average grade calculation’’) [26], Noonan’s grad-
ing system phases (‘‘delivery, assessment, marking, return’’)
[27], and extends theWang et al’s. conception of a web-based
assessment and test analysis (WATA) system based on Triple
A model (‘‘assembling, administering, appraising’’) [28].

We comment on each feature in the following sections:

A. COURSE ADMINISTRATION
Examinations are administered in the context of courses and
courses are enrolled by students in various academic years.
As a rule, universities are already equipped with one or more
information systems that store that information and APASs
should have only a lightweight version of course/academic
year enrolment administration which will simply bin the
students to their respective courses and academic years. Anal-
ogously, there should be facilities for administering teachers
and their course permissions. Edgar supports enrolling the
students to a course via GUI which parses a tab-separated
list of students typically procured from the university’s infor-
mation system. A related technical issue is user authentica-
tion which is also supposed to build upon the university’s
authentication facilities – consequently, a general purpose
APAS should support rich authentication options. Edgar sup-
ports various authentication options, that will be elaborated
in Section IV.

B. SYSTEM MONITORING
As a rule, all systems should be monitored, and APAS is no
exception. Monitoring gives insight into system scalability

81156 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 2. Student’s application logging events during an exam.

and helps prevent future problems (e.g. disk shortage).We are
monitoring Edgar through a well-known 3rd party software
Zabbix [29] and have additionally developed a custom con-
figurable monitoring daemon which dispatches notifications
via email when configured conditions are met (e.g. average
CPU usage over 5 minutes is over 50%, etc.)

C. EXAM LOGGING AND MONITORING
All actions a student undertakes on the exam page in the
browser should be logged. This helps teachers conduct the
exam, monitor students as they take the exam, and helps
resolve any issues later, after the exam has been submitted.
Surprisingly, this topic is neglected in literature; more so
since it plays a very important role in the real-world exam-
ination process. Edgar provides a rich set of features for
exam monitoring. During the exam, the client single page
application logs all events that occur to the server via AJAX
calls and also sends a heartbeat to indicate whether it is
alive (Fig. 2 and Fig. 3). During the exam, teachers have a
dashboard with overview of students currently running an
exam with basic information – personal details, IP address,
image, lost focus flags and a heartbeat. Fig. 3 shows exam
monitoring dashboard. We group the students according to
their IP ranges (each range in a different tab) corresponding
to lab computers. Lost focus flags are useful in the context of
multiple-choice questions where, in our case, it is typically
forbidden to lose focus from the exam window, as that might
indicate student browsing the web in another window to find
the solution.

Teacher can even ‘‘stalk’’ the ongoing exam to see the
detailed event log of the ongoing exam and current student
answers. Event log is also visible later, post-submission, both
to teacher and student. Event log has proven to be a very valu-
able asset for resolving potential misunderstandings, software
bugs, and sometimes sadly, for detecting plagiarism among

students, e.g. a student attempting wrong solution many times
and then suddenly submitting a completely different - correct
solution (which was acquired from another student).

D. PROBLEM MITIGATION
Exam logging and monitoring helps mitigate a number of
issues caused by student, but sometimes teachers make mis-
takes when creating questions. Mistakes are normal in the
course of this process, and APASs must provide support
for error correction and manual points assignment. Edgar
supports editing the already submitted exams by a teacher and
a resubmission. Alternatively, it is possible to simply assign
points to one or more students for a given question and thus
override the inital grade.

E. ANALYSIS AND VISUALIZATION
Questions can also be ‘‘wrong’’ in a different sense – what
is the point of a question that was correctly (or wrongly)
answered by a vast majority of students? A comprehensive
APAS must provide analytical capabilities to facilitate the
content curation and evolution. Also, students should be
able to see their scores visualized. Edgar provides several
visualizations pertaining to exams, questions and students’
behaviour during the exam.We present one visualisation from
each category: a box plot in Fig. 4 is presented for all exams
where score is not ignored.

When an exam is selected by clicking on the box, addi-
tional details are displayed: the timeline with exam statuses
(in progress, started, submitted), exam pass percentage and
score distribution percentagewith average andmedianmarks.

In the question category, we have developed a novel visu-
alization to easily detect dubious questions (Fig. 5). It shows
one bubble for each question group. The size of the bubble
corresponds to the number of questions in the group. Question
group is defined as a set of questions having the same:

• Average score percentage: average score percentage of a
single question is calculated by averaging score percent-
age with one modification: negative scores are replaced
with 0.

• Number of instances: number of times a question is
taken

Abscissa shows the number of instances of a question
group, and ordinate shows the average score percentage.
For instance, the question group (bubble) in the upper left
corner in Fig. 5 contains three questions having average
score percentage 100% and number of instances 1. Obviously,
the statistics are more significant as we move to the right and
the number of instances increases. As we move to the right,
questions groups that occupy the extreme regions (very green
ones close to 100% and very red ones close to 0%) should
be inspected as they apparently do not provide any discrim-
inative power – they are either too easy or too hard. This is
a very compact way of showing hundreds of questions in a
single chart. Chart can be filtered by question types, authors
and exams. Typically, we filter by the exam, as to analyse the

VOLUME 8, 2020 81157

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 3. Exam monitoring view, students are grouped according to IP ranges, faces blurred on purpose.

FIGURE 4. Exam score box plot.

questions from the recently finished exams and potentially
take corrective actions.When clicking on the bubble, the right
side of the screen shows the question details, with links to
questions and additional per-question analytics. There are of
course other ways of assessing questions - Edgar can also
calculate question difficulty based on the Rasch model [30]
of item response theory and Lord’s two-parameter model [31]
(used in Edgar’s adaptive exercises).

Lastly, student behaviour plot shows the application events
on the time scale. Fig. 6 shows student behaviour analytics
for an exam that took place from 9AM to 7PM. Students were
divided into groups and time slots for the two hour examwere
allocated. This was a multiple-choice exam, and in our case
‘‘Lost focus’’ events shown in red raised concerns. The details
are provided on the tooltip, and subsequently all such cases
were inspected, and actions taken. Sometimes students lose
focus for few seconds or even for less than a second and such
cases were ignored.

F. DATA IMPORT AND EXPORT
APASs are usually just an addition to existing information
systems and that is why it is important to enable data import
and export to and from an APAS. For instance, in Edgar,

students with their names, outer information system IDs and
images can be imported and ultimately exported (in a CSV
format) along with their scores from various exams. In our
case, these scores are then combined with those of manually
graded paper-written exams to form the final grade.

G. CONTENT AUTHORING
A support for the content design should be simple enough so
that even a non-technical teacher can use it to create content
and at the same time support a rich set of features: rich
text formatting, images, tables and mathematical formulas.
Question writing is often a group effort. That is why we
suggest that APASs must have inbuilt support for question
versioning and review process (e.g. teachers are paired in
reviewing each other’s questions). In Edgar, question text is
written in Github flavoured markdown. Markdown is chosen
because it is a simple, human readable format that can be effi-
ciently searched using various full-text search facilities. Due
to limitation of basic markdown syntax, Github’s version of
markdown is used to support tables and figures and MathJax
library [32] is used for LATEXstyle mathematical formulas. If a
question that was already used by a student is saved via the
edit form (e.g. to fix a bug in the question) Edgar will save

81158 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 5. Bulk question analytics.

FIGURE 6. Student behaviour analytics.

changes to a new question while automatically deactivating
the old question so it does not to appear in future exams.
This keeps the history accurate, and past students’ examswith
erroneous question will still be linked to the original question.
This behaviour can be overridden via ‘‘save in place’’ option
which does not instantiate new question that could be useful
for fixing (minor) text typos. Additionally, questions can have
custom tags having meanings (e.g. ‘‘requires-attention’’ to
mark a question to be checked) and list of reviewers. In our
experience it is very important to structure a strict question
writing/reviewing process and to assign responsibility for the
question to author and reviewer. Questions are organized into
a network of nodes of arbitrary types (e.g. unit, module,
tutorial, etc.) and a question belongs to one or many nodes.
In practice, we’ve encountered a dilemma whether to struc-
ture the questions and nodes thematically or organizationally.
It appears that organizational structure is more used, but often
both are used as shown in Fig. 7 and Fig. 8. Except in rare
cases when the same unit, module or tutorial is used in several

courses, nodes are typically structured hierarchically in a
tree.

Once the questions are grouped in nodes it is possible
to define an exam using those nodes. An exam can have
multiple parts where one exam part corresponds to one node
and additionally defines minimum and maximum questions
to be generated at random from the assigned node. Building
on the example in Fig. 7 we could, for instance, define an
exam with three questions using two exam parts (EP):

• Exam1, N = 3

– EP#1, node = ints, min = 1, max = 2
– EP#2, node = float, min = 1, max = 2

Such definition will generate at least one and at most two
questions from the ints node; likewise, for the float node,
possible sets are: {Q1,Q2,Q3}, {Q1,Q2,Q4}, {Q1,Q3,Q4}
and {Q2,Q3,Q4}. Edgar provides GUI for all these opera-
tions (e.g. exam definition in Fig. 9) which allows teachers
to autonomously create questions and exams. Additionally,

VOLUME 8, 2020 81159

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 7. Parallel node structure - organizational (gray) and thematical
(white).

FIGURE 8. Real world node structure from the Database course. Bubble
sizes reflect the number of questions. Bubble (course units) labels are not
meant to be readable.

a grading model (defined in the following chapter) is attached
to the exam parts. Fig. 9 shows an exam definition form with
two questions and two exam parts – one being a coding ques-
tion and the other a multiple-choice question. In this setup,
students can achieve exam score ranging from −0.5 to 3.0.

H. RICH QUESTION TYPES AND GRADING FACILITIES
Most research on APAS focuses on issues in this cate-
gory: various question types and programming language
and various ways of evaluation (e.g. dynamic code analy-
sis, static code analysis, etc.) and grading of submissions.
A comprehensive APAS should support ‘‘all’’ programming
languages or, in other words, be easily extendable to sup-
port new programming languages. Furthermore, languages
should be decoupled from concepts being tested (e.g. entire
compilation unit, part of the unit like function or a code
line, metadata like existence of some public method) as
much as possible. For instance, Moodle’s CodeRunner uses

templating system to test different concepts which results
in many ‘‘question types’’ (i.e. templates) like c_program,
c_function, java_method, java_class, etc. In our opinion,
Edgar uses more elegant and equally powerful, prefix-suffix
system which could be interpreted as ad-hoc templating.
However, we should distinguish here two major categories
of programming languages:
• ‘‘standalone’’ programming languages, like C, Java,
Python, Haskell, etc. – languages that come with their
own compiler or interpreter which is used to execute the
code autonomously, in a sandbox

• ‘‘managed’’ programming languages, like SQL, HTML,
CSS orMongoDB query language which are executed in
some context, as a part of a bigger context

To the best of our knowledge, Edgar is the only APAS
available that can handle both SQL and ‘‘standalone’’ pro-
gramming languages (see comment onMoodle in Section II).
Besides multi-correct multiple-choice questions and free text
questions for gathering feedback, Edgar supports ‘‘any’’
‘‘standalone’’ text-based programming language: adding a
new language is just amatter of installing a language compiler
and adding one database tuple of metadata (compiler invoca-
tion, etc.). Asmentioned, ‘‘managed’’ languages demand cus-
tom treatment and Edgar’s modular architecture abstracts this
problem via various external code runners (further described
in Section IV). Edgar ships with three external code runners:
one that covers dozens of ‘‘standalone’’ languages, Post-
greSQL code runner for SQL and JSON/MongoDB code
runner. Table 2 provides a list of currently implemented ques-
tion types and comparisonmethods. Currently Edgar supports
only dynamic testing of ‘‘standalone’’ languages, while SQL
and Mongo are tested in a similar vein – by executing correct
and submitted queries and performing a parametrized result
comparison.

Grading in Edgar is performed in two steps: first, the cor-
rectness of the submission is evaluated (1) and then the
correctness is used with the assigned grading model (2)
to calculate the score (3). Correctness is defined with the
following formula:

correctness := max

0%, 100%−
∑
fail

PP(fail)

 (1)

where PP is the penalty_percentage - the percentage of points
to deduct (starting from 100%) if student missed the correct
answer in the multi-choice question or failed a test-case in
the code question. SQL and Mongo questions have a sin-
gle test-case (i.e. recordset comparison) with PP = 100%.
Consequently, the former can have correctness in the [0, 1]
range, while later have binary correctness – 0 or 1. Grading
model defines how to calculate question score from answer
correctness and is defined as a triple of real numbers:

gm := (c, i, e) (2)

where c, i, and e are values for correct, incorrect and empty
answer respectively. Values for those numbers are custom and

81160 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 9. Exam definition form with N = 3 questions and two exam parts with different grading models.

TABLE 2. Currently implemented question types and the associated properties.

open to different grading strategies. We use the following
guidelines: value for unanswered question is set to 0; value
for incorrect score is set to 0 for coding questions (we do
not penalize a failed coding attempt) and for multiple choice
questions we set the incorrect score to negative value to
discourage students from guessing. In case of partially correct
answer, the answer score is calculated proportionally to their
answer correctness and grading model.

score =

{
gm.e (for empty answer)
correctness ∗ (gm.c − gm.i)+ gm.i

(3)

Additionally, the score can be further modified with two
additional variables:N - number of code runs, and T – relative
time left (starting from 1 and approaching 0 as the final
value). Teacher can enter a custom formula to define the final
value, e.g. [S]∗ (−0.05∗ [N]+1.05)∗ (0.7∗ [T]+0.3) where
S is base score described above. A detailed example of C and
SQL question evaluation is provided in the Appendix.

I. USER-FRIENDLY ONLINE EXAMINATION
Unlike all others, this feature is student oriented. Students
should be able to write exams in the laboratory, at home
(homework) using different devices (desktop, mobile) and
operating systems. With such requirements the only rea-
sonable option is to implement an exam as a responsive
web-application i.e. take an exam via internet browser. Exam
should expose clean and simple user interface and provide

appropriate, potentially immediate feedback to the submis-
sions. Once an exam is submitted, a student must be able to
review the exam having potential mistakes clearly marked.
On the technical side, the exam taking process must be
robust both in terms of scalability and resilience to errors
(ranging from power outages to software bugs). Scalability
is achieved through modular and horizontally scalable archi-
tecture. To facilitate error resilience exam state should be
saved continuously. In Edgar, the part of the web application
used to conduct the exams is written as a single page web
application (SPA) using the Angular framework. Students
start the exam by typing in the exam password given to them
by the teacher. On password submission, various checks are
employed: if the password is correct, if the exam is available
at the present time, and if the student is enrolled in the course
the exam belongs to. As the student progresses, the exam
questions are loaded via calls and cached. This SPA approach
has clear advantages for this use case over classic full-page
refresh: the server is relieved of additional burden of serving
the same questions multiple times and user experience is also
better without the full-page loads. Edgar persists session data
to MongoDB (see Section IV), so a student can close the
browser or even restart a computer and continue writing the
exam without losing the data: exam instance is already gen-
erated, and current exam answers are stored in Mongo. This
is particularly convenient with the long-running exams. For
instance, in some courses we have homework assignments for
which students are allowed an entire week’s time to submit.

VOLUME 8, 2020 81161

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 10. Example of an exam. The answer to the current C
programming language question passed one of three test-cases (the first
test-case is public).

Students then solve a part of the assignment on one day, take
a break, and continue some other day.

Fig. 10 shows a C programming question asking a student
to provide a function that calculates the approximate value of
the number π . A student has provided a faulty solution, ran
the solution and got immediate feedback. Students can run
their solutions an arbitrary number of times before submitting
the exam and Edgar is customizable with regards to what
feedback it provides to students: feedback can range from
very detailed to just stating whether the code compiles or
not. Test-cases can be public or private - a public test-case
displays all test-case data to the student and private displays
only whether the test-case is correct or not. In the example
in Fig. 10, Edgar provides feedback on how many test-cases
are run, and whether students passed them (three test-cases
in this case, the first test-case is public, one passed, each
carrying a penalty percentage of 100%). For a more detailed
feedback, test-cases can have captions and verbose outputs,

FIGURE 11. Captioned test-cases with detailed, programmatically
generated, feedback.

e.g. Fig. 11 shows detailed feedback programmatically gen-
erated from teacher’s code for two failed test-cases (for a
different question, carrying 70% penalty in total). In SQL
questions, feedback will provide hints as to what is different
in the resulting data and expected dataset (e.g. ‘‘uneven row
count’’, ‘‘student.first_name <> correct.first_name on row
#33’’, etc.). With Mongo (JSON) questions, a detailed object
difference will be shown (missing/excess properties, different
values, etc.). Given the limited time and the unforgiving
nature of automated assessment we typically provide rich
feedback to our students.

When students submit an exam, they have a limited config-
urable time (e.g. 10minutes) to review the exam. In the review
phase, they can see all the data – what data was passed to the
stdin and, if so configured, the correct answer (e.g. question
shown on Fig. 12 is configured not to show correct answer).
Students can also re-run both their code and the correct
code. This is a feature useful for reclamations, as sometimes
teachers provide wrong answers, or results are indetermin-
istic due to e.g. using the random function, or sometimes
numeric errors occur, or code behaves differently on different
platforms etc. Fig. 12 shows the review exam view where
all evaluation data are visible. The student incorrectly used
the float type instead of double and failed two out of three
test-cases due to differences in precision of those two types.

Exam results obtained during submission evaluation are
typically identical to those obtained with re-run if the ques-
tion wasn’t changed in the meantime or functions for gener-
ating random numbers (e.g. rand()) were not used somewhere
in the code or to generate stdin.

81162 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 12. Exam review. The student can see saved evaluation data and
can re-run their code. The student incorrectly used the float type instead
of double and failed two out of three test-cases due to differences in
precision of those two types).

J. ADDITIONAL FEATURES
Edgar has an accompanying cross-platform mobile applica-
tion for Android and iOS platforms written in React Native
suitable for use in scenarios where evaluations consist only
of multiple-choice questions or where use of classroom
clickers is considered. The mobile application is limited
to multiple-choice questions because smart phones are not
suitable for writing programming code. Apart from testing
students in laboratory or at home, Edgar also supports lecture
quizzes akin to Kahoot [33], AuResS [34] or Wooclap [35].
Lecture quiz is an exam with fixed questions and fixed
questions order. Code assessment facilities of APAS lend
themselves well to the construction of virtual learning envi-
ronments. In Edgar, two such options exist - tutorials and
adaptive exercises, though, for the time being, supporting
only SQL and multiple-choice questions. Due to the current
focus onAPASs and space constraints, theywill not be further
discussed here.

IV. EDGAR’S ARCHITECTURE
Edgar features a modular and scalable architecture. Various
parts of the system can be deployed across different servers
and scale horizontally. Edgar is written in node.js and can
run on all major operating systems. Fig. 13 shows Edgar’s
architecture. Components marked with ‘‘LB’’ are typically
load balanced and 3rd party components are shown in gray.
Modular APAS architectures have been previously discussed
in literature, for instance, Edgar’s architecture is in agreement
with the concept and functions of frontend and backend

components proposed in [21] with a minor exception that
spooler (broker) is integrated in the core system (however,
assessment workflow is the same).

Edgar comprises the following optional or obligatory mod-
ules, some of which are third party components, as stated in
the following list:
• Core system and persistance (obligatory): the core
system is implemented as web application. There can
be an arbitrary number of instances hidden behind and
load-balanced by Nginx. This is how the main applica-
tion can gracefully scale horizontally. All that is needed
to scale up the system is to start another node and add
it to the Nginx load balancing configuration without
any downtime. This is possible because, in the spirit of
polyglot persistence, Edgar web application uses two
different databases to persist data: PostgreSQL rela-
tional database as the main data store and MongoDB
for transient session data and various event logs. Edgar
departs from the default scenario where the main mem-
ory is used for session data, but rather stores sessions to
the MongoDB. This incurs a tiny overhead in terms of
speed but allows for stateless core system instances that
can be dynamically adjusted since the state is stored in
MongoDB. Also, it allows us to restart arbitrary nodes
or the entire server without breaking students’ sessions.
For instance, if there is a power failure and students
are writing the exam and the whole system (clients and
servers) loses the power supply none of the current
exams and unsubmitted answers will be lost, and after
the power supply is restored - the exams can gracefully
continue. To achieve that, answers to ongoing exam’s
questions are automatically saved to MongoDB each
time a student runs the answer for evaluation, whether
the answer is correct or not. Both MongoDB and Post-
greSQL database placement are arbitrary. There are of
course various ways to scale PostgreSQL and Mongo,
but those are not of our making and they will not be
discussed here.

• Frontend (obligatory): comprises of the SPA web-
application used by students to take exams and the
classic web-application for teachers and students for
all other tasks described in the previous chapter. Both
feature modern and responsive GUI.

• Authentication (obligatory): Edgar supports various
authentication options. It is possible to authenticate
using local authentication or via external identity service
provider using SAML [36] or OAuth2 [37] protocol. It is
possible to mix authentication modes even for a single
course – for instance some students (and teachers) could
be authenticated via Twitter and some via Google.

• Nginx reverse proxy and load balancer [38] (optional,
3rd party): it is a fairly common scenario to use Nginx as
a front end for the node.js (and other web) applications.
Nginx forwards request and performs load balancing
for a cluster of node.js applications. Also, Nginx forces
https protocol and works as a secure web server. From a

VOLUME 8, 2020 81163

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 13. Edgar’s modular architecture (3rd party components shown in gray).

security standpoint, such setup is also beneficial because
it allows us to run all our web applications locally or in
a demilitarized zone and expose only https port to the
public via heavily used and tested Nginx web server.

• Various runners (optional): Edgar abstracts all ‘‘code
running’’ by the use of so called ‘‘runners’’. Runners
are independent web endpoints that accept requests to
run some code and return a corresponding data struc-
ture (e.g. dataset, textual output). Runners for differ-
ent programming languages are developed as separate
projects within the Edgar group repository [39]. The
following runners are currently available, covering most
mainstream programming languages:
– SQL-runner: PostgreSQL runner which accepts a

SQL command, executes it against a configured
PostgreSQL database using configured timeout
and returns the record set or an error mes-
sage. SQL-runner performs all statements within
a transaction that is always rolled back. This
provides a sandbox of sorts. This does not
mean that only read-only SELECT statements are
allowed – it is possible to execute INSERT,
DELETE, UPDATE, or even DML statements like
ALTER TABLE and CREATE TABLE, INDEX,
etc. SQL-runner simply executes them, retrieves
the required datasets, and then rolls back the
transaction. This code could be easily cloned and
modified to support any other RDBMS provider.
SQL-runners are typically configured to run on the
different copies of the same test database to avoid

concurrency issues and increase performance. For
instance, for our Database course with typically
400-500 enrolled students we run 5 SQL-runners
each connected to the test databases db1, db2, . . . ,
db5 having the same content and structure. Each
SQL-runner instance is tied to just one database to
leverage the connection-pooling performance ben-
efits.

– mongo-runner: MongoDB runner accepts MapRe-
duce and find queries, executes them against aMon-
goDB database and returns the resulting JSON or
an error. Mongo does not have a query language in
the traditional sense but provides an object-oriented
Javascript API to query documents. Therefore it
is not possible to simply forward student’s code
(e.g db.collection.find({id:123}) to
Mongo’s engine like it is possible with the SQL
statements. Mongo-runner therefore parses the
received statements and then uses theMongoAPI to
execute them. This is why not all statements are cur-
rently supported but only find and mapReduce
which we use to test students in the Advanced
Databases course.

– code-runner: Code runner accepts code in ‘‘any’’
programming language (C, C#, C++, Java, Python,
etc.) and an array of input strings, executes them,
and returns the corresponding array of output and
stderr strings, as well as rich metadata about the
process. Code-runner relies on Judge0 API [40] for
the code execution (described below). Supported

81164 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

languages are all those that can be installed and
executed on a Linux operating system.

• Judge0 API (optional, 3rd party): Judge0 API is a free
and open-source Web API for executing and grading
untrusted source code [40]. Judge0 API itself provides
a wrapper for a well-known isolate [41] sandbox cre-
ated to safely run untrusted executables. Judge0 also
provides the adjoining infrastructure to receive pro-
gramming code, queue the code execution tasks and
execute them with a configurable number of workers
using isolate, persist the results and return them to the
client.

• Monitoring software (optional, 3rd party + own):
Edgar uses a well-known open-source monitoring soft-
ware: Zabbix [29]. Zabbix has its own MySQL database
for storingmonitoring data. Zabbix canmonitormultiple
servers by installing Zabbix agents on those servers.
Building upon Zabbix, a custom alerter application was
developed to send email notifications when configured
thresholds are exceeded. It is possible to set thresh-
olds on disk, CPU and memory in a given timeframe.
For instance, one rule may be ‘‘send notifications if
average value of used memory calculated over a time
span of 10 mins is over the 50% threshold’’. Monitor-
ing, in the context of overseeing students taking exams,
is implemented in the core system.

This modular architecture is somewhat harder to install and
maintain due to the number and variety of components, but
it provides the flexibility and the ability to scale practically
any part of the system to a custom fit. For instance, Edgar
was used to test C programming code using GCC compiler
on a course with 700+ students and worked fine with average
execution time of C programs of approximately one second
with typically 60 students working in parallel. Subsequently,
the Object-oriented programming course with 700+ students
using Java was started with the same infrastructure but had
faced performance issues (Fig. 14).

Java compiler is slower than GCC, and the execution of
programs is also far more memory and processor demanding
since Java virtual machine must be started for each test-case
to run the java bytecode (as opposed to machine code pro-
duced by GCC). However, we were able to easily scale
the system. GCC setup used three Judge0 virtual machines,
of which only one was kept (two of them were too slow)
and additional three were added to a total of four machines
(typically with 4GB of RAM and 4 cores) with number of
workers set in the range [10, 15]. Fig. 15 shows execution
times for the whole semester by the time of day. In the
worst case the execution times did not surpass 25 seconds.
If we consider the same plot for a single day (Fig. 16) it is
more obvious that execution times are skewed to the end of
each group’s term: when the time runs out the students are
prompted by TAs to submit the exam and then the usage peaks
occur and submissions queue up for execution thus yielding
longer execution times. The box and whiskers plot in Fig. 17

FIGURE 14. Performance issues on the March the 19rd (execution times
over 400 seconds).

FIGURE 15. Code runner (Java) execution times by the time of day for
whole semester.

FIGURE 16. Code runner (Java) execution times by the time for
2019-05-16.

shows that execution times over 5 seconds are in fact outliers
and that most of the exams get carried out below five seconds
while server B appears fastest, and server C slowest.

VOLUME 8, 2020 81165

I. Mekterović et al.: Building a Comprehensive APAS

FIGURE 17. Execution times by server for the whole semester.

FIGURE 18. Distribution of execution by server for the winter
semester(19/20)).

The average execution time of approximately 2.5 seconds
is satisfactory. Again, one must have in mind that a typical
Java task with e.g. 5 test-cases comprises of one javac com-
pile, and five JVM runs where custom testing code is some-
times repeated tens of times. In the extreme, Judge0 code
runners could be scaled so that every student ‘‘has their own
server’’, however, in our case – four servers sufficed.

Subsequently, we have analyzed the execution times in the
following semester (winter of 2019.) which features different
set of courses (Programming in C and OOP) to confirm the
scalability properties of our system. Figures 18 and 19 show
the execution times for the entire winter semester.

Outliers in figures 18 and 19 are usually caused by stu-
dents running infinite loops or highly unoptimized code.
However, box and whiskers plot in Figure 19 shows that
vast majority of tasks is executed in under 2 seconds, with
overall mean (across all servers) of 1.61 seconds and median
of 1.24 seconds. Execution times are even better than the
semester before but this is because C programming language
code (exams) dominates the winter semester, and signifi-
cantly slower Java code dominates the spring semester.

V. DISCUSSION
In this section we provide comparison with related studies
and software, comment on automated assessment advantages
and challenges, and present future work.

FIGURE 19. Execution by server for the winter semester(19/20).

A. COMPARISON WITH RELATED STUDIES
We have surveyed the existing APAS software and literature
with regards to the features identified in Section III. The list
of considered systems is mostly based on a recent systematic
literature review [14]. Only systems supporting multiple lan-
guages within multiple paradigms (ACT Programming Tutor,
Ceilidh, Checkpoint CourseMarker/CourseMaster, GAME
(2, 2+), Marmoset, Pex4Fun, Submit!, Testovid/Svetovid,
Moodle*, WebAssign, Web-CAT) were considered. This ini-
tial list was expandedwith JACK as it is also amulti-paradigm
system since it can cope with object oriented (Java, C++)
languages and EPML/XML markup languages. Moodle is
markedwith an asterisk as it supports multiple languages only
in combination with plugins (such as Virtual Programming
Lab and CodeRunner), so it is evaluated with its plugins.
To be able to compare the selectedAPASs in the context of the
established features, relevant information must be available
either through publications or through a publicly available
version of software that can be tested freely. It turned out
that for most of the 13 systems selected this is not the case,
so the initial set, after thorough analysis, has been narrowed
down to the five presented in Table 4. The reasons for
excluding systems from further analysis are: (i) non-existent
publication describing system features, (ii) the absence of a
publicly available version of the software to test the system,
and (iii) liveliness – an estimate whether the project has been
abandoned judging by the publications and project website.
Table 3 shows the initial list of systems which were filtered
according to aforementioned criteria.

Columns F1-F9 in Table 4 correspond to the features pre-
sented in Section III while the last P/OS column indicates
software availability (P stands for proprietary, and OS for
open source solutions). The feature F2-System monitoring
is omitted for it is typically implemented using 3rd party
software and details are hard to find in both publications and
demo versions of the system. Sign+ indicates that the feature
is supported in the corresponding system, regardless of the
level. Furthermore, for every system there was at least one
feature that we could not find data to resolve whether it was

81166 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

TABLE 3. Initial list of 13 APASs with exclusion criteria.

TABLE 4. Feature comparison matrix for selected systems from Table 3.
Columns: F1-Course administration; F3-Exam logging and monitoring;
F4-Problem mitigation; F5-Analysis & visualisation; F6-Data import &
export; F7-Content authoring; F8-Rich question types and grading
facilities; F9-User friendly online testing; P/OS-proprietary or open source.

supported or not, so we used ‘‘?’’ (meaning ‘‘No info’’) to
denote such cases.

In conclusion, despite the vast number of publications in
the field and a large body of potential users, the choice of
APAS software for a university looking to introduce auto-
mated assessment is very limited. It boils down to just few
systems that are still lacking in certain areas.

B. APAS ADVANTAGES AND CHALLENGES
Use of an APAS brings many advantages. A study in [54]
showed that human graders can significantly differ when
scoring partially correct solutions. Automatic evaluations
based on well-defined criteria can fix human graders’ errors
and even increase students’ score [55]. Multi-paradigm sup-
port in Edgar has enabled use of APAS in several courses
allowing students to have higher number of assignments,
which we find essential for mastering programming con-
cepts. On the other hand, APASs also have open issues,
mostly related to feedback appropriateness, submission poli-
cies and enabling unwanted students’ behaviour. Opinions
about unlimited submissions vary. Pieterse [56] states that

unlimited submission is essential if assessment is done for
formative reasons. Auvinen [57] makes a point on undesired
and harmful habits of exploiting submission feedbacks to
do trial-and-error strategy. In order to prevent students from
misusing the system by gauging test cases, Edgar enables
creation of test cases with random input data. However, that
might not dissuade the students that Karavirta et al. call iter-
ators [58] – those that persistently iterate in a trial-and-error
fashion. To address such issues, Edgar provides a support to
limit or penalize repeated submissions, but it is left to the
teachers to define whether they want to apply it or not.

In [59] it is stated that binary feedback can motivate stu-
dents to cheat and Edgar addresses this problem by allow-
ing teachers to create granular scoring with several test
cases using various grading models and penalty percentages.
A study by Falkner et al. [60] shows that granularity can
increase effectiveness.

Hao et al. [61] define and test the effects of three types
of feedback: ‘‘What’s wrong’’ – feedback in which only test
case pass or fail is revealed, ‘‘Gap’’ that displays differences
between actual and expected output, and ‘‘Hint’’ showing
hint how to fix the problems. They conclude that Gap feed-
back type increase student’ performance compared toWhat’s
wrong feedback, but they do not find significant improvement
using Hint over Gap feedback type. The effects of submis-
sion policy and feedback verbosity was tested in [62] and
the authors conclude that they ‘‘cannot declare any of the
feedback styles clearly superior to the other’’.

Edgar does not enforce a specific feedback style and
directly supports What’s wrong and Gap feedback. How to
use test case descriptions and verbose output is described in
Section III-I showing how simple hints from the teacher can
be shown to a student. A more sophisticated hint feedback is

VOLUME 8, 2020 81167

I. Mekterović et al.: Building a Comprehensive APAS

language and paradigm dependent and could be implemented
as an additional plugin. For instance, previous submissions
could be analysed in order to categorize errors aiming to
provide hint e.g. for specific error [63], error category [64]
or hint based on similarity of student’s program to elements
containing teaching comments and hint [65]. Edgar does not
yet support such advanced scenarios, but it provides facilities
to show various types of feedback including the arbitrary code
that will generate feedback based on the student’s submis-
sions. Feedback generation is an interesting topic in this area
where automated systems still fall short of human generated
feedback [64].

C. FUTURE WORK
Edgar is being actively developed past the basic APAS
features to include certain LMS features. APASs provide
convenient foundation for learning programming and Edgar
already features tutorials and adaptive exercises. Tutorials
intertwine content and code and enable students to e.g. exe-
cute SQL code and receive feedback as they progress through
the tutorial steps. Adaptive exercises categorize questions
into three difficulty categories and use configurable mod-
els to adaptively present questions to the students based on
students’ performance. In both APAS and LMS categories,
future development includes additional evaluation features
like static code analysis and code style assessment, additional
learning scenarios and assisted coding (rich feedback), data
visualization and configurable plagiarism detection since
standard methods yield too many false positives for short
coding assignments often used in our courses. Plagiarism
detection should also consider the time when the code is writ-
ten and reconstruct the dissemination path of the plagiarised
code. In addition to that, gamification, peer assessment and
competitive programming modules are already in develop-
ment. From a more technical standpoint, we are planning to
implement real-time logging (log aggregation) and to docker-
ize all components to facilitate the management of the entire
ecosystem.

D. PRACTICAL CONSIDERATIONS
Edgar is released under the MIT licence and is free for use
for all interested parties. Edgar’s source code and installation
instructions can be found at Edgar’s GitLab site [39]. The site
contains link to demo showcasing student’s perspective, e.g.
it is possible to write an examwith multiple-choice questions,
SQL, C and Java questions.

VI. CONCLUSION
In computer science education field, there is an ever-growing
demand for automated assessment of programming assign-
ments in different programming languages and technolo-
gies. In this paper we survey the software and literature
to define nine feature categories that qualify an APAS as
comprehensive – such that would support all key stages
in the assessment process. Our objective was to introduce
APAS to large university level courses and having found

no systems that meet these requirements while being freely
available (Moodle being the closest) we decided to develop
our own. Here, we present Edgar - a novel, state-of-the-art,
automated program assessment system capable of assessing
programming assignments written in arbitrary programming
language (SQL, Java, C, C#, etc.) as well as multi-correct
multiple-choice questions. It features a flexible exam and
question definition model, rich exam logging and monitoring
facilities and data analysis and visualization features. Edgar is
built usingmodern, open-source, cross-platform technologies
with modular architecture so that it can be customized and
scaled at will. We present its architecture and scalability
properties using real-world data. Unlike most other systems
that target a particular course, language, use case, or aspect
of programming assessment, Edgar’s contribution lies in the
generic, comprehensive approach to the APAS development.
With its rich feature set, Edgar surpasses, to the best of our
knowledge, any other publicly available system for testing
programming assignments. As such, we believe it will be of
great interest to a wide audience of institutions practicing
computer science education. Before this public release, Edgar
has been in use at University of Zagreb Faculty of Electrical
Engineering and Computing for three years and is going to be
used in the future to an increasing extent.

APPENDIX
PROGRAMMING QUESTIONS ASSESSMENT EXAMPLES
Programming questions, regardless of type (SQL, Java, C,
. . .), are defined with three code snippets: obligatory source
and optional prefix and suffix, and (except for the SQL)
an arbitrary number of test-cases with penalty percentages.
Students provide code corresponding to the source and the
complete program is constructed by concatenating the pre-
fix, source and suffix. This way, arbitrary code snippets can
be tested (typically functions), but teachers can creatively
use these code sections to support various scenarios; e.g.
in Object oriented programming course teachers are testing
the class structure (existence, names and visibility of meth-
ods and members) using reflection and use test-case inputs
to select set of unit tests contained inside suffix! For SQL
questions the use of prefix+source+suffix scheme allows to
test not only SELECT statements but also record updates,
deletions, and even DML expressions like ALTER TABLE
or CREATE INDEX by querying the system catalogue in
suffix part. Execution of the assembled code is delegated
to an external runner (as described in Section IV) to be
run in an isolated environment. Results are then returned to
Edgar to be assessed and graded. Edgar features different
data structures for different programming languages (Table 2)
with corresponding comparison parameters used to assess
the solutions. Here we present SQL and C assessments.
SQL assessment is illustrated with the example in Table 5
using comparison parameters shown in Table 6. In this
example, INSERT statements in the prefix are used to tem-
porarily change the database’s content with rows that were
not visible to student during the exam. This is typically

81168 VOLUME 8, 2020

I. Mekterović et al.: Building a Comprehensive APAS

TABLE 5. SQL DELETE statement question definition and student’s answer.

TABLE 6. Evaluating correctness for the example in Table 5.

used to prevent students from hard-coding the solution
(e.g. SELECT 1, ’first row’ UNION SELECT 2,
’second row’ ...). When the complete SQL code is
assembled for the teacher and the student (Table 6), record
sets presenting correct solution (denoted RST - RecordSet-
Teacher) and student’s solution (denoted RSS -RecordSetStu-
dent) are acquired and subsequently compared. Since in this
scenario, student’s solution is erroneous, RSS will contain
both rows inserted with statements from the prefix part, while
RST will not contain row with id = 100. The student will
be presented with a RSP (RecordSetPresentation) rather than
RST as it will be easier to spot and correct error based
on a smaller data set. Note that unlike code questions or
multiple-choice questions the correctness of SQL questions
is binary – 0% or 100%.

Examples of code questions in C language are shown
in Table 7 and Table 8. Similar approach is used for other
programming languages like Java, Python, etc. Assembled
student’s code is compiled (once) and executed (three times in
this example as we have three test-cases) with corresponding
test-case data redirected to the standard input. Output of the
program is comparedwith the expected output and, in the case

of mismatch, the penalty percentage is applied. Comparison
is done either by:
• comparing fixed expected output with student’s actual
output (test-cases 1 and 2 in Table 8)

• comparing student’s program output with the teacher’s
program output (test-case 3 in Table 8). This approach
is used when tests-cases with randomly generated input
values are used (e.g. Edgar can generate range of num-
bers, letters, . . .). In this case, source part in question
definition is obligatory, though it is always a good prac-
tice to provide the source part i.e. the solution.

During comparison of outputs, depending on selected
options, leading and trailing whitespaces can be trimmed,
case can be ignored, or even regular expression matching can
be employed. Table 8 shows how correctness is calculated
in this example. Shaded cells in a row are compared for
equality. Penalty percentages in this example are 100% for
each test, as each test failure suggest that student’s solution is
completely wrong and should be treated as incorrect. Often,
tests consist of several test with 100% penalty and some test
with minor penalty (e.g. 10-30%) for minor mistakes like
improperly handling boundary conditions.

VOLUME 8, 2020 81169

I. Mekterović et al.: Building a Comprehensive APAS

TABLE 7. Code question definition and student’s answer.

TABLE 8. Evaluating correctness for the example in Table 7. Shaded cells
within a row are compared.

JSON questions are evaluated in a similar way as SQL
questions, also with binary outcome. When comparing
objects that are results of teachers and students code, JSON
comparison can do shallow (deep) and strict comparison of
objects.

REFERENCES
[1] J. Hollingsworth, ‘‘Automatic graders for programming classes,’’ Com-

mun. ACM, vol. 3, no. 10, pp. 528–529, Oct. 1960, doi: 10.1145/
367415.367422.

[2] X. Bai, A. Ola, S. Akkaladevi, and Y. Cui, ‘‘Enhancing the learning pro-
cess in programming courses through an automated feedback and assign-
ment management system,’’ Issues Inf. Syst., vol. 17, no. 3, pp. 165–175,
2016. [Online]. Available: http://www.iacis.org/iis/2016/3_iis_2016_165-
175.pdf

[3] G. Rößling, M. Joy, A. Moreno, A. Radenski, L. Malmi, A. Kerren,
T. Naps, R. J. Ross, M. Clancy, A. Korhonen, R. Oechsle, and
J. Á. V. Iturbide, ‘‘Enhancing learning management systems to better sup-
port computer science education,’’ ACM SIGCSE Bull., vol. 40, no. 4,
pp. 142–166, Nov. 2008, doi: 10.1145/1473195.1473239.

[4] N. Singer. (Jan. 2019). The Hard Part of Computer Science?
Getting Into Class. [Online]. Available: https://www.nytimes.com/
2019/01/24/technology/computer-science-courses-college.html

[5] I. Mekterović and L. Brkić, ‘‘Setting up automated programming assess-
ment system for higher education database course,’’ Int. J. Edu. Learn.
Syst., vol. 2, pp. 287–294, Jan. 2017.

[6] J. P. Leal and F. Silva, ‘‘Mooshak: A Web-based multi-site programming
contest system,’’ Softw., Pract. Exper., vol. 33, no. 6, pp. 567–581, 2003,
doi: 10.1002/spe.522.

[7] M. Szabó and K. Nehéz, ‘‘Grading java code submissions in
MeMOOC,’’ in Proc. 32nd MultiScience MicroCAD Int. Sci.
Conf., 2018. [Online]. Available: https://www.uni-miskolc.hu/
~microcad/publikaciok/2018/c2/C2_SzaboMartin.pdf, doi: 10.26649/
musci.2018.026.

[8] K. M. Ala-Mutka, ‘‘A survey of automated assessment approaches for
programming assignments,’’ Comput. Sci. Edu., vol. 15, no. 2, pp. 83–102,
Jun. 2005, doi: 10.1080/08993400500150747.

[9] C. Douce, D. Livingstone, and J. Orwell, ‘‘Automatic test-based assess-
ment of programming: A review,’’ J. Educ. Resour. Comput., vol. 5, no. 3,
pp. 1–4, 2005, doi: 10.1145/1163405.1163409.

[10] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, ‘‘Review of recent
systems for automatic assessment of programming assignments,’’ in Proc.
10th Koli Calling Int. Conf. Comput. Edu. Res. (Koli Calling), 2010,
pp. 86–93, doi: 10.1145/1930464.1930480.

[11] J. L. F. Aleman, ‘‘Automated assessment in a programming tools
course,’’ IEEE Trans. Educ., vol. 54, no. 4, pp. 576–581, Nov. 2011, doi:
10.1109/te.2010.2098442.

[12] J. C. Caiza and J. M. Del Alamo, ‘‘Programming assignments auto-
matic grading: Review of tools and implementations,’’ in Proc. 7th Int.
Technol., Edu. Develop. Conf., 2013, pp. 5691–5700. [Online]. Available:
http://oa.upm.es/25765/1/INVE_MEM_2013_160449.pdf

[13] D. M. Souza, K. R. Felizardo, and E. F. Barbosa, ‘‘A systematic litera-
ture review of assessment tools for programming assignments,’’ in Proc.
IEEE 29th Int. Conf. Softw. Eng. Edu. Training (CSEET), Apr. 2016,
pp. 147–156, doi: 10.1109/cseet.2016.48.

[14] H. Keuning, J. Jeuring, and B. Heeren, ‘‘A systematic literature review of
automated feedback generation for programming exercises,’’ ACM Trans.
Comput. Edu., vol. 19, no. 1, pp. 1–43, Jan. 2019, doi: 10.1145/3231711.

[15] J. Liebenberg and V. Pieterse, ‘‘Investigating the feasibility of
automatic assessment of programming tasks,’’ Inf. Technol. Educ.
Innov. Pract., vol. 17, pp. 201–223, 2018. [Online]. Available:
http://www.jite.org/documents/Vol17/JITEv17IIPp201-223Liebenberg
4853.pdf, doi: 10.28945/4150.

[16] N. Stanger, ‘‘Semi-automated assessment of SQL schemas via database
unit testing,’’ in Proc. 26th Int. Conf. Comput. Edu. (ICCE), Asia–Pacific
Soc. Comput. Educ. (APSCE), J. C. Yang, M. Chang, L.-H. Wong, and
M. M. T. Rodrigo, Eds., 2018, pp. 237–246.

[17] M. Luck and M. Joy, ‘‘Automatic submission in an evolutionary approach
to computer science teaching,’’ Comput. Edu., vol. 25, no. 3, pp. 105–111,
Nov. 1995, doi: 10.1016/0360-1315(95)00056-9.

[18] M. Joy, N. Griffiths, and R. Boyatt, ‘‘The boss online submission and
assessment system,’’ J. Educ. Resour. Comput., vol. 5, no. 3, pp. 2–es,
Sep. 2005, doi: 10.1145/1163405.1163407.

[19] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, ‘‘Ability-training-
oriented automated assessment in introductory programming
course,’’ Comput. Edu., vol. 56, no. 1, pp. 220–226, Jan. 2011, doi:
10.1016/j.compedu.2010.08.003.

81170 VOLUME 8, 2020

http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1145/1473195.1473239
http://dx.doi.org/10.1002/spe.522
http://dx.doi.org/10.26649/musci.2018.026
http://dx.doi.org/10.26649/musci.2018.026
http://dx.doi.org/10.1080/08993400500150747
http://dx.doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1109/te.2010.2098442
http://dx.doi.org/10.1109/cseet.2016.48
http://dx.doi.org/10.1145/3231711
http://dx.doi.org/10.28945/4150
http://dx.doi.org/10.1016/0360-1315(95)00056-9
http://dx.doi.org/10.1145/1163405.1163407
http://dx.doi.org/10.1016/j.compedu.2010.08.003

I. Mekterović et al.: Building a Comprehensive APAS

[20] C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas, ‘‘The Course-
Marker CBA system: Improvements over Ceilidh,’’ Edu. Inf. Technol.,
vol. 8, no. 3, pp. 287–304, 2003, doi: 10.1023/A:1026364126982.

[21] M. Amelung, K. Krieger, and D. Rösner, ‘‘E-assessment as a service,’’
IEEE Trans. Learn. Technol., vol. 4, no. 2, pp. 162–174, Jun. 2011, doi:
10.1109/TLT.2010.24.

[22] (Dec. 2019). Web-CAT: What is Web-CAT? Accessed: May 1, 2020.
[Online]. Available: https://web-cat.org/projects/Web-CAT

[23] M. Striewe, ‘‘Der grader JACK,’’ in Automatisierte Bewertung
der Programmierausbildung, O. J. Bott, P. Fricke, U. Priss, and
M. Striewe, Eds. Bradford, U.K.: The Science and Information
(SAI) Organization, 2017, pp. 143–159. [Online]. Available:
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=3&Code=
ijacsa&SerialNo=28

[24] H. Aldriye, A. Alkhalaf, and M. Alkhalaf, ‘‘Automated grading sys-
tems for programming assignments: A literature review,’’ Int. J.
Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 215–221, 2019, doi:
10.14569/ijacsa.2019.0100328.

[25] R. Lobb and J. Harlow, ‘‘Coderunner,’’ ACM Inroads, vol. 7, no. 1,
pp. 47–51, Feb. 2016, doi: 10.1145/2810041.

[26] A. Abelló, X. Burgués, M. J. Casany, C. Martín, C. Quer, M. E. Rodríguez,
O. Romero, and T. Urpí, ‘‘A software tool for E-assessment of relational
database skills,’’ Int. J. Eng. Edu., vol. 32, vol. 3, pp. 1289–1312, 2016.

[27] R. E. Noonan, ‘‘The back end of a grading system,’’ in Proc. 37th SIGCSE
Tech. Symp. Comput. Sci. Edu. (SIGCSE). Houston, TX, USA:ACM, 2006,
pp. 56–60, doi: 10.1145/1121341.1121360.

[28] T. H. Wang, K. H. Wang, W. L. Wang, S. C. Huang, and S. Y. Chen, ‘‘Web-
based assessment and test analyses (WATA) system: Development and
evaluation,’’ J. Comput. Assist. Learn., vol. 20, no. 1, pp. 59–71, Feb. 2004,
doi: 10.1111/j.1365-2729.2004.00066.x.

[29] (Jun. 2019). Zabbix: The Enterprise-Class Open Source Network
Monitoring Solution. Accessed: May 1, 2020. [Online]. Available:
https://www.zabbix.com/

[30] G. Rasch,ProbabilisticModels for Some Intelligence and Attainment Tests.
Copenhagen, Denmark: Danmarks Paedagogiske Institute, 1960.

[31] F. M. Lord and M. R. Novick, Statistical Theories of Mental Test Scores.
Charlotte, NC, USA: Information Age Pub, 2008.

[32] (Jun. 2019). MathJax|Beautiful Math in All Browsers. Accessed: May 1,
2020. [Online]. Available: https://www.mathjax.org/

[33] (Jun. 2019). Kahoot!|Learning Games|Make Learning Awesome!
Accessed: May 1, 2020. [Online]. Available: https://kahoot.com/

[34] M. Jagar, J. Petrović, and P. Pale, ‘‘AuResS: The audience response sys-
tem,’’ in Proc. ELMAR, Sep. 2012, pp. 171–174.

[35] (Jun. 2019). Wooclap—An Interactive Platform That Makes
Learning Awesome. Accessed: May 1, 2020. [Online]. Available:
https://www.wooclap.com/

[36] OASIS. (Sep. 2019). Security Assertion Markup Language (SAML)
V2.0 Technical Overview. Accessed: May 1, 2020. [Online]. Available:
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-
tech-overview-2.0-cd-02.pdf

[37] IETF OAuth Working Group. (Jun. 2019). OAuth 2.0 Specification.
Accessed: May 1, 2020. [Online]. Available: https://oauth.net/2/

[38] (Jun. 2019). NGINX|High Performance Load Balancer, Web Server,
and Reverse Proxy. Accessed: May 1, 2020. [Online]. Available:
https://nginx.org/

[39] I. Mekterović. (Jun. 2019). Edgar Project Group. Accessed: May 1, 2020.
[Online]. Available: https://gitlab.com/edgar-group

[40] H. Z. Došilović. (Jun. 2019). Judge0. Accessed: May 1, 2020. [Online].
Available: https://www.judge0.com/

[41] M. Mareš and B. Blackham, ‘‘A New Contest Sandbox,’’ Olympiads
Informat., vol. 6, pp. 100–109, Jan. 2012. [Online]. Available:
https://mj.ucw.cz/papers/isolate.pdf

[42] A. T. Corbett and J. R. Anderson, ‘‘Locus of feedback control in computer-
based tutoring,’’ in Proc. SIGCHI Conf. Human Factors Comput. Syst.
(CHI). New York, New York, USA: ACM, 2001, pp. 245–252, doi:
10.1145/365024.365111.

[43] S. D. Benford, E. K. Burke, E. Foxley, and C. A. Higgins, ‘‘The ceilidh
system for the automatic grading of students on programming courses,’’ in
Proc. 33rd Annu. Southeast Regional Conf. (ACM-SE), 1995, pp. 176–182,
doi: 10.1145/1122018.1122050.

[44] J. English and T. English, ‘‘Experiences of using automated assessment in
computer science courses,’’ J. Inf. Technol. Educ., Innov. Pract., vol. 14,
pp. 237–254, Oct. 2015, doi: 10.28945/2304.

[45] C. A. Higgins, B. Bligh, P. Symeonidis, and A. Tsintsifas, ‘‘Authoring
diagram-based CBA with CourseMarker,’’ Comput. Edu., vol. 52, no. 4,
pp. 749–761, May 2009, doi: 10.1016/j.compedu.2008.11.019.

[46] R. Matloobi, M. Blumenstein, and S. Green, ‘‘Extensions to
generic automated marking environment: Game-2+,’’ in Proc.
Interact. Comput. Aided Learn. Conf. (ICL), 2009, vol. 1, no. 8,
pp. 1069–1076.

[47] M. Striewe, ‘‘An architecture for modular grading and feedback genera-
tion for complex exercises,’’ Sci. Comput. Program., vol. 129, pp. 35–47,
Nov. 2016, doi: 10.1016/j.scico.2016.02.009.

[48] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and
N. Padua-Perez, ‘‘Experiences with marmoset: Designing and using an
advanced submission and testing system for programming courses,’’
ACM SIGCSE Bull., vol. 38, no. 3, pp. 13–17, Jun. 2006, doi:
10.1145/1140123.1140131.

[49] S. Li, X. Xiao, B. Bassett, T. Xie, and N. Tillmann, ‘‘Measuring code
behavioral similarity for programming and software engineering educa-
tion,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion (ICSE). New York,
NY, USA: ACM, 2016, pp. 501–510, doi: 10.1145/2889160.2889204.

[50] Y. Pisan, D. Richards, A. Sloane, H. Koncek, and S. Mitchell,
‘‘Submit! A Web-based system for automatic program critiquing,’’
in Proc. 5th Australas. Conf. Comput. Edu. (ACE), vol. 20, 2003,
pp. 59–68.

[51] I. Pribela andD. Pracner, ‘‘A temporal file system for student’s assignments
in the system svetovid,’’ in Proc. 6th Workshop Softw. Qual., Anal., Mon-
itor., Improvement, Appl. (SQAMIA), Z. Budimac, Ed., Belgrade, Serbia,
2017, pp. 12:1–12:08.

[52] C. Beierle, M. Kulas, and M. Widera, ‘‘Partial specifications of
program properties,’’ in Proc. 1st Int. Workshop Teach. Log. Pro-
gram. (TeachLP), no. 12. Linköping, Sweden: Linköping Univ., 2004,
pp. 18–34.

[53] S. H. Edwards, ‘‘Work-in-progress: Program grading and feedback
generation with Web-CAT,’’ in Proc. 1st ACM Conf. Learn. Scale
Conf. (LS). New York, NY, USA: ACM, 2014, pp. 215–216, doi:
10.1145/2556325.2567888.

[54] I. Albluwi, ‘‘A closer look at the differences between graders in intro-
ductory computer science exams,’’ IEEE Trans. Educ., vol. 61, no. 3,
pp. 253–260, Aug. 2018, doi: 10.1109/te.2018.2805706.

[55] D. Insa and J. Silva, ‘‘Automatic assessment of java code,’’ Comput. Lang.,
Syst. Struct., vol. 53, pp. 59–72, Sep. 2018, doi: 10.1016/j.cl.2018.01.004.

[56] V. Pieterse, ‘‘Automated assessment of programming assignments,’’ in
Proc. 3rd Comput. Sci. Educ. Res. Conf. Comput. Sci. Educ. Res., vol. 3,
Apr. 2013, pp. 45–56, doi: 10.1145/1559755.1559763.

[57] T. Auvinen, ‘‘Harmful study habits in online learning environments with
automatic assessment,’’ in Proc. Int. Conf. Learn. Teach. Comput. Eng.,
Apr. 2015, pp. 50–57, doi: 10.1109/latice.2015.31.

[58] V. Karavirta, A. Korhonen, and L. Malmi, ‘‘On the use of resubmissions
in automatic assessment systems,’’ Comput. Sci. Edu., vol. 16, no. 3,
pp. 229–240, Feb. 2007, doi: 10.1080/08993400600912426.

[59] A. Kyrilov and D. C. Noelle, ‘‘Binary instant feedback on programming
exercises can reduce student engagement and promote cheating,’’ in Proc.
15th Koli Calling Conf. Comput. Edu. Res. (Koli Calling), vols. 19–22,
2015, pp. 122–126, doi: 10.1145/2828959.2828968.

[60] N. Falkner, R. Vivian, D. Piper, and K. Falkner, ‘‘Increasing the effective-
ness of automated assessment by increasing marking granularity and feed-
back units,’’ in Proc. 45th ACM Tech. Symp. Comput. Sci. Edu. (SIGCSE),
May 2014, pp. 9–14, doi: 10.1145/2538862.2538896.

[61] Q. Hao, J. P. Wilson, C. Ottaway, N. Iriumi, K. Arakawa, and
D. H. Smith, ‘‘Investigating the essential of meaningful automated forma-
tive feedback for programming assignments,’’ in Proc. IEEE Symp. Vis.
Lang. Hum.-Centric Comput. (VL/HCC), Oct. 2019, pp. 151–155, doi:
10.1109/vlhcc.2019.8818922.

[62] A. Annamaa, R. Suviste, and V. Vene, ‘‘Comparing different styles of
automated feedback for programming exercises,’’ in Proc. ACM Int. Conf.,
2017, pp. 183–184, doi: 10.1145/3141880.3141909.

[63] D. Insa and J. Silva, ‘‘Computer assisted self-assessment of programming
code: A report on university students experience and opinion,’’ in Proc.
15th Int. Conf. Inf. Technol. Higher Edu. Training (ITHET), Sep. 2016,
pp. 1–3, doi: 10.1109/ithet.2016.7760727.

[64] A. Kyrilov and D. Noelle, ‘‘Do students need detailed feedback on pro-
gramming exercises and can automated assessment systems provide it?’’
J. Comput. Sci. Colleges, vol. 31, no. 4, pp. 115–121, 2016.

[65] P. Silva, E. Costa, and J. R. de Araújo, ‘‘An adaptive approach to provide
feedback for students in programming problem solving,’’ in Intelligent
Tutoring Systems (Lecture Notes in Computer Science: Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11528.
Cham, Switzerland: Springer, Jun. 2019, pp. 14–23. [Online]. Available:
[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-3-
030-22244-4_3, doi: 10.1007/978-3-030-22244-4_3.

VOLUME 8, 2020 81171

http://dx.doi.org/10.1023/A:1026364126982
http://dx.doi.org/10.1109/TLT.2010.24
http://dx.doi.org/10.14569/ijacsa.2019.0100328
http://dx.doi.org/10.1145/2810041
http://dx.doi.org/10.1145/1121341.1121360
http://dx.doi.org/10.1111/j.1365-2729.2004.00066.x
http://dx.doi.org/10.1145/365024.365111
http://dx.doi.org/10.1145/1122018.1122050
http://dx.doi.org/10.28945/2304
http://dx.doi.org/10.1016/j.compedu.2008.11.019
http://dx.doi.org/10.1016/j.scico.2016.02.009
http://dx.doi.org/10.1145/1140123.1140131
http://dx.doi.org/10.1145/2889160.2889204
http://dx.doi.org/10.1145/2556325.2567888
http://dx.doi.org/10.1109/te.2018.2805706
http://dx.doi.org/10.1016/j.cl.2018.01.004
http://dx.doi.org/10.1145/1559755.1559763
http://dx.doi.org/10.1109/latice.2015.31
http://dx.doi.org/10.1080/08993400600912426
http://dx.doi.org/10.1145/2828959.2828968
http://dx.doi.org/10.1145/2538862.2538896
http://dx.doi.org/10.1109/vlhcc.2019.8818922
http://dx.doi.org/10.1145/3141880.3141909
http://dx.doi.org/10.1109/ithet.2016.7760727
http://dx.doi.org/10.1007/978-3-030-22244-4_3

I. Mekterović et al.: Building a Comprehensive APAS

IGOR MEKTEROVIĆ received the Ph.D. degree
from the University of Zagreb, in 2008.

He is an Associate Professor with the Faculty
of Electrical Engineering and Computing, Depart-
ment of Applied Computing, University of Zagreb.
His research interests are in the areas of computer
science education, databases, data warehouses,
Web development, and bioinformatics. He is a
member of the Croatian Centre of Research Excel-
lence for Data Science.

LJILJANA BRKIĆ received the M.Sc. and Ph.D.
degrees in computer science, in 2004 and 2011,
respectively.

She is an Associate Professor with the Depart-
ment of Applied Computing, Faculty of Elec-
trical Engineering and Computing, University of
Zagreb. She is currently a Main Coordinator of
the student mobility with the Faculty of Elec-
trical Engineering and Computing. Her research
interests include data warehouses, business intel-

ligence, information systems, and programming paradigms.

BORIS MILAŠINOVIĆ (Member, IEEE) received
the bachelor’s degree from the Faculty of Science,
Department ofMathematics, University of Zagreb,
in 2001, and the M.Sc. and Ph.D. degrees in com-
puting from the Faculty of Electrical Engineering
and Computing, University of Zagreb, in 2006 and
2010, respectively.

He is an Associate Professor with the Depart-
ment of Applied Computing, Faculty of Elec-
trical Engineering and Computing, University of

Zagreb. His main research interests include software development method-
ologies and workflow management. He has been a member of the Editorial
Board of Computer Science and Information Systems journal, since 2018,
and a program committee member of several international conferences.

MIRTA BARANOVIĆ (Member, IEEE) is a Full
Professor in computer science with the Faculty of
Electrical Engineering and Computing, University
of Zagreb. She has published more than 80 arti-
cles in journals and conference proceedings. Her
research interests include databases, information
systems, data warehouses, data lakes, semantic
Web, geospatial databases, and data streams.

Dr. Baranović served as the Honorary President
of the European Federation of National Mainte-

nance Societies (EFNMS). She also served as a member of the Board of
Directors of the EFNMS. She has been a member of the IEEE Computer
Society and the IEEE Women in Engineering, since 2004. She is currently
a member of the Croatian Centre of Research Excellence for Data Science.
She has received several awards, including the Silver Medal Josip Lončar
for an outstanding doctoral thesis, in 1997, the IBM International Informix
Users Group Award for exceptional service and dedication to the Informix
Community, in 2012, and the Golden Medal Josip Lončar for significant
improvement of teaching, connecting with the industry, and contributing
to the international exchange programmes, in 2014, and she was honoured
with the Award of the IEEE Croatia Section for outstanding contribution to
engineering education, in 2015.

81172 VOLUME 8, 2020

