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ABSTRACT The grid denotes the electric grid which consists of communication lines, control stations,
transformers, and distributors that aids in supplying power from the electrical plant to the consumers.
Presently, the electric grid constitutes humongous power production units which generates millions of
megawatts of power distributed across several demographic regions. There is a dire need to efficiently
manage this power supplied to the various consumer domains such as industries, smart cities, household and
organizations. In this regard, a smart grid with intelligent systems is being deployed to cater the dynamic
power requirements. A smart grid system follows the Cyber-Physical Systems (CPS) model, in which
Information Technology (IT) infrastructure is integrated with physical systems. In the scenario of the smart
grid embedded with CPS, the Machine Learning (ML) module is the IT aspect and the power dissipation
units are the physical entities. In this research, a novel Multidirectional Long Short-Term Memory (MLSTM)
technique is being proposed to predict the stability of the smart grid network. The results obtained are
evaluated against other popular Deep Learning approaches such as Gated Recurrent Units (GRU), traditional
LSTM and Recurrent Neural Networks (RNN). The experimental results prove that the MLSTM approach
outperforms the other ML approaches.

INDEX TERMS Multidirectional long short-term memory (MLSTM), machine learning (ML), smart grid
(SG), cyber physical systems (CPS).

I. INTRODUCTION

Cyber-physical system (CPS) is an integration of physical
processes, networks, and computation. In CPS, the physical
processes are monitored by embedded networks, sensors [1]
and computers with the help of a feedback mechanism.
The concept of CPS is used in SG, where physical sys-
tems like power network infrastructure are integrated with
control, intelligence, processing and information. Electricity
consumption is increasing day after day with the rise in popu-
lation. There has been a significant usage of natural resources
to generate electricity to cater to this huge demand; however,
this method is complex and expensive. There has been exten-
sive research on the grid networks to distribute the power
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across various locations effectively. One such approach is
the smart grid, which uses Information and Communication
Technology (ICT) to aggregate information about the behav-
ior of consumers to create a context-aware system that can
distribute the power effectively. Smart grids using Artificial
Intelligence (AI) are expected to reduce the need for deploy-
ing more power plants for electricity dissipation [2]-[5].
Smart grids also use renewable energy resources to be safely
plugged into the grid to appendage the power supply. The
intelligent systems, such as Expert Systems (ESs), Fuzzy
Logic (FL) [6], [7], Machine Learning (ML) [8], [9] and
Deep Neural Networks (DNN) [10]-[12] have revolution-
ized the power distribution process. These systems ren-
der effective tools for design, simulation, fault diagnostics,
and fault-tolerant control in the modern smart grid [13].
The recent smart grids for household deployment contain
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FIGURE 1. Components of the smart grid.

distributed solar-photovoltaic generation and energy storage.
This deployment overcomes the decision making an issue of
using a battery-powered system.

Figure 1 depicts the interaction between the power gen-
eration units, distribution centers and other different entities
such as industrial factories, electric vehicles, smart buildings,
and households. The smart grid plays a significant role in
efficiently dissipating the right amount of power to these var-
ious entities. The flexibility in the power distribution process
is achieved by implementing different Al algorithms in the
smart grid.

A smarter grid, which can predict the power demand is
the need of the hour. This can be accomplished with the
application of Machine Learning (ML) algorithms [14], [15]
on the data generated from the grid. The smart grid can help
to reduce the pollution and make the electricity price much
cheaper.

In this work, a novel Multidirectional Long Short Term
Memory (LSTM) model is proposed to predict the stability of
SG by classifying the smart grid dataset collected from UCI
machine learning repository [16]. The experimental results
are then compared with recent deep learning algorithms like
Recurrent Neural Networks (RNN), conventional LSTM, and
Gated Recurrent Units (GRU). The steps involved in the
current work are as follows:

1) The Electricity Grid dataset is collected from the UCI
machine learning repository.

2) The min-max normalization is used for normalizing the
dataset.

3) Label Encoding technique is used for converting cate-
gorical, textual data into numerical data.
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4) This data is fed to the proposed MLSTM model for
training the dataset.

5) The proposed model is then evaluated with other deep
learning techniques like RNN, GRU, and traditional
LSTM using some metrics, including accuracy, preci-
sion, recall, and F1-score.

In summary, our contributions in this work can be high-
lighted as follows:

o A novel MLSTM model is introduced to predict the
stability of the smart grid dataset.

o A comprehensive preprocessing is performed on the
smart grid dataset.

e An accuracy of 99.07% is achieved which is higher
compared to other state-of-the-art deep learning models.

The rest of the paper is organized as follows. Section II dis-
cusses recent state-of-the-art literature related to the applica-
tion of deep learning algorithms on smart grids. In Section III,
the proposed model is discussed in detail. Experimental
results are discussed in Section IV, which is followed by a
conclusion and future work in Section V.

Il. LITERATURE SURVEY

In this section recent state-of-the-art works related to appli-
cation of machine learning techniques on smart grid are
discussed.

Technology growth leads to different cybercrimes. One
of the most prevalent is, modifying the data in the smart
meters [17]. The authors present a framework aggregating
Finite Mixture Model clustering for customer segmentation
and a Genetic Programming algorithm [18] for recognizing
new functions that aid for accurate predictions. The authors
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also use a Gradient Boosting Machine algorithm, which is
embedded in the framework and performs better than the
existing ML algorithms. Most of the existing smart systems
use the combination of IoT [19]-[21] embedded with the
power of ML algorithms so that the systems perform to
their fullest capacity efficiently. The authors in [22] analyze
various IoT-based ML modes, which are used in the different
domains such as healthcare, smart city, and vehicle-vehicle
communication in smart cites. The deployment challenges
of various IoT and machine learning systems are also
discussed.

A covert data integrity assault (CDIA) on a communi-
cations network might be hazardous by directly reducing
the availability and safety-measures of a smart grid. This
assault is carefully deployed to avoid the conventional bad
data detectors in power control stations, and this assault can
confront the integrity of the data and instigating a false assess-
ment of the state that would brutally affect the whole power
system process. In [23] the authors develop an intelligent
system using an unsupervised ML-based model to identify
CDIAs in smart grids by using non-labeled data. The smart
grid is developed using various ICTs, which lead to humon-
gous data originating from various sources. Usage of big data
analysis [24] and intelligent systems in smart grid systems
helps to solve the challenge of processing and to manage
the huge amount of data. Various challenges associated with
usage of big data analysis in smart grids are highlighted
in [25]. The authors also enlist various applications of big data
in smart grid systems.

The estimation of smart grid stability epitomizes a chal-
lenging research problem due to the fact that information used
for the membership authentication may lead to instabilities in
the grid. This is used to govern configurations in which the
grid is stable irrespective of abnormalities. The authors in [26]
analyze the usage of a machine learning algorithm for fore-
casting the smart grid stability based on feature extraction.
The authors here use three methods for the feature selection
process: Binary Particle Swarm optimization Features Selec-
tion (BPSOFS), Binary Kangaroo Mob optimization Features
Selection (BKMOFS) and Multivariate Adaptive Regression
Splines (MARS). The forecast of the grid stability is done
by using four classifiers: Logistic Regression (LR), Random
Forest (RF), Gradient Boosted Trees (GBT) and Multilayer
Perceptron Classifier (MPC).

The age-old electrical grids constituted of one-way com-
munication between electrical grids and consumers. These
grids were deployed across the globe, but the efficiency of
power management was a significant concern. To solve this
challenge, the smart grids evolved with two-way commu-
nication between the grid and the consumer. The primary
objective behind developing this smart grid was to accurately
predict the energy requirements in a given demographic.
The parameters such as historical weather, load, and energy
generation data [27] are used to implement machine learning
algorithms for predictions. The researchers also develop two
models, namely: linear regression model, and deep neural
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network [28]. These models were assessed by means of
root mean squared error and it was observed that the deep
neural network models out-performed the linear regression
models in forecasting load and energy production at a given
region.

Energy load prediction in the smart grid is forecasting
the electrical power requirements to meet dynamic demands.
There is a dire need to embed accuracy for load prediction
which aids electrical services in monitoring their energy
generation and process. Presently most of the prediction in
any system is done through machine learning algorithms
to achieve maximum efficacy. Apache Spark and Apache
Hadoop [29] are proposed as big data frameworks for dis-
tributed processing for prediction of the energy load. The
authors also use MLib to assess the prediction accuracy of
various regression methods such as linear regression, gen-
eralized linear regression, decision tree, random forest and
gradient-boosted trees.

Currently, the smart grids are in trend for the deployment of
power systems to manage the energy dissipation efficiently.
Since the deployment of a smart grid network involves huge
complexities due to the humongous data being generated,
the use of artificial intelligent systems helps in easing this
process. The advancements in intelligent systems evolution
has paved a way for better methods such as Deep Learning
(DL), Reinforcement Learning (RL) and deep reinforcement
learning (DRL). The challenges in deploying these methods
in Smart grid are enlisted to enable further investigation by
future researchers [30].

The dynamic energy consumption in household appli-
ances is a major concern for sustainability and efficacy in
building smart cities. The advancement in IoT technologies
enables newer energy management techniques to address
this dynamic energy usage. The authors in [31] suggest an
implementation of probabilistic data-driven prognostic tech-
nique for consumption prediction in inhabited constructions.
This technique uses a Bayesian Network (BN) framework
which enables the system to determine dependency relations
amongst contributing variables. The authors assess the pro-
posed technique by using the datasets given by Pacific North-
west National Lab (PNNL) which was aggregated through a
pilot Smart Grid project.

Various big giants have come together, forming a consor-
tium to address the challenges and future needs of smart
grids. Smart grids use different Artificial Intelligence (AI)
methods such as Artificial Neural Network (ANN), Machine
Learning (ML) and Deep Learning (DL) for efficient energy
consumption. Different algorithms of DL for load prediction
issues are proposed in [32] for the smart grid. The authors
focus on the usage of different apps of DL for load prediction
in the smart grid network. The authors also compare the
accuracy results of Root Mean Square Error and Mean Abso-
lute Error for the studied applications and their results infer
that the use of convolutional neural network with k-means
algorithm had a huge percentage of reduction in case of root
mean square error.
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FIGURE 2. Workflow of the proposed multi-directional LSTM model.

Electricity price has a significant impact on the sta-
bility of the distributed power grids. The cost sensitivity
and reaction times of power producers and consumers also
influence the stability factor. Wood [33] propose a model
called decentral smart grid control (DSGC) to render the
demand-side control of distributed power grids by associ-
ating the electricity price to variations in grid frequency
upon the time gauge of a few seconds. The authors simulate
the power demand-side consumption/production on analo-
gous time gauges. The authors also implement an optimized
data-matching machine-learning algorithm, the transparent,
open box (TOB) learning network to envisage dynamic grid
stability for the simulation from its independent variables.
Training the vast data with variations in the dimensionality
reduces the effectiveness of the machine learning model. The
authors in [34] implement a secondary principal component
analysis (PCA) algorithm [35] to decrease the data dimen-
sions. This algorithm is applied to manage the ML techniques
to increase the stability of the grid systems.

From the above discussion, there is no foolproof system to
address the challenges of stability in a smart grid network.
In this work, a novel Multi-Directional LSTM (MLSTM)
architecture to train the SG dataset is proposed.

Ill. PROPOSED MULTI-DIMENSIONAL LSTM MODEL

The workflow of the proposed MSLTM model to analyze the
power utilization [36], [37] and predict the stability of the
SG dataset is depicted in Figure 2. First, the electricity grid
dataset from different power generating units is aggregated.
The dataset is then normalized using min-max normalization.
During this process, the minimum and maximum values of

VOLUME 8, 2020

the data are obtained and replaced by using Eq. (1).

7— [ — min(X) — .
= max(¥) — mingx) "ow-min(X) — new_max(X))

+new_min(X), (1)

where X represents an attribute in the given dataset, min(X)
and max(X) denotes minimum and maximum values of
the attributes in the given dataset, respectively. L indicates
the updated value of every entry in a dataset, / corresponds
to the previous values in the dataset, new_max(X) and
new_min(X) denotes the upper and lower boundary values
in the given range, respectively.

The ML algorithms cannot process the categorical values
in the dataset. This is the reason behind using the Label
encoding technique which converts the categorical values in
the dataset into numerical values suitable for processing by
the ML algorithms. In the next step the smart grid dataset
is trained with the proposed MLSTM approach. The perfor-
mance of the proposed model is then compared with RNN,
traditional LSTM, and GRU models by using metrics such as
accuracy, precision, recall, and Fl1-score. These models are
explained in brief in the following.

Recurrent Neural Networks (RNN): Traditional Neural
Networks (NN) do not yield satisfactory results on time series
data due to the vanishing gradient problem. In order to handle
the issue mentioned above, RNN was introduced in 1982 by
Hopfield [38]. RNN has the advantage of making the NNs
learn the patterns over a period of time. RNN can predict
the sequential data like actions based on previous events in
a video, audio from speech, events from the text, etc. The
working model of RNN is shown in Figure 3. In the Figure, X;
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ht

represents the hidden layer’s weight vector, E; represents the
output layer’s weight vector, D; denotes input word vector.
The hidden layer time stamp ¢ is calculated by using Eq. (2).

Xt :U(A*Dt+C*Xt_1), (2)
E; = o(B*Xy), (3)

where o (+) is considered as the activation function. The acti-
vation function can be either Sigmoid, Tanh, or Relu. Atevery
timestamp 7, the hidden state X; is computed by using Eq. (2)
with the corresponding inputs and parameters.

Long Short Term Memory (LSTM): RNN uses more num-
ber of network layers, which is a challenge to gain an insight
about the parameters from previous layers. In recent stud-
ies, the LSTM network is one of the popular approaches to
overcome this challenge [39]. LSTM has a chain structure
like RNN that has multiple neural network modules. Figure 4
illustrates the architecture of LSTM, which consists of differ-
ent gates like input gate, output gate and forget gate. These
gates select and reject the information passing through the
network.

Input gate i) consists of ranh as activation function rang-
ing from —1 to 1. It takes the current input x), parameters
C“=D and A=Y for processing. Forget gate f*) has sigmoid
and tanh as the activation function. The forget gate decides
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how much of the information from the previous output has to
be retained. If the value is 1, then the data will be transformed
into the network, if it is 0, the data will not be passed through
the network. The output gate o) has sigmoid as an activation
function ranging from —1 to 1. At every timestamp, i, o),
£® are computed by using the following equations.

i = oWIC™ KD x07 4 b, )
o(l‘) — O,(w()[cl*l’ h(l*l)’ x(t)] + bi)7 (5)
fO =W/ ! R O] 4 1), (©6)

Traditional LSTM works bi-directionally, while in this
research, two LSTMs are used; one LSTM for upward and
downward scanning and the other LSTM is for right and
left scanning. The input of the second LSTM is a sum-
mation of the first LSTM. The proposed MLSTM utilizes
twice the number of input gates, output gates and for-
get gates as compared to the traditional LSTM. MLSTM
achieves a promising accuracy, but it has a computational
overhead.

Gated Recurrent Unit (GRU): GRU is the latest variant
of RNN designed to deal with short-term memory problems
similar to LSTM. GRU does not have a cell state and makes
use of a hidden state to carry information. GRU also consists
of two gates: a reset gate r' and an update gate 7, which are
represented in the following equations:

7 =0 (wztx' + Uyphi—1 + bzt) s 7)
=0 (wrtx’ + Upqihi—1 + brt) , (8)

where 7' denotes update gate, o(-) represents the sigmoid
function, w, U and b are parameter matrices and vector, /;
denotes the output vector, x’ denotes the input vector. The
update gate performs similar functions of the forget gate and
an input gate of an LSTM. It is responsible for deciding which
information has to be dropped and which information has
to be added. The reset gate is responsible for determining
the amount of the previous data to be forgotten. Since GRU
has fewer gates compared to LSTM, the training process is
normally faster.

A. MLSTM MODEL

The proposed model consists of four 1D spatial LSTMs
to scan each column and row in different directions inde-
pendently. At every step, hidden layers are calculated and
summed at the end. Two spatial 1D LSTM are applied in
(A) vertically, where the hidden states are calculated at every
step and the results are summed. Similarly, in (B), two spatial
1D LSTM are applied in horizontal directions. The combina-
tion of A and B defines the Multidirectional LSTM, as shown
in Figure 5.

As presented in Figure 5, the suggested module is a combi-
nation of the 1D spatial LSTM (A) and (B). In each module,
two 1D LSTMs are used for scanning across the attributes
maps vertically or horizontally in both the directions (bidi-
rectional LSTMs) and their hidden states are updated at every
spatial step. For each of the vertical and horizontal directions,
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two output attribute maps are used. In the current simulation,
a sum of these output attribute maps is used (an alternative
is to concatenate the output feature maps, but that would
increase the number of parameters).

For illustration, we consider the input data for the 1D
spatial LSTM. F’ is an attribute vector at every spatial loca-
tion, every column or row on the function cards is treated
as a series. While scanning from top to bottom, the attribute
response for m, n represent the dimensionality of features and
it can be estimated as:

Fitt = A (UL, + VFLSL +b), ©)

where FLt1 = 0, FL e R4 FLAL FIAL e RPL U €
RPxd 7 ¢ RP*P p ¢ RP*1 D depicts the number of nodes
used in 1D Spatial LSTM and F' represents the non-linearity
function. Similarly, right to left 1D spatial LSTM can also
be calculated using the same approach. Here d represents
number of attributes in the dataset, while x depicts the multi-

plication.
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Figure 6 represents the working of the proposed model
at every hidden layer. To process the data at hidden layers,
the MLSTM model uses three approaches, namely forward
propagation, sum, and concatenation as follows:

YD = Fyl, w, (10)
YED = yL 4 FYE, w), (11)
YD — [vE FYE, w. (12)

IV. RESULTS AND DISCUSSION
This section discusses about prediction of smart grid stability
using the proposed model.

A. EXPERIMENTAL SETUP

The experimentation is carried out using an online Graphical
Processing Unit (GPU) provided by Google called “Google
Colab”. A personal computer with Windows 8.1 Operating
system and core I3 processor is used. The programming
language used for this purpose is Python 3.7.

B. DATASET DESCRIPTION

The dataset used for the experimentation is collected from
the UCI machine learning repository [16]. The dataset
has 10000 instances with 14 attributes. The attributes in
the dataset have information related to the electricity pro-
ducer values, nominal power consumed/produced, coefficient
related to price elasticity, the maximum value of the equation
root, the stability of the system (class label, whether the
system is stable or not).

C. METRICS USED FOR EVALUATING THE PROPOSED
APPROACH
The performance metrics used to evaluate the proposed
MLSTM model are explained below.

Confusion matrix: A confusion matrix is used to evaluate
the performance of a classification model.

o Accuracy: Accuracy signifies the correctness of a clas-
sifier. Accuracy is calculated as follows:

(True Positive + True Negative)
Accuracy = . (13)
Total Instances

o Precision:

. True Positive
Precision = - . (14)
(Predicted Instances = True)

« Recall:

True Positive
Recall = - . (15
Actual number of instances as True

o F1 Score:

2*Precision*Recall
F1 Measure = — (16)
Precision +Recall
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TABLE 1. Confusion Matrix for DNN Models.

RNN Confusion Matrix GRU Confusion Matrix LSTM Confusion Matrix Propose Model
Labels Stable | Unstable Labels Stable | Unstable Labels Stable | Unstable Labels Stable | Unstable
Stable 970 114 Stable 1081 3 Stable 1013 11 Stable 1084 0
Unstable 5 1911 Unstable 99 1817 Unstable 75 1841 Unstable 28 1888

TABLE 2. Average Training and Testing Accuracy and Loss For Deep
Learning Models.

verage Training and Testing Accuracy and Loss For Deep Learning Models.

. Trainin, Trainin, Testin, Testin;
Classifier Accuracyg% Loss ¥ Accurac;g % Lossg
GRU 97.17 0.06 97.30 0.06
RNN 96.66 0.08 96.60 0.08
LSTM 97.30 0.06 97.13 0.06
Proposed Model 99.07 0.02 99.07 0.02

D. PERFORMANCE EVALUATION OF THE PROPOSED
MODEL

70% of the SG dataset is used for training and validation,
and the remaining 30% of the dataset is used for testing and
validation purpose.

Various evaluation methods are used for experimentation,
which include true positive, true negative, false negative, false
positive, precision, recall, fl score, training loss and testing
loss. At the end, Receiver Operating Characteristic (ROC)
curve is also used to justify the results. The proposed MLSTM
model is found to be very effective for the smart grid stability
system. The accuracy for both stable and unstable labels
are more than 99%. Table 1 depicts the confusion matrix
for traditional deep learning models and proposed MLSTM
model. Proposed MLSTM detects 1084 data as true positives
and 1888 true negatives accurately. Only 28 data are misclas-
sified by the proposed model. Training and testing accuracy
achieved using GRU is are 97.17% and 97.30% respectively.
Similarly, for training and testing the data loss for GRU
is 0.06. Using RNN the training and testing, accuracy is
recorded as 96.66% and 96.60% respectively. The data loss
incurred is 0.08 and 0.08 for both training and testing using
RNN. Proposed MLSTM achieved 99.07% accuracy and
0.02 loss for both training and testing respectively. The pro-
posed method achieved 2% higher accuracy when compared
to GRU, RNN and LSTM as shown in Table 2. The proposed
MLSTM achieved 97% and 100% precision for stable and
unstable class respectively. Recall for both stable and unstable
classes is recorded as 100% and 99% respectively. F1-Scores
for detecting the stability of the smart grid systems for stable
and unstable classes is 99% respetively. ROC for MLSTM is
99.27% which is higher in comparison with GRU and LSTM.

From Figure 7 it can be concluded that the proposed model
achieved 0.02 loss while other traditional deep learning mod-
els GRU and LSTM achieved 0.06 loss respectively. Similarly
RNN achieved 0.08 loss which is high when compared to
proposed model. From Figure 7, it is evident that the proposed
model performs well as the loss incurred in minimum when
compared to other traditional deep learning models.
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Figure 8 depicts that the proposed model achieved 99.07%
accuracy for training and testing respectively as compared
to the other models. GRU achieved 97.17% and 97.30%
accuracy for training and testing respectively. While RNN
achieved 96.66% accuracy for training and 96.60% accu-
racy for testing respectively. Similarly LSTM achieved
97.30% accuracy for training and 97.13% accuracy for testing
respectively. The proposed model achieved 3% increase in
training and testing accuracy.

Figure 9, 10, 11 and Figure 12 depicts that the pro-
posed model achieved high area under the curve (AUC)
which is 99.27%. When compared to RNN, GRU and
LSTM respectively the proposed model achieved 2% higher
AUC.

Table 3 and Figure 13 shows the effectiveness of the
proposed model in terms of precision, recall and fl-score.
The proposed model achieved 97% precision while other
deep learning models like GRU, RNN and LSTM achieved
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TABLE 3. Classification Report For Deep Learning Models.

Classifier Label Precision % | Recall % | F1 Score %
GRU Stable 93.00 100.00 96.00
Unstable 100.00 96.00 98.00
RNN Stable 92.00 100.00 95.00
Unstable 100.00 95.00 97.00
LSTM Stable 93.00 99.00 96.00
Unstable 99.00 96.00 98.00
Proposed | Stable 97.00 100.00 99.00
Unstable 100.00 99.00 99.00

93.00%, 92.00% and 93.00% precision for stable class
respectively. The proposed model achieved 4% more preci-
sion for stable class compare to other deep learning models.
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Similarly F1-Score for GRU is 96.00%, RNN achieved
97.00% and for LSTM f1-score was 96.00%. The proposed
model achieved 99.00% F1-score which is also higher when
compared to mentioned deep learning models for stable class.
Similarly, for unstable class the proposed model outper-
formed the traditional models in terms of precision, recall and

F1-score.

V. CONCLUSION

Smart grid is an application of cyber physical system which
is used to intelligently manage power dissipation across
different entities. The stability of the smart grid is essen-
tial for efficient power distribution to the control stations.
Machine learning techniques play a vital role in predicting
the stability of the smart grid. In this work a novel MLSTM
model is introduced to predict the stability of smart grid. The
proposed model is experimented on the smart grid dataset
from UCI Machine Learning Repository. The performance
of MLSTM is compared with traditional ML models like
LSTM, GRU, RNN. The comparative analysis proves the
superiority of the proposed model with respect to accuracy,
precision, loss and ROC curve metrics. The proposed model
achieved 99.07% training and testing accuracy which is 3%
times higher compared to other traditional deep learning
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models. Training and testing loss for the proposed model is
0.02 whhere as for GRU, RNN and LSTM it is 0.06, 0.08 and
0.06 respectively. Precision, recall and F1-score for stable
class is 97.00%,100.00% and 99.00% respectively for the
proposed model which is 3% higher compared to other tradi-
tional deep learning models. Similarly for unstable class the
proposed model achieved 100.00% precision, 99.00% recall
and 99.00% F1-score respectively. ROC curve also highlights
the effectiveness of the proposed model. 99.27% ROC is
achieved by the proposed model which outperformed the
other models. As part of the future work context aware model
can be deployed to cater the dynamic power requirements and
also to make the smart grids more reliable.
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