
Received April 15, 2020, accepted April 25, 2020, date of publication April 28, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991009

ACC_TEST: Hybrid Testing Approach for
OpenACC-Based Programs
FATHY ELBOURAEY EASSA 1, AHMED MOHAMMED ALGHAMDI 2, SEIF HARIDI 3,
MAHER ALI KHEMAKHEM 1, ABDULLAH S. AL-MALAISE AL-GHAMDI4,
AND EESA A. ALSOLAMI 5
1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21493, Saudi Arabia
3KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
4Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah 21493, Saudi Arabia

Corresponding author: Ahmed Mohammed Alghamdi (amalghamdi@uj.edu.sa)

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant
No. (RG-9-611-40). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

ABSTRACT In recent years, OpenACC has been used in many supercomputers and attracted many
non-computer science specialists for parallelizing their programs in different scientific fields, including
weather forecasting and simulations. OpenACC is a high-level programming model that supports parallelism
and is easy to learn to use by adding high-level directives without considering too many low-level details.
Testing parallel programs is a difficult task, made even harder if using programming models, especially if
they have been badly programmed. If so, it will be challenging to detect their runtime errors as well as their
causes, whether the error is from the user source code or from the programming model directives. Even
when these errors are detected and the source code modified, we cannot guarantee that the errors have been
corrected or are still hidden. There are many tools and studies that have investigated several programming
models for identifying and detecting related errors. However, OpenACC has not been targeted clearly in any
testing tool or previous studies, even though OpenACC has many benefits and features that could lead to
increasing use in achieving parallel systems with less effort. In this paper, we enhance ACC_TEST with the
ability to test OpenACC-based programs and detect runtime errors by using hybrid-testing techniques that
enhance error coverage occurring in OpenACC as well as overheads and testing time.

INDEX TERMS OpenACC, OpenACC testing tool, hybrid-testing techniques, parallel programming,
ACC_TEST.

I. INTRODUCTION
Recently, OpenACC has been increasingly used in many
supercomputers, including Summit [1], which is the top
supercomputer in the world. OpenACC has attracted many
non-computer science specialists [2] for parallelizing their
programs in different scientific fields. OpenACC [3] is
defined as a high-level programmingmodel that supports par-
allelism in sequential programming languages, including C,
C++, and Fortran. OpenACC is easy to learn and use due to
its nature by adding high-level directives without considering
many low-level details. As a result, programmers should fully

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

understandOpenACC instructions; otherwise, they will cause
some errors when parallelizing their codes.

Testing parallel programs is a difficult task that is even
harder if using programming models, especially if they have
been badly programmed. If so, it will be challenging to detect
their runtime errors as well as their causes as to whether the
error comes from the user source code or from the program-
ming model directives. Even when these errors are detected
and the source code modified, we cannot guarantee that the
errors have been corrected or if they are still hidden.

Many studies have investigated several programmingmod-
els for identifying and detecting their related errors. However,
OpenACC has not been targeted clearly in any testing tool
or previous study, even though OpenACC has many benefits
and features that could lead to increasingly achieving parallel

80358 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3987-9051
https://orcid.org/0000-0001-7644-5039
https://orcid.org/0000-0002-6718-0144
https://orcid.org/0000-0002-1287-1634
https://orcid.org/0000-0003-0132-6662
https://orcid.org/0000-0002-3360-9440

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

systems with less effort. As a part of our previous work
[4]–[7], we proposed and created a parallel hybrid-testing tool
namedACC_TEST that targeted programs built in a heteroge-
neous architecture and covering different errors. In addition,
we aim to achieve hybrid-testing techniques for detecting
errors in the dual-programming models MPI + OpenACC at
the end of our project. In this paper, we enhance ACC_TEST
to test OpenACC-based programs and detect runtime errors
by using hybrid-testing techniques. We also focus on cover-
age of errors that occurs in OpenACC as well as the enhance-
ment of the execution overheads and testing times.

Our paper has been structured as the following:
Sections 2 will discuss the literature review, including Ope-
nACC overview and related work. Our techniques for test-
ing OpenACC-based programs are explained in Section 3.
In Sections 4 and 5 we discuss the implementation, testing,
and evaluation of the results of our experiments. Finally, our
conclusions and future work will be discussed in Section 6.

II. LITERATURE REVIEW
This literature review tries to investigate different available
testing tools and techniques that detect runtime errors in
parallel applications that use programming models, including
homogeneous and heterogeneous systems. Also, it gives a
brief overview of theOpenACCprogrammingmodel.Wewill
review and study different tools and techniques and classify
them depending on various factors and characteristics. This
review will investigate what still needs to be done in testing
parallel systems and directions for future research in this
field. Also, we only study deeply some of the reviewed testing
tools and techniques based on their relation to our subject.

A. OVERVIEW OF OpenACC PROGRAMMING MODEL
OpenACC is an abbreviation for open accelerators, which
have been released to accelerate codes built by C, C++,
and Fortran using high-level directives for heterogeneous
CPU/GPU systems. The newest version of OpenACC 3.0 [3]
was released in November 2019, adding several features and
advantages for supporting parallelism, including portability,
compatibility, flexibility, and less programming effort and
time. OpenACC directives are always set up in the following
format (in C and C++) [8], [9]:

#pragma acc <directive> [clause[[,]clause]...]new−line

Here it is in Fortran:

!$acc < directive > [clause[[,]clause]...]

The #pragma is the keyword for a compiler directive,
which is followed by the directive type that is ‘‘acc’’ for
OpenACC directives. Then, the first word after the ‘‘acc’’
label is called the directive, which is an ‘‘instruction’’ to the
compiler to do something about the following code block.
OpenACC has three types of directive, including:

1) Compute directives or compute region, which mark a
block of code that can be accelerated by distributing
the work to multiple threads and working in parallel.
These directives are parallel, kernels, routine, and loop.
The main two compute directives are parallel and ker-
nels, and we will explain the main differences between
them. The kernels and parallel constructs both identify
the region of code that will be parallelized; the main
difference is that the kernel relies on the automatic
parallelization capabilities of the compiler to analyze
the region, identify which loops are safe to parallelize,
and then accelerate those loops. A parallel construct
relies on programmers to determine the regions, and
the programmer determines whether the affected loop
can be safely parallelized and allows the compiler to
select how to schedule loop iterations on the target
accelerator. The code in Figure 1 demonstrates the use
of kernels, and the code in Figure 2 demonstrates the
use of the parallel loop combined directive.

FIGURE 1. OpenACC kernels construct.

FIGURE 2. OpenACC parallel construct.

2) Data management directives or data region is used
by OpenACC to avoid any unnecessary data move-
ment between memory locations that can occur when
using compute directives. Programmers can specify
data lifetimes on the accelerator by using one of two
types of data region directives, including structured and
unstructured data directives.
The structured data directive, which defines within a
single lexical scope when a data lifetime both begins
and ends, is essentially owned by the accelerator. Addi-
tionally, in the structured data directives, the directive

VOLUME 8, 2020 80359

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

FIGURE 3. Structure OpenACC data directive.

FIGURE 4. Unstructured OpenACC data directive.

must have explicit starting and ending points, as shown
in the code in Figure 3. The data lifetime for the variable
in the data clause begins at the opening curly brace (or
curly bracket) and ends at the closing curly brace.
The unstructured data directive is handled differently
from the previous type. An unstructured data region is
delimited with a beginning-ending pair that need not
be within the same lexical scope. There are two data
directives that control the unstructured data directives,
including ‘‘enter data’’ directives, which handle device
memory allocation, and ‘‘exit data’’ directives, which
handle device memory deallocation. Figure 4 demon-
strates the use of unstructured data directives in C++.
Six data clauses can be used on compute constructs
as well as data constructs, along with one data clause
unique to the exit data construct. Data clauses specify
a certain data handling for the named variables and
arrays. Table 1 displays the different OpenACC data
clauses and their usages.

3) Synchronization directives. OpenACC also supports
some task parallelism, which allows multiple con-
structs to be executed concurrently. To explicitly wait
for one or all concurrent tasks, use the wait directive.

In terms of OpenACC parallelism, there are three levels
supported by OpenACC to give programmers the ability to
determine the level of parallelism in their codes. The three
levels are specified by three OpenACC clauses, including
vector, gang, and worker, as shown in Figure 5.

The finest granularity of parallelism is the OpenACC vec-
tor, which is defined as an individual instruction operating
on multiple data. OpenACC gang represents coarse-grained
parallelism, and OpenACC worker is situated between the
vector and gang levels. The programmers can use these three
OpenACC levels to map the parallelism in their code to any
device, but it is not required. If the programmers do not use

TABLE 1. OpenACC data clauses.

FIGURE 5. OpenACC’s three levels of parallelism [10].

these three parallelism levels, the compiler will perform this
mapping implicitly using the available information about the
target device. Because the same code might be mapped to
any number of target devices, OpenACC is considered to be
highly portable.

B. RELATED WORK
High-Performance Computing (HPC) is currently a part of all
scientific and manufacturing sectors driven by the improve-
ment of HPCmachines, especially with the growing attention
to Exascale supercomputers, which has been projected to
be feasible by 2022 in different studies [11]. This contin-
uous improvement poses the challenging task of building
massively parallel systems that can be used in these super-
machines. Parallel applications have to be error-free to satisfy
the application’s requirements and benefits of the program-
ming model’s abilities and features. It is very difficult to

80360 VOLUME 8, 2020

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

test such applications because of their huge size, changeable
behavior, and the integration of different programming mod-
els in the same application.

Our relatedwork tries to investigate different available test-
ing tools and techniques that detect runtime errors in parallel
applications using programming models, including homoge-
neous and heterogeneous systems. We reviewed and studied
different tools and techniques and classified them depending
on different factors and characteristics. This review investi-
gated what still needs to be done in testing parallel systems
and directions for future research in this field. Additionally,
we only study deeply some of the reviewed testing tools and
techniques based on their relation to our subject. We studied
more than 50 testing tools [12] and classified them according
to the used testing techniques, the targeted programming
models, and the runtime errors. We tried to discover the lim-
itations and open areas for the researchers in testing parallel
systems, which can yield the opportunity to focus on those
areas.

Many studies investigated and targeted parallel program
errors, including errors that occur in programming mod-
els, including MPI [13], OpenMP [14], CUDA [15], and
OpenCL [16]. However, OpenACC has not been investigated
enough or identified as thoroughly as the other program-
ming models. OpenMP-related errors have been identified
and classified in [17], where OpenMP errors were divided
into defects and failures with explanations and some exam-
ples. Regarding MPI errors, a deadlock that occurs in MPI
communications has been investigated and identified in [18],
while in [19], the error types that apply toMPI’s non-blocking
collectives have been introduced. CUDA run-time errors were
identified, and ways to avoid these errors were published
in [20]. Finally, we identify OpenACC related errors in [6],
where we classified them into different categories, includ-
ing data clause-related errors, race condition, deadlock, and
livelock.

Many studies have investigated several programmingmod-
els for identifying and detecting related errors, such as testing
tools for MPI [21], [22], OpenMP [23], [24], CUDA [25]
and OpenCL [26]. However, we noted that OpenACC had
not been targeted clearly in any testing tool or previous
study, even though OpenACC has many benefits and features.
In terms of OpenACC-related studies, there are some publica-
tions related to compilers’ evaluation such as the evaluation of
OpenACC 2.0 in [7], OpenACC 2.5 was evaluated in [8], and
a comparison study for evaluating different compilers includ-
ing CAPS, PGI, and CRAY compilers was conducted [9].
Finally, PGI has released PGI Compiler Assisted Software
Testing (PCAST) [27], which is useful for detecting when
results diverge between CPU and GPU versions of code,
and also between the same code run on different processor
architectures, but cannot detect run-time errors including data
clause errors, race conditions, and deadlock in OpenACC
codes.

Table 2 displays the number of testing techniques used
for each programming model in the reviewed testing tools.

TABLE 2. Summary of our related work’s analysis.

We notice that mostly dynamic techniques have been used to
test MPI and OpenMP for detecting runtime errors. Symbolic
testing has been used to detect runtime errors in CUDA.
However, OpenACC has not been targeted to be tested by any
reviewed testing tools.

Despite efforts to test parallel applications built by using
programming models, there is still more work to be done with
respect to high-level programming models used in heteroge-
neous systems.

III. OUR TECHNIQUES FOR TESTING
OpenACC-BASED PROGRAMS
We proposed a hybrid approach by integrating static and
dynamic testing techniques to check the actual and potential
runtime errors of OpenACC programs to ensure correctness
with low overhead. In our approach, the static testing would
be helpful to reduce unnecessary code instrumentation dur-
ing runtime detection. We classify the targeted source code
into several classifications, including OpenACC data regions,
OpenACC compute regions, and Non-OpenACC regions.
Our main focus will be on the first two classifications and
further classifications for them in the static testing phase.
However, the last classification might be used for moni-
toring some variables used in related OpenACC clauses or
directives.

In our solution, different OpenACC directives and clauses
will be checked and examined for identifying actual and
potential errors. Because of the wide range of errors and
directives to be covered, our testing approach will be clas-
sified into several classes, including data clauses, race condi-
tions, and deadlock checking. The targeted OpenACC source
code is classified into potential error region code, which
refers to the regions with actual and potential errors, while
free region code refers to regions without errors.

OpenACC data clause-related errors, reduction clause, and
asynchronous operations, as well as data dependency analysis
and infinite loop detections, will be checked by our static
approach. The tested source code will be understood, and
their syntax and semantics will be analyzed to ensure its
correctness.

Our static analyzer will extract some information from the
source code to be stored in a log file for further debugging.
Finally, our static approach will help to determine the code’s
parts that need to be instrumented for further testing during

VOLUME 8, 2020 80361

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

our dynamic approach. This instrumentation will include
deadlock and race detections as well as some data clauses
that need to be tested during runtime. We tried to minimize
the need for inserting instrumentation statements to improve
our approach performance and reduce the overhead resulting
from the dynamic testing. We started to detect any OpenACC
error by using our static phase if possible and then completed
the detection by using our dynamic phase.

Our dynamic approach will use our static analysis insertion
statements to execute the dynamic testing during runtime
and detect any runtime errors that cannot be detected dur-
ing the static approach, including deadlock, race condition,
and present clause-related errors. Our dynamic approach will
use the annotation from our static approach to instrument
the insertion statements in the user source code, and our
dynamic approach will detect these errors during runtime.
These instrumentation statements will be executed during
runtime to check or verify some potential errors determined
by the static phase and to instrument extra inserted statements
during the runtime for some regions that have been marked
and inserted by our static approach.

Also, our dynamic approach will be used to collect some
information related to thememory address, thread executions,
and variable values to be used for extra testing or for further
debugging. The resulting code from our dynamic testing
approach will include the user code and the instrumented
inserted test code.

Finally, some historical information will be collected as
well during our dynamic phase and stored in a log file to be
used in debugging and tracking the changes in the user codes.
Errors resulting from our dynamic phase will be shown in the
dynamic analysis error report, while the errors resulting from
our static phase will be shown in the static analysis report list.
By the end of our testing for each file, four different files will
result from our testing, including static error report, source
code with inserted testing code, dynamic error report, and
historical log file.

In our previous paper [6], we explained how our static
approach detects different OpenACC errors with the expla-
nation of several algorithms. Where we have different algo-
rithms dedicated to detect OpenACC static errors from the
targeted source code. We will check and examine different
OpenACC directives and clauses to identify actual and poten-
tial run-time errors. Since there is a wide range of errors and
directives to be covered, we also classify our testing approach
into several classes that include OpenACC data clause check-
ing, reduction checking, and asynchronous checking, as well
as instrumenting data race and deadlock for further checking
in the dynamic phase of our approach. The targeted Ope-
nACC source code will be classified into potential error data
region code, free data region code; potential error compute
region code, free compute region code, and serial code.

IV. IMPLEMENTATION AND TESTING
Implementing and testing our testing tool is required to verify
and validate our proposed techniques. We conducted several

experiments that cover several scenarios and test suites for
testing our proposed solution and ensure our tool’s ability
to detect errors in OpenACC. The technical information of
our experimental environment includes an Intel(R) Core(TM)
i7-7700HQ CPU (2.80GHz), 16 GB main memory, with
an NVIDIA GeForce GTX 1050 Mobile GPU, which has
768 NVIDIA CUDA cores, 4 GB GDDR5 RAM, and mem-
ory speed 7 Gbps.

In terms of OpenACC testing, five different benchmark
suites including 50 benchmarks have been used for evalu-
ating the ACC_TEST and measuring our hybrid approach
error coverage and testing performance. These benchmark
suites include SHOC [28], PolyBench-ACC[29], EPCC [30],
NAS [31], and TORMENTOpenACC2016 [32]. Some statis-
tics of the chosen benchmarks are shown in Table 3, including
the benchmarks that will be used for evaluating ACC_TEST.
These benchmarks have been chosen to evaluate our testing
tool performance and the ability to deal with various Ope-
nACC data clauses, parallel and kernel construct.

TABLE 3. OpenACC statistics from the chosen benchmarks.

In the following three categories, we will discuss our tool’s
ability to detect errors in OpenACC-related programs based
on our error classifications.

A. OpenACC DATA CLAUSE DETECTION
We test the ability of ACC_TEST to detect the actual and
potential runtime errors of OpenACC. We noticed that the
majority of OpenACC data clause-related errors could be
detected during our static testing, but the OpenACC present
data clause cannot be detected because of its nature.When the
user code and the inserted test code move to the instrumenter
phase, our instrumenter will remove any comment character
followed by our inserted label ‘‘ASSERT’’ to keep the insert
test code to be compiled, as shown in Figure 6, including an

80362 VOLUME 8, 2020

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

FIGURE 6. The instrumented inserted statements for detecting OpenACC
present clause errors.

example of the actual instrumented code to be used during
our dynamic testing phase.

B. OpenACC RACE CONDITION DETECTION
In terms of race condition detection, especially loop par-
allelization race detection, ACC_TEST will have the abil-
ity to test the thread’s generation, including OpenACC
gang and vectors. Based on the user source code analysis,
the ACC_TEST static approach will generate threads for
each compute region for comparing them with the actual
number of threads during runtime when executing the user
source code. The ACC_TEST static approach will annotate
the user source code, and some statements will be inserted
into the user code for detecting the actual number of threads.
Figure 7 demonstrates the instrumented code to be used by
our dynamic tester.

FIGURE 7. Example of collecting information related to the compute
region parallelism.

After collecting all information from all threads in the
compute region, the inserted code will be used for testing
the actual parallelism situation in the compute region and
report any error to the developers. It shows the process
of inserting and comparing the threads gang and vectors
between the actual number of gang and vectors from our
dynamic approach and the generated gang and vectors by our
static approach, and the respective collected information will
appear in the dynamic analysis log file, as shown in Figure 8.

Any differences between them will be reported to the
developers, indicating that the targeted compute region is

FIGURE 8. Information collected from our dynamic analyzer indicating
the compute region parallelism.

not parallelized. This will help the developers to ensure that
any compute region they want to parallelize will be detected
and therefore create their code parallelism. The related error
message indicating a compute region that is not parallelized
is shown in Figure 9, which has been detected by our dynamic
analysis.

FIGURE 9. Error messages resulting from our dynamic tester indicating
loop parallelize error.

In another case, ACC_TEST will build a table for each
equation for detecting read/write race condition. This table
will store data for each equation that has more than one
array variable because of the possibility of data dependency.
ACC_TEST will compare the table’s values to detect any
reading and writing to the same variable. The equation data
race analytic information will be stored in the data structure
shown in Figure 10:

FIGURE 10. Example from ACC_TEST for stored data structure for each
equation.

The values of each equation in a given compute region will
be computed and compared for testing the case of reading
and writing in the same place; this case will be detected as

VOLUME 8, 2020 80363

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

a read/write race condition. Additionally, if there are two
threads writing in the same variable, this case will be detected
as write/write race, but if these two threads are reading from
the same place, no error is indicated. If our static approach
detects a potential race condition, it will create a data structure
and collect the related information as shown in Figure 10.
In the case of detecting race conditions that resulted from
reading and writing from multiple threads, the data structure
in Figure 11 will be used.

FIGURE 11. Our static phase detecting potential race condition and
collecting more information for further testing.

FIGURE 12. Detected race condition caused by reading and writing from
multiple threads.

Figure 12 shows the error message that appears to the
developer in the case of a race condition resulting from read-
ing andwriting to the same address space by different threads.
In addition, Figure 13 shows an error message that resulted
from our dynamic analysis, indicating a race condition.

In our dynamic phase, OpenACC asynchronous directives
will be tested by detecting any errors using the OpenACC
API function. In more detail, the API function that will
be instrumented at our static phase and used during run-
time are (acc_async_test) and (acc_async_test_all) to test
the completion of specific or all asynchronous directives.
The code in Figures 14 and 15 show our instrumented
insertion statements if our static tester found an OpenACC
asynchronous directive and marked them for our insertion
mechanism to insert the test code and move them to the

FIGURE 13. Error race condition caused by witting and reading from the
same address space detected by our dynamic tester.

FIGURE 14. Analysis dynamic testing to test the completion of all
OpenACC asynchronous directives.

FIGURE 15. Dynamic testing to test the completion of specific OpenACC
asynchronous directives.

FIGURE 16. Sender compute region variable information resulting from
our static approach.

dynamic tester to complete the dynamic testing during run-
time after instrumentation.

In the case of data race caused by an independent clause,
ACC_TEST static analyser detects any independent clause,
determining the clause’s place and the related compute
region. After that, our static approach will analyze the source
code to detect any dependency in each equation in the inde-
pendent compute region to ensure there is no dependency.
In the case of a dependency situation, the race condition will
be detected by ACC_TEST and reported to the user, as shown
in Figure 17. Figure 16 shows our static approach information
collection for all compute regions variables.

C. OpenACC DEADLOCK DETECTION
Each compute region’s end will considered as a potential
error point that might occur or not, including deadlock.
Therefore, the ACC_TEST static analyzer annotates each

80364 VOLUME 8, 2020

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

FIGURE 17. Error message indicating race condition caused by data
dependency.

FIGURE 18. Error message for developers indicating deadlock and
livelock errors.

FIGURE 19. Inserted instrumented test code for detecting OpenACC
deadlock in each compute region.

OpenACC compute region’s end for further investigation
during runtime. Our dynamic approach will be using the
instrumentations annotated in our static phase to test the
arrival of all threads at the end of each compute region
because we assume that every parallel compute region could
potentially have a deadlock. Therefore, our dynamic phase
will check at every compute region the number of threads
included in the region and compare them to the number
of threads at the end of the region. After instrumentation
of the insert test code, our dynamic tester will investigate
which compute region has caused this deadlock and report
to the developer with an appropriate message indicating the
error type, the compute region number, and the line number.
Figure 18 shows a sample error message from our static anal-
ysis phase that is displayed to the developer, and Figure 19
shows a sample of the instrumented inserted test code.

This combination of using hybrid testing (static and
dynamic) will ensure the correctness of the user code and
detect any potential deadlock. Figure 20 shows the error
messages that resulted from our dynamic testing.

FIGURE 20. Deadlock detected by our dynamic analyzer.

TABLE 4. Our hybrid testing tool error coverage for openACC.

V. DISSCUSSION AND EVALUATION
In this section, we evaluate our enhancement of ACC_TEST
and disscuss its ability to detect OpenACC errors based in our
prevous paper [6]. The main aspects of our evaluation will
include ACC_TEST capability, performance, size, and scal-
ability as well as measuring different overheads. In terms of
the error coverage, we will discuss ACC_TEST capability of
testing OpenACC-related applications, as well as evaluating
them by using the appropriate test suite.

Table 4 shows ACC_TEST and its ability to detect
OpenACC-related errors classified by error types. We eval-
uate ACC_TEST’s ability to detect each type of OpenACC
error fully or partially, where full detection means that our
used approach can detect this error, while partial detection
means that ACC_TEST can detect some cases, while other
cases need to be tested during runtime or investigated with
more than static testing. The table shows ACC_TEST’s abil-
ity to detect any error with each approach.

VOLUME 8, 2020 80365

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

FIGURE 21. OpenACC program size overhead (by number of lines).

From Table 4 we note that our static approach can resolve
and detect the majority of OpenACC data clause-related
errors. In addition, our static analysis can partially detect race
condition and deadlock and annotated for further testing dur-
ing runtime. However, ACC_TESTwill minimize the number
of errors that need to be detected during runtime, aswell as the
parts that need further testing as marked by our static tool to
enhance ACC_TEST’s performance and minimize the over-
head resulting from the dynamic testing approach. In terms of
OpenACC data clause-related errors, our dynamic approach
will be used to detect the present clause only due to its nature
that cannot be detected from the source code with our static
approach and needs investigation during runtime. As a result,
ACC_TEST minimizes the execution overhead by using our
static approach and resolving the majority of the data clause-
related errors. Finally, ACC_TEST has successfully detected
all OpenACC errors included in our classification, including
data clause-related errors, data transmission errors, and mem-
ory errors, as well as race conditions and deadlock cases.

The following figures show the resulting size overhead
from our insertion mechanism, as well as the testing time for
each of the tested benchmarks. We measure the size overhead
by using Equation 1:Measuring the Size Overhead, as shown
at the bottom of this page.

As noted in Figure 21, the average size overhead by number
of lines of our chosen benchmarks is 78% because the major-
ity of the tested benchmarks have several OpenACC parallel
constructs, which will be tested during our dynamic phase
to detect any race condition and deadlock as well as ensuring
the loops’ parallelization. In more detail, the benchmarks BT,
SP, and Reduction have an average of only 6% size overhead
because they do not include any OpenACC parallel con-
structs, while the benchmark Stencil has 116% size overhead
because it has four parallel constructs. However, these size
overheads will not affect the user code execution because the
inserted test code will be inserted as comment statements,
as we explained in Section 4, and will be ignored by the

FIGURE 22. OpenACC program size overhead (by bytes).

FIGURE 23. Testing time for OpenACC related program in milliseconds.

compiler. These inserted test codes will be instrumented in
the testing house for ensuring high-quality error-free codes,
and the final output will be error-free user codes without test
codes.

The reason behind the differences between the size over-
heads when measuring by number of lines or by bytes is
that the number of characters in each line will affect the size
in bytes, but will not affect the number of lines. Based on
our results, the range of size overheads varies based on the
behavior of the insertion statements.

Similarly, in Figure 23 the lowest testing time is for the
benchmarks that have not included any parallel constructs
and have fewer OpenACC data clauses, while the highest
testing time is for the benchmark that has a big number of
OpenACC parallel constructs. The average testing time for
the OpenACC-related tested benchmark is 97 milliseconds.

As we discussed before, our testing tool has the ability to
detect errors in OpenACC-related applications by using our
hybrid testing techniques. This will help to increase reliability
and ensure error-free codes to have high-quality systems. One
of our contributions is to provide new techniques for detecting

SizeOverhead =
Size with inserted test code− Size without inserted test code

Size without inserted test code

80366 VOLUME 8, 2020

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

errors in OpenACC-related programs by using hybrid testing
techniques.

We used OpenACC to build our testing tool, which makes
it portable and hardware architecture-independent and can
work with any type of GPU accelerator, hardware, plat-
form, or operating system. ACC_TEST is also compatible
with various compilers and easy to maintain with less effort
because of the high maintainability of OpenACC. In addition,
ACC_TEST is reliable because of the insertion techniques
that avoid centralized control and the single point of failure
problems. Additionally, by using our insertion techniques,
we increase performance by distributing our testing tasks and
avoiding centralized controlled testing. Finally, ACC_TEST
will help to increase reliability and produce high-quality
systems without errors. To the best of our knowledge, there is
no testing tool designed to target OpenACC, and we are the
first to propose and implement such a testing tool.

VI. CONCLUSION AND FUTURE WORK
Despite the fact that there are several testing tools that target-
ing parallel applications built by using programming models,
there is more effort needed for high-level GPU-related pro-
grammingmodels. AlthoughOpenACC has beenwidely used
in the past few years, there is no testing tool made especially
to target OpenACC.

One of the main features of OpenACC is that it uses high-
level directives without considering details to parallelize the
existing sequential codes. This feature helps in attracting
more non-computer science specialists to use OpenACC to
parallelize their systems. As a result, the possibility of mis-
using OpenACC directives and clauses is higher and can
lead to several runtime errors when the programmers try to
parallelize their applications.

Our main contribution is that we provide new tech-
niques for detecting errors in OpenACC-related programs
by using hybrid testing techniques. We have implemented
these techniques in ACC_TEST to detect runtime errors
for OpenACC-based systems. Our solution integrated static
and dynamic testing techniques to build ACC_TEST and
allowed us to benefit from these techniques advantages,
which reduced overheads and enhanced system execution
time. In addition, our tool is a parallel testing tool that
detects runtime errors by creating testing threads based on
the number of application threads. ACC_TEST also is a
platform-independent testing tool that can work with any het-
erogeneous architecture, which will increase ACC_TEST’s
portability. We have implemented our solution and evaluated
its ability to detect OpenACC runtime errors.

Our testing tool has successfully detected errors that
occurred in OpenACC applications by using our hybrid test-
ing techniques. This will help to increase reliability and
ensure error-free codes to have high-quality systems. We also
achieved the error coverage with acceptable execution over-
head, and it will be used only in the testing house and will
not affect the delivered user applications. Finally, to the
best of our knowledge, there is no parallel testing tool

built to test applications programmed by using the single-
programming model OpenACC. In our future work, we will
enhance the ability of ACC_TEST to cover errors in the dual-
programming models MPI + OpenACC.

ACKNOWLEDGMENT
This project was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, under
grant No. (RG-9-611-40). The authors, therefore, gratefully
acknowledge the DSR technical and financial support.

REFERENCES
[1] The U.S. Department of Energy’s Oak Ridge National Laboratory.

(2018). Summit. [Online]. Available: https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/

[2] S. Chandrasekaran and G. Juckeland, OpenACC for Programmers: Con-
cepts and Strategies. Reading, MA, USA: Addison-Wesley, 2017.

[3] The OpenACC Application Programming Interface Version 3.0, Ope-
nACC Standards Org, 2019. [Online]. Available: https://www.openacc.
org/specification

[4] A. M. Alghamdi and F. E. Eassa, ‘‘Parallel hybrid testing tool for appli-
cations developed by using MPI+OpenACC dual-programming model,’’
Adv. Sci., Technol. Eng. Syst. J., vol. 4, no. 2, pp. 203–210, 2019, doi:
10.25046/aj040227.

[5] A. M. Alghamdi and F. Elbouraey, ‘‘A parallel hybrid-testing tool archi-
tecture for a dual-programming model,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 4, pp. 394–400, 2019, doi: 10.14569/IJACSA.2019.0100448.

[6] A.M.Alghamdi and F. E. Eassa, ‘‘OpenACC errors classification and static
detection techniques,’’ IEEE Access, vol. 7, pp. 113235–113253, 2019,
doi: 10.1109/ACCESS.2019.2935498.

[7] A. M. Alghamdi and F. E. Eassa, ‘‘Proposed architecture for a parallel
hybrid-testing tool for a dual-programming model,’’ IJCSNS Int. J. Com-
put. Sci. Netw. Secur., vol. 19, no. 3, pp. 54–61, 2019.

[8] The OpenACC TM Application Programming Interface, OpenACC Stan-
dards, 2013.

[9] OpenACC-standard.org. OpenACC Organization. (2017). About Ope-
nACC. [Online]. Available: https://www.openacc.org/about

[10] OpenACC Programming and Best Practices Guide, OpenACC Organiza-
tion, 2015.

[11] M. McCorkle. ORNL Launches Summit Supercomputer. The U.S. Depart-
ment of Energy’s Oak Ridge National Laboratory, 2018. [Online]. Avail-
able: https://www.ornl.gov/news/ornl-launches-summit-supercomputer

[12] A. M. Alghamdi and F. E. Eassa, ‘‘Software testing techniques for parallel
systems: A survey,’’ Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 4,
pp. 176–186, 2019.

[13] Message Passing Interface Forum. (2017). MPI Forum. [Online]. Avail-
able: http://mpi-forum.org/docs/

[14] B. Barney. OpenMP. Lawrence Livermore National Laboratory,
2018. [Online]. Available: https://computing.llnl.gov/tutorials/
openMP/#Introduction

[15] NVIDIA Corporation. (2015). About CUDA. [Online]. Available:
https://developer.nvidia.com/about-cuda

[16] Khronos Group. (2017). About OpenCL. [Online]. Available:
https://www.khronos.org/opencl/

[17] J. F. Münchhalfen, T. Hilbrich, J. Protze, C. Terboven, and M. S. Müller,
Classification of Common Errors in OpenMP Applications (Lecture Notes
in Computer Science: Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8766. Cham, Switzerland: Springer, 2014,
pp. 58–72.

[18] V. Forejt, S. Joshi, D. Kroening, G. Narayanaswamy, and S. Sharma,
‘‘Precise predictive analysis for discovering communication deadlocks in
MPI programs,’’ACMTrans. Program. Lang. Syst., vol. 39, no. 4, pp. 1–27,
Sep. 2017, doi: 10.1145/3095075.

[19] T. Hilbrich, M. Weber, J. Protze, B. R. de Supinski, and W. E. Nagel,
‘‘Runtime correctness analysis ofMPI-3 nonblocking collectives,’’ inProc.
23rd Eur. MPI Users’ Group Meeting (EuroMPI), 2016, pp. 188–197, doi:
10.1145/2966884.2966906.

[20] S. Cook, ‘‘Common problems causes and solutions,’’ in CUDA Program-
ming: A Developer’s Guide to Parallel Computing With GPUs, San Fran-
cisco, CA, USA: Morgan Kaufmann, 2012, pp. 527–563.

[21] The Open MPI Organization. (2018). Open MPI: Open Source High Per-
formance Computing. [Online]. Available: https://www.open-mpi.org/

VOLUME 8, 2020 80367

http://dx.doi.org/10.25046/aj040227
http://dx.doi.org/10.14569/IJACSA.2019.0100448
http://dx.doi.org/10.1109/ACCESS.2019.2935498
http://dx.doi.org/10.1145/3095075
http://dx.doi.org/10.1145/2966884.2966906

F. E. Eassa et al.: ACC_TEST: Hybrid Testing Approach for OpenACC-Based Programs

[22] E. Saillard, P. Carribault, and D. Barthou, ‘‘PARCOACH: Combining static
and dynamic validation of MPI collective communications,’’ Int. J. High
Perform. Comput. Appl., vol. 28, no. 4, pp. 425–434, Nov. 2014, doi:
10.1177/1094342014552204.

[23] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang,
‘‘Symbolic analysis of concurrency errors in OpenMP programs,’’ in
Proc. 42nd Int. Conf. Parallel Process., Oct. 2013, pp. 510–516, doi:
10.1109/ICPP.2013.63.

[24] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, ‘‘An extended polyhedral
model for SPMD programs and its use in static data race detection,’’ in
Proc. 23rd Int. Workshop Lang. Compil. Parallel Comput., vol. 9519, 2017,
pp. 106–120.

[25] R. Sharma, M. Bauer, and A. Aiken, ‘‘Verification of producer-consumer
synchronization inGPUprograms,’’ACMSIGPLANNotices, vol. 50, no. 6,
pp. 88–98, Aug. 2015, doi: 10.1145/2813885.2737962.

[26] P. Collingbourne, C. Cadar, and P. H. J. Kelly, ‘‘Symbolic testing of
OpenCL code,’’ in Hardware and Software: Verification and Testing.
Berlin, Germany: Springer, 2012, pp. 203–218, doi: 10.1007/978-3-642-
34188-5_18.

[27] PCAST—PGI Compiler Assisted Software Testing. Accessed: Jan. 2, 2020.
[Online]. Available: https://www.pgroup.com/resources/pcast.htm

[28] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, ‘‘The scalable heterogeneous
computing (SHOC) benchmark suite,’’ in Proc. 3rd Workshop Gen.-
Purpose Comput. Graph. Process. Units (GPGPU), 2010, p. 63, doi:
10.1145/1735688.1735702.

[29] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
‘‘Auto-tuning a high-level language targeted to GPU codes,’’ in Proc.
Innov. Parallel Comput. (InPar), May 2012, pp. 1–10.

[30] EPCC. EPCC OpenACC Benchmark Suite. The University of Edinburgh,
2013. [Online]. Available: https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/epcc-openacc-
benchmark-suite

[31] R. Xu, X. Tian, S. Chandrasekaran, Y. Yan, and B. Chapman, ‘‘OpenACC
parallelization and optimization of NAS parallel benchmarks,’’ in Proc.
GPU Technol. Conf., 2014, pp. 1–27, doi: 10.13140/RG.2.2.23914.41921.

[32] D. Barba, A. Gonzalez-Escribano, and D. R. Llanos, ‘‘TORMENT Ope-
nACC2016: A benchmarking tool for OpenACC compilers,’’ in Proc. 25th
Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP), 2017,
pp. 246–250, doi: 10.1109/PDP.2017.32.

FATHY ELBOURAEY EASSA received the B.Sc.
degree in electronics and electrical communication
engineering fromCairo University, Egypt, in 1978,
and the M.Sc. and Ph.D. degrees in computers
and systems engineering from Al-Azhar Univer-
sity, Cairo, Egypt, in 1984 and 1989, respectively,
with a joint supervision with the University of Col-
orado, USA, in 1989. He is currently a Full Pro-
fessor with the Department of Computer Science,
Faculty of Computing and Information Technol-

ogy, King Abdulaziz University, Saudi Arabia. His research interests include
agent-based software engineering, cloud computing, software engineering,
big data, distributed systems, and exascale system testing.

AHMED MOHAMMED ALGHAMDI received
the B.Sc. degree in computer science and the
first M.Sc. degree in business administration from
King Abdulaziz University, Jeddah, Saudi Arabia,
in 2005 and 2010, respectively, the secondmaster’s
degree in Internet computing and network security
fromLoughboroughUniversity, U.K., in 2013, and
the Ph.D. degree in computer science from King
Abdulaziz University. He is an Assistant Profes-
sor with the Department of Software Engineering,

College of Computer Science and Engineering, University of Jeddah, Saudi
Arabia. He has also over 11 years of working experience before attend-
ing the academic carrier. His research interests include high-performance
computing, big data, distributed systems, programming models, software
engineering, and software testing.

SEIF HARIDI was also the Chief Scientific Advi-
sor of RISE SICS, until December 2019. He is
a Chair Professor of computer systems special-
ized in parallel and distributed computing and the
Head of the Distributed Computing Group, KTH
Royal Institute of Technology, Stockholm, Swe-
den. He led a European research program on cloud
computing and big data with EIT-Digital, from
2010 to 2013, and is a Cofounder of a number of
start-ups in the areas of distributed and cloud com-

puting, including Hive Streaming and Logical Clocks. He is a Codesigner of
SICStus Prolog, the most well-known logic programming system, and the
Mozart Programming System, a high-quality open-source development plat-
form based on the Oz multiparadigm programming language. His research
is focused on the combination of systems research and theory in the areas of
programming systems and distributed computing.

MAHER ALI KHEMAKHEM received the B.Sc.
degree in physics from the University of Tunis,
Tunisia, in 1982, the M.Sc. and Ph.D. degrees in
digital electronics and computer science from the
University of Paris 11, Orsay, France, in 1984 and
1987, respectively, and the Habilitation (HDR)
degree in computer science from the University of
Sfax, Tunisia, in 2008. He is currently a Full Pro-
fessor with the Department of Computer Science,
Faculty of Computing and Information Technol-

ogy, King Abdulaziz University, Saudi Arabia. His research interests include
distributed systems, performance analysis, network security, and pattern
recognition.

ABDULLAH S. AL-MALAISE AL-GHAMDI
received the B.Sc. degree in computer science
from the University of SouthernMississippi, USA,
in 1990, the M.Sc. degree in management infor-
mation systems from the University of Illinois
at Springfield, IL, USA, in 1992, and the Ph.D.
degree in computer science from George Wash-
ington University, USA, in 2003. He is currently a
Full Professor with the Department of Information
Systems, Faculty of Computing and Information

Technology, King Abdulaziz University, Saudi Arabia. His research interests
include collaborative software, distributed systems, conflict measurements,
workflow, information systems, and artificial intelligence.

EESA A. ALSOLAMI received the bachelor’s
degree in computer science from King Abdulaziz
University, in 2002, and the M.Sc. degree in IT
and the Ph.D. degree from the Queensland Univer-
sity of Technology, Australia, in 2008 and 2012,
respectively. He is an Associate Professor of com-
puter science and engineering with the University
of Jeddah, where he is currently theDean of admis-
sion and registration. His research project involves
feature selection techniques for continuous
biometric authentication.

80368 VOLUME 8, 2020

http://dx.doi.org/10.1177/1094342014552204
http://dx.doi.org/10.1109/ICPP.2013.63
http://dx.doi.org/10.1145/2813885.2737962
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.13140/RG.2.2.23914.41921
http://dx.doi.org/10.1109/PDP.2017.32

	INTRODUCTION
	LITERATURE REVIEW
	OVERVIEW OF OpenACC PROGRAMMING MODEL
	RELATED WORK

	OUR TECHNIQUES FOR TESTING OpenACC-BASED PROGRAMS
	IMPLEMENTATION AND TESTING
	OpenACC DATA CLAUSE DETECTION
	OpenACC RACE CONDITION DETECTION
	OpenACC DEADLOCK DETECTION

	DISSCUSSION AND EVALUATION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	FATHY ELBOURAEY EASSA
	AHMED MOHAMMED ALGHAMDI
	SEIF HARIDI
	MAHER ALI KHEMAKHEM
	ABDULLAH S. AL-MALAISE AL-GHAMDI
	EESA A. ALSOLAMI

