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ABSTRACT The use of visual sensors in robotic navigation tasks is a common approach, and numerous
examples can be found in the literature. This work focuses on the problem of map building and localization
using omnidirectional images as the only source of information. The main objective of this paper is to present
a thorough comparison of global-appearance description techniques including the use of color information
in different approaches. Some of the descriptors have been widely tested in previous works using gray-
level images. In the present work we concentrate on the role and efficiency of the color information. Other
descriptors are presented for the first time. To carry out this study, a database captured in different areas of
an office environment is used, including two different datasets: training and test datasets. The experimental
results include computational requirements in the map building and localization processes, and the accuracy
in the pose estimation of the test images in a topological map, separating both position and orientation.
To complete the study, the behavior of the descriptors is tested when the images present noise or occlusions,

specially the effect on the color information.

INDEX TERMS Catadioptric vision sensors, global-appearance descriptors, color images, Fourier signature,

topological mapping, histogram of oriented gradients, gist.

I. INTRODUCTION
The autonomous navigation of mobile robots is a wide area of
investigation. For this task, robots must gather and interpret
information from their environment. In the literature, differ-
ent approximations can be found depending on the kind of
sensors used. Over the last few years, an important line of
research is the use of visual sensors [1], due to the many
possibilities they offer, the richness of the information they
provide, and their suitability for this purpose, since they
consume less power than other sensors, which is important for
the autonomy of navigation, and their cost is relatively low.
Visual systems can be classified depending on the number
of cameras they use and their field of view. That way, we
find examples of systems based on one camera [2], [3], stereo
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cameras [4], [5] that simulate the human vision, trinocular
systems [6] or even arrays of cameras that gather the 90%
of the spherical field of view around the robot [7]. If we
consider also adaptations in the architecture of the visual
sensors, catadioptric systems can be highlighted [8]. They use
areflective surface to expand the visual field of view [9], [10].
The richness of the visual information implies important
memory and computational requirements to store and process
the scenes. In real-time navigation tasks, this quantity of
information might become unmanageable. For that reason,
it is necessary to represent the images using descriptors that
reduce the information to a vector of features, but preserve the
ability to recognize the image among others in a database.
Such descriptors can be classified into two categories:
local-features descriptors and global-features or holistic
descriptors. On the other hand, local-features descriptors
extract outstanding points from the images, which the robot
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can recognize easily. These features are also called land-
marks. Landmarks can be artificial, as Okuyama et al. show
in [11] using QR codes, or natural. Natural landmarks are
extracted directly from the image, and usually correspond
to recognizable points as corners, doors or windows, as we
can see in [12], [13]. Another example is found in [14],
where a novel method for object recognition and pose esti-
mation based on 3D point extraction using an RGB-D sen-
sor is presented. The main disadvantage of these techniques
is the complexity in the extraction of stable landmarks
in real and changing environments, and the computational
cost of processing the image to extract those features and
comparing them.

On the other hand, global-appearance descriptors extract
the information of the image as a whole, avoiding any local
pattern of the scene. Map building and localization with these
descriptors is less complex than using 3D landmarks [15].
However, the size of the maps can be excessive, since they
contain information of the entire image. That way, the study
of global-appearance descriptors normally focuses on the
kind and quantity of features they extract from the images.
In contrast with the descriptors based on landmarks, they
do not contain any metric information. For that reason, they
are typically used for topological navigation approaches,
in which the localization of the robot can be addressed as
an image association problem with the information in the
map [16]. Several authors have addressed a variety of prob-
lems in autonomous vehicles using visual information and
global-appearance descriptors. For example, Hu et al. [17]
use holistic descriptors from images, with the purpose of
recognizing signals in road environments. They build these
holistic descriptors from local features and a method based
on the k-nearest neighbours. Paya et al. [18] present a frame-
work for topologic map creation using global-appearance
descriptors. Additionally, these description techniques can be
combined with clustering algorithms in order to improve the
maps and the localization process, as [19] shows.

Image retrieval plays an important role in robot localiza-
tion, and this problem has been extensively addressed using
grayscale images and holistic descriptors. Li et al. [20] study
the image matching problem, with the objective of detecting
loop closures in a SLAM (Simultaneous Localization and
Mapping) application. They solve it by using a combination
of clustering methods and descriptors built both from holistic
and local features of grayscale images. Horst and Moller [21]
focus on place recognition in mobile robotics using grayscale
images. They investigate the effect of warping in place recog-
nition and the NSAD (Normalized Sum of Absolute Dif-
ferences) distance measure. Doan et al. [22] also study the
problem of place recognition using visual information and
exploiting the temporal continuity of the acquisition process.
The image retrieval pipeline uses local features and an encod-
ing method that represents each image as a single vector.

A recent approximation showed in [23] demonstrates that
it is possible to estimate relative positions between images
using global-appearance techniques. The framework, called
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multi-scale analysis, uses plane projections of the omnidirec-
tional images that permit estimating displacements between
two positions of the robot using only visual information.
That way, it improves the accuracy of the robot’s localization
in the map.

The descriptors included in this work are based on Discrete
Fourier Transform [24], the Histogram of Oriented Gradi-
ents [25] and gist [26]. Most of the descriptors that can be
found in the literature are designed to be used with greyscale
images. In the present work we explore the role of color
information along with global-appearance descriptors [27]
and we assess the performance of such information in a
topological localization task, addressed as an image retrieval
problem.

The remainder of the article is structured as follows:
section II introduces the global-appearance techniques used
to describe the omnidirectional images in this work.
Section III outlines the introduction of color features to the
description techniques. Later, section IV presents the sets
of images used in the experiments. Section V details the
experimental setup. After that, Section VI presents the results,
and finally, section VII summarizes the main conclusions.

Il. VISUAL DESCRIPTORS

This section introduces the techniques used to describe glob-
ally the appearance of the panoramic images in the present
work. Some of them have been extensively described in pre-
vious works: the Fourier Signature (FS) and the Histogram of
Oriented Gradients (HOG) in [28] and Principal Components
Analysis (PCA) and gist in [29]. In this work, this set of
techniques is complemented with two additional descriptors
based on the Discrete Fourier Transform and one additional
gist descriptor based on color information [30]. These tech-
niques are outlined in the next subsections. In all the cases, the
initial information is a set of N panoramic images captured
from several points in the ground plane, distributed along
the environment to model § = {f1,/2,....fn}, where f; €
RN+xNy i = 1,...,N represent each image of the map
set. Ny and N, denote, respectively, the number of rows and
columns of the image f;. In general, after describing each
of these images, the result is a set of position_descriptors,
one per original scene D% = {df o dgos, R df,os}, where
;Zf e R¥**1 and a set of orientation descriptors, also one
per original scene D" = {Zl‘”, ;lé”, e, ZZX,’}, where ;lj"’ €
RK”*1_ kPos is the size of the position descriptor and k" is the
size of the orientation descriptor. Their specific values depend
on each description technique, as described in Section V-B.

A. TECHNIQUES BASED ON THE DISCRETE FOURIER
TRANSFORM

The Discrete Fourier Transform (DFT) converts the sequence
of numbers {ag, ai,...,an,—1} in the complex sequence

{Ag, A1, ..., ANy_l} accordihg the equation:
Ny—1 S
A=Y ap- W k=0 N-1 (D)
n=0
81823
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FIGURE 1. Process to obtain the 1D-DFT descriptor of a panoramic image.

where Ny is the number of components of the sequence. This

transformation represents a discrete signal in the frequency

domain. One relevant property for this work is the shift the-

orem, which states that a circular shift of the initial sequence

produces a transformed sequence whose components have the

same magnitude and the arguments can be calculated with (2).
2wk

Flan—g}le = Age '™ ;

where ¢ is the amount of circular shift in the first sequence.

k=0,..Ny—1 (2

1) ONE-DIMENSIONAL DFT (1D-DFT)

Briggs et al. [31]-[33] propose a descriptor that reduces a
panoramic image into a unidimensional vector for localiza-
tion and navigation purposes in robotics. From these works,
we develop the idea of creating a one-dimensional vector
from the average values of the pixels of each column of
the panoramic image. After that, we apply the DFT to the
resulting vector. Fig. 1 shows the descriptor creation process.
This process is applied individually to each panoramic image
in the initial set 3.

If the movement of the robot is contained in the ground
plane and the catadioptric vision system is mounted verti-
cally, the 1D-DFT descriptor presents interesting properties
when it is applied to the panoramic images obtained from
this system. First, the most relevant information of the image
is contained in the lowest frequency components so only a
number of components is usually retained. Moreover, the last
components are usually affected by the presence of high-
frequency noise in the original image. For that reason, we
keep only the first components, having a substantial com-
pression effect. Second, since the transformed sequence is
complex, the information can be separated into two vectors:
one with the magnitudes and the other with the arguments.

Additionally, according to the shift theorem of the DFT
in (2), the magnitudes vector is invariant against changes of
the orientation of the robot in the ground plane and can be
used for localization purposes, while the arguments vector
retains information of phase that is useful in the estima-
tion of the relative orientation of the robot. In this theorem,
if the robot rotates 6 degrees, the sequence that represents
the original panoramic image circularly shifts g positions.
Therefore, the magnitudes vector can be considered as the
position descriptor (it contains information on the appear-
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ance of the environment as seen from a specific position,
independently on the orientation), and the arguments vector
can be considered as the orientation descriptor (it is useful to
estimate the relative orientation of the robot with respect to a
reference one).

2) FOURIER SIGNATURE (FS)

Ishiguro and Tsuji [34] proposed the creation of visual maps
using the DFT of each row of a panoramic image. This
descriptor is also used in [24] with the name of Fourier
Signature (FS). The FS is a complex matrix and it is also
calculated independently for each panoramic image in the
initial set §. Using the same property than in the previous
subsection, from each row, only the first terms of the trans-
form are retained. The resulting magnitudes and arguments
matrices are arranged into two vectors to compose, respec-
tively, the position and the orientation descriptor of each
initial panoramic image.

3) TWO-DIMENSIONAL DFT (2D-DFT)

Finally, it is also possible to apply the 2D-DFT directly over
a digital image to transform the visual information into the
frequency domain. If we represent an image with the discrete
function f'(x, y), with Ny rows and Ny, columns, the 2D-DTF
is obtained as:

Ny—1Ny—1

PP INLER)

x=0 y=0

FHf e, = Fu,v) = NN
yiVx

P Ux vy
) e*ﬂ”(mwy)

u=0,...Ny—1, v=0,...N,—1. (3)

Like in the previous DFT-based descriptor, the coefficients
of the transform can be divided in two matrices, one with the
magnitudes (or power spectrum) which is useful as position
descriptor, and other with the arguments, which is the orienta-
tion descriptor. A pure rotation of the robot in the floor plane
produces a shift of the columns of the panoramic images. The
shift theorem of the 2D-DFT is expressed as:

i ux 4 vy
FI{f(x —x0,y —yo)ll = F(u, v) - e 2 (45
u=0,...Ny—1, v=0,...Ny— L 4)
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In this case, to compose the final descriptor, a number
of low-frequency components is retained (i.e. a submatrix
starting from the first component of the transform).

B. TECHNIQUES BASED ON PCA

Principal Component Analysis (PCA) is a technique which
is widely used to extract the most relevant information
from a set of data vectors, which consists in performing a
transformation that projects these data vectors into a lower-
dimensional space that preserves most of the variance of the
data [35].

The pixels of an image can be arranged into a column
vector ¥ € RM>1 with M the number of elements of the
image. Considering N the number of images of the dataset,
the matrix of data is denoted as X = [X1|%2| ... |Xy] € RM*N,
To perform PCA, we normalize the data by subtracting the
average value from each image. We denote the new matrix
as X. From these data, the covariance matrix is obtained
C = ]i\, X - XT with C € RM*M_ From the eigenvectors
of this matrix u;j, ordered by the relative importance of their
associated eigenvalues, we obtain the transformation matrix:

un 1, &)

with U € RM>*N The projection of the original information
in the new basis is:

U=[u u

Yy=u".X (6)
where
Y=01 » ... Wl )

57} € RV*1 s the projection of )’?; in the new basis. In practice,
we select only the first eigenvectors u; to build the new basis.

1) ROTATIONAL PCA

PCA has demonstrated to be a robust algorithm in the com-
pression of information. However, if PCA was used directly,
considering that the data vectors are panoramic images cap-
tured from different positions, then the projections would not
be rotationally invariant. That is to say, the projection of two
images captured from the same position but with different
robot orientations would lead to completely different projec-
tions in the new space.

To solve this problem, Jogan and Leonardis [36], [37]
propose the Eigenspace of Spining-Images. The algorithm
makes R;, equally distributed artificial rotations of each
original panoramic scene and builds the initial data matrix
with them. Using the algorithm they propose, every image is
transformed into a column vector (also named ‘projection’)
whose components are complex numbers. Figure 2 represents
that, in the case of a panoramic image and its evenly rotated
siblings, every specific component of their projections has
the same magnitude, and these components have a phase lag
which is constant between consecutive rotated siblings. More
concisely, the blue asterisks show the second component of
the projection of a panoramic image and the second compo-
nent of the projections of its rotated siblings. The magnitude
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FIGURE 2. Second and third components of the projections of an image
and its 31 rotated siblings.

of these second components is the same, and there is a phase
lag between the second component of the projection of con-
secutive rotated siblings which is constant and equal to A¢.
The green asterisks show the same concept by representing
the third component of the projection of a panoramic image
and their rotated siblings. Again, there is a phase lag between
the third component of the projection of consecutive rotated
siblings which is constant and equal to A¢). Therefore, the
map only needs to contain the projection of one image per
position (position descriptors), and the phase lag between
the coefficients of consecutive rotated images (orientation
descriptors). That way, we can artificially simulate the pro-
jections of the different rotations of the image. The magnitude
will be used to find the location of the robot in the map, and
the argument information to estimate the orientation. Addi-
tionally, it is necessary to store the transformation matrix U.

The angular resolution of the dataset will depend on the
number of artificial rotations included in the map, according
to (8). However, high resolutions will require an extremely
high calculation time to obtain the projections.

360

Min. Angle(®°) = R 8)

im

2) PCA OVER THE FOURIER SIGNATURE

As stated before, PCA is a technique which is not rotationally
invariant. However, if the information of the data matrix X
presents rotational invariance, the new representation will
also keep this property, as stated in [38], [39]. For this reason,
in this section we propose the next method. For each original
panoramic image, we calculate the magnitudes matrix of
its FS and we arrange the information in a column vector.
The data matrix X will be composed of the column vectors
obtained from the set of panoramic images, and PCA is
subsequently performed with this matrix. The projections in
the new space will be used for the robot localization. For the
orientation estimation, the descriptor uses the arguments of
the Fourier Signature, without any change of basis.
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C. TECHNIQUES BASED ON HISTOGRAMS OF ORIENTED
GRADIENTS

The Histogram of Oriented Gradients (HOG) [40] describes
the image using the pixel intensity distribution in local areas.
For that purpose, first, the gradient of the image is obtained.
If Z, and Z, represent the derivatives of the image regarding
axis x and y respectively, it is possible to calculate the mag-
nitude and orientation of the gradient as:

Gl = JT2+ T2 ©)

Zy
0 = atan— (10)
Iy

After that, the image is divided in cells and an histogram of
oriented gradient per cell is compiled. The histogram of each
cell is built from the information of the gradient orientation
of each pixel in the cell, weighted by the gradient magnitude
of this pixel. To build the histogram, a number of bins must
be defined. In this work, we divide the orientation range
(0° to 180°) into 8 bins, i.e. each 22.5°.

In order to adapt the technique to localization and orienta-
tion estimation purposes, we create two different descriptors:
one for position and another for orientation estimation. Since
we work with panoramic images, which contain the same
information per row independently on the robot orientation,
we use horizontal cells (with the same width than the image)
to obtain a position descriptor, which presents rotational
invariance. Regarding the orientation, we use overlapped ver-
tical cells (with the same height than the image), separated
a distance of D pixels between consecutive cells. By shifting
the histograms of these cells, we can simulate a rotation of the
robot. The resolution in the phase estimation depends on D:

D - 360
Ny

Min. Angle(°) = 11)

Fig. 3 shows the division of the image in cells, both for the
position and the orientation descriptors. The descriptor will
contain the histograms of each cell, appended and arranged
in a column vector.

(b)

FIGURE 3. Cell divisions of a panoramic image to obtain the (a) position
and (b) orientation descriptor.
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D. TECHNIQUES BASED ON GIST

To obtain the essential information from the image, the
descriptors based on gist try to mimic the human perception
system and its ability to recognize a scene through the identi-
fication of colour or remarkable structures, avoiding the rep-
resentation of specific objects or local features ([41], [42]).
Therefore, they can be seen as global-appearance descriptors.
In this work, we consider two approaches: gist-Gabor and
gist-color.

1) GIST-GABOR

The gist-Gabor descriptor [26] is based on the use of Gabor
filters, and collects frequency and orientation information
from the images. The first step is to create a bank of
Gabor filters, with orientations evenly distributed in the range
[0°, 180°[. Gabor masks are frequency waves multiplied by a
Gaussian function, so they are determined both in frequency
and space domain. In this work, two different spatial scales
are considered to create the Gabor bank. Fig. 4 presents
a sample panoramic image and the resulting images after
filtering it with four different Gabor masks, changing both
scales and orientations.

(@) (b)

FIGURE 4. Sample panoramic image and resulting images after filtering it
with four Gabor masks with different orientations (0°, 45°, 90°, 135°) and
spatial scales: (a) scale 1 and (b) scale 2.

Once the scene has been filtered with the different masks
and scales, the algorithm divides each resulting image into
a set of (a) non-overlapping horizontal blocks, to create the
position descriptor and (b) overlapping vertical blocks, to
create the orientation descriptor, as seen in Fig. 3, and the
average value of the pixels inside each block is calculated.
Like in the case of the HOG descriptor, the resolution of our
descriptor in orientation estimation depends on the distance
between consecutive vertical blocks D, as seen in (11).
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2) GIST-COLOR

The second descriptor based on gist is gist-color [43]. This
technique collects color, intensity and orientation informa-
tion from each scene. The color features are extracted from
a Gaussian pyramid of images, using the color channels
proposed by Hering [44], that defines three opposing color
pairs: red/green, blue/yellow and black/white. The last one
corresponds to the intensity of the pixel. The descriptor cal-
culates five primary channels: R (Red), G (Green), B (Blue),
Y (Yellow) and I (Intensity).

R—,_ &FD (12)
G=g- TV (13)
B=p_ T8 (14)
Y=r+g-2-(r —gl+b) (15)
]Zw (16)

where r, g, b are the red, green and blue channels in the
original RGB panoramic scene. The opposing color pairs are
obtained from the primary colors as:

RG = |R — G| (17)
BY = |B—Y| (18)

i i

FIGURE 5. Gaussian Pyramid of a sample panoramic image with 8 scales,
defined to carry out center-surround operations.

After that, a Gaussian pyramid is used to carry out a set
of center-surround operations with the three opposing color
channels RG, BY and I (21). Fig. 5 shows a Gaussian pyra-
mid with 8 scales, created from a sample panoramic image.
In these operations, the center corresponds to the lower scales
(with higher resolution), that is denoted by ¢ in (21). For the
surrounding pixels (s), the lower resolution scales are used.
The comparison between scales is represented with ©:

RG(c, s) = |(R(c) — G(c)) © (R(s) = G()|  (19)
BY(c,s) = |(B(c) = Y(c)) © (B(s) = Y(s)|  (20)
I(c,s) = [I(c) ©1(s)| 2y
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Using the center-surround operations, we obtain informa-
tion in different scales which is expected to be robust against
changes of lighting conditions, as Siagian et al. state in [45].
The scales used in the center-surround operations in this work
are summarized in Table 1. Fig. 6 shows the resulting images
after applying the center-surround operations with the three
opposing color pairs of a sample image.

TABLE 1. Scales of the Gaussian pyramid that are used to carry out the
center-surround operations.

l

W[ W[ I [ B ]|
N AN K| W|®

The features of spatial distribution of the scenes, they are
extracted using Gabor filters. For gist-color, we use 4 filter
orientations (6; = 0°, 45°, 90°, 135°) applied to two different
pyramid scales. Finally, all the resulting images (both those
with the color and those with the orientation information) are
individually blockified. Like in the previous subsection (gist-
Gabor), two descriptors are created: one with the values of the
horizontal cells for localization purposes, and another with
the values of the vertical cells for orientation estimation.

Ill. GLOBAL-APPEARANCE DESCRIPTORS AND COLOR
INFORMATION

The descriptors included in Section II, with the exception
of gist-color, extract the information from the scenes using
only the gray-level intensity of each pixel. In fact, the great
majority of global-appearance descriptors in the bibliography
are applied only to grayscale images. However, if the images
are captured with a color camera, the information provided
by the different color channels can be used with the aim of
improving the descriptors with more insightful information
from the scene.

Initially, we can take advantage of the color information
by applying the same description method separately to each
of the three RGB channels. However, there is usually a high
correlation among the information of these three channels.
As a result, it is expected that the different descriptors also
present a high correlation between them. If that happens,
this would not add any useful information with respect to
grayscale. As an example, Fig. 7(a) shows the values of the
HOG descriptor applied to the same image in grayscale, and
applied to the R, G and B channels of the same scene sepa-
rately. As shown, a high correlation exists between the four
descriptors. In this case, creating the descriptor of each RGB
channel is almost equivalent to repeating three times the infor-
mation of the grayscale descriptor. Additionally, Fig. 7(b)
presents the same comparison but using the HSV channels
(Hue, Saturation and Value). As expected, the descriptor of
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FIGURE 6. Center-surround operations using different scales for RG, BY and | channels of a sample image.

channel V is the same that grayscale space. However, H and S
provide different information.

For this reason, we suggest other means of using the
color information in order to extract useful features. In the
literature, we can find several works that use the HSV color
space. For example, Sablak and Bould [46] create a descrip-
tor with the histograms of the image values in HSV space.
Specifically, the descriptor is made up of the position of
the local maxima of the histograms of channels H, S and V
of the image separately. Suhasini et al. [47] also use HSV
instead of RGB in order to obtain a descriptor based on the
combination of SIFT (Scale Invariant Feature Transform) and
ICH (Invariant Color Histogram), presenting an important
improvement in image association tasks compared with the
same algorithm applied to RGB. Junhua and Jing [48] show
an image classification algorithm based on the Contourlet
Transform using the H channel in the HSV space.

The color information of the scene can also be represented
with the values of the pixels of each channel using histograms.
These features are also independent on the scale and resolu-
tion of the image. With the aim of creating a useful descriptor,
we propose to extract features by dividing the image into
cells and building a histogram per cell using the information
in the color channels. For localization, we divide the image
in horizontal cells, as we do to obtain the HOG and gist
descriptors (Fig. 3). This way, the resulting color descriptors
are rotationally invariant since, from a specific position of the
robot in the environment, they contain the same information,
independently on the robot orientation.

81828

Therefore, for each cell and channel of the color scene,
a new histogram with the pixel intensity values is created.
All these histograms are put together to create the final
descriptor. We name this descriptor Color Histogram (CH).
The bins that divide the histogram are equally distributed
along the range of values of each channel. We also normalize
the histograms by dividing the values of the bins by the
number of pixels included in the cell. The size of the CH
descriptor will directly depend on the number of cells of each
image, and the bins of each histogram.

We can append the CH information to the descriptors that
result from each of the techniques presented in Section II,
obtaining complete descriptors that contain information
both about the spatial distribution of the scene and about
color. Specifically, we build a descriptor per scene using
either a DFT-based method, HOG or gist, as presented
in Section II and subsequently append the CH information.
Before appending the color information to compose the final
descriptor, we normalize each vector separately. This way, we
avoid that any of the two parts weights excessively due to the
number of components or the different magnitudes of each
part. Regarding the normalization of color information, we
take it into account both the number of histograms included
in the descriptor CH, and the number of cells into which the
image is divided. .

We define Zl]H , fzjs and hjy as the column vectors that contain
the values of the histograms of the channels H, S and V,
respectively, compiled in the cell j. Each histogram is divided
by the number of pixels of the cell. Then, we define hmlorj as

VOLUME 8, 2020
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FIGURE 7. HOG descriptor of a sample image. The horizontal axis shows
the number of component in the descriptor. Comparison of the values of
the descriptor when obtained from the intensity channel and from the
(a) R,G,B and (b) H,S,V channels using the same cells and bins per
histogram.

the set of these histograms as:

Kt
J

— 1 -

hcolorj = 5 . h}g (22)
EV

Finally, the descriptor with the color features includes the
set of normalized histograms of all the horizontal cells in
which the image is divided. If n is the number of cells, we
define the color histograms (CH):

—

hcolor1
—_—

hcolorg (23)

—

hcolorn

1
CH = -
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In the same way, the descriptors of the spatial distribution
are normalized. We denote them by Dysie; independently on
the method used to obtain them (FS, HOG or gisf). In the
case of the descriptors based on FS, the normalization is
carried out by dividing each row by its first component in the
frequency domain, which corresponds to the average value
of the row. It should be noted that this value is different for
each row of the transformed image. The normalization of the
descriptors based on HOG and gist is carried out by dividing
the elements of the descriptor by the sum of all their values.
Finally, the weighing of the color and the spatial information
can be weighted differently to compose the final descriptor:

Wipatial * Dspatial
D d = P P 24)
compose. Weolor - CH

where Wypariar and weopor are weighting factors.

This work includes a complete and systematic comparison
of the different descriptors based on the global appearance
described in Section II applied to panoramic images, focusing
on the utility of the color information. With this purpose, sev-
eral options will be tested and compared in subsequent sec-
tions. Each description technique will be applied separately
(a) to the grayscale image, (b) to each RGB channel, (c) to
each HSV channel, (d) both to each RGB and HSV channels
to compose a unique descriptor and (e) the vector CH is
calculated and appended to each of the different descriptors
as explained in this section.

IV. SETS OF IMAGES

This section presents the sets of images used to carry out
the experiments. These sets have been captured by ourselves
in different areas and offices of the second floor of the
Innova building of the Miguel Herndndez University and are
accessible from [49], where we can find more information
about the dataset, including bird’s eye views of the capture
points both of the training and the test sets, the dimensions of
every room and their distribution in a floor plan. Specifically,
the datasets include images from a corridor (1), three offices
with different configurations (2,3,4) a library (5) and a con-
ference room (6). A catadioptric system is used to capture
the datasets. It is composed of a color camera (Imaging
Source model DFK-21BF04) and a hyperbolic mirror (Eizoh
Wide70) which captures omnidirectional color scenes, with
640 x 480 pixel resolution.

Two datasets have been captured to test the performance
of the descriptors: the training and the test ones. About
the training dataset, the capture points compose a regular
40 cm x 40 cm grid on the floor, and all the captures are
performed under real operating and lighting conditions. It is
a challenging environment due to the presence of large win-
dows that force us to reduce the gain of the camera to avoid
the saturation of the image. For that reason, the histograms of
the scenes are normally concentrated on the low area of the
color range. Table 2 shows the number of images per area in
the training dataset.
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TABLE 2. Number of images included in each area of the training dataset.

[ Area [| Number of Images |
(1) Corridor 212
(2) Office 1 35
(3) Office 2 72
(4) Office 3 84
(5) Library 169
(6) Conference Room 300
| Total [l 872

Second, the test dataset is composed of some images cap-
tured in the same environment, and they will be used to carry
out experiments of position and orientation estimation. While
capturing the test images, 3 different cases were considered
about the capture points with respect to the training grid:
(1) the test image is captured very close to the position
of a training image; (2) the test image is captured halfway
between two map images and (3) it is captured approximately
equidistant to four images of the grid. In the experimental part
(section V), the descriptors are evaluated in an image retrieval
framework, in which the descriptor of each test image is com-
pared with the descriptors of the training images and the most
similar descriptor (nearest neighbour) is retained. In these
experiments, the result will be considered a correct retrieval
if the nearest neighbour was captured in the geometrically
nearest point in case (1); in one of the two nearest points in
case (2) and in one of the nearest 4 points in case (3).

These test images have been captured at different times of
the day and days of the year, under real operating conditions,
what hinders this task. This way, the test images include
perceivable changes in lighting conditions, in the position of
some pieces of furniture with respect to the training images
and some people appearing in the scenes. These facts make
the database more challenging.

Additionally, from each test position, 16 different images
were captured, with different orientations in the ground plane,
with a lag of 22.5° between consecutive rotations. Table 3
shows the number of test images per area.

TABLE 3. Number of images per area in the test dataset.

[ Area [| Number of Images | Rotations || Total |
(1) Corridor 12 x16 192
(2) Office 1 9 x16 144
(3) Office 2 10 x16 160
(4) Office 3 13 x16 208
(5) Library 16 x16 256
(6) Conference Room 17 x16 272

| Total [l 77 \ x16 [ 1232 |

The descriptors included in this work are defined to be
used with panoramic images. For that reason, we obtain the
cylindrical projection of the omnidirectional images. Finally,
the panoramic scenes are obtained by changing the cylindrical
system to Cartesian coordinate system. The resolution of the
panoramic images is 128 x 512 pixels. Fig. 8 includes a
sample image from each area.
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(b) Office 1

(c) Office 2

(d) Office 3

(f) Conference Room

FIGURE 8. Examples of images captured from each area of the datasets.

It should be noted that, since it is an office environment,
there are several elements that appear repeatedly in the dif-
ferent rooms with similar appearance. For that reason, the
images might present visual aliasing. In that case, the descrip-
tors may lose their capacity of distinguishing images due to
the existence of similar scenes, and one of the objectives of
the experiment is to check if any description method is able
to cope robustly with this phenomenon.

As an example, Fig. 9 shows two scenes from the corri-
dor, which are captured from two different positions, with
a distance of 240 cm between them. We can see that their
appearance is very similar. Fig. 9 (c) includes the Fourier
Signature of both images. We can see that both descriptors
are very similar despite the fact the scenes are different and
separated.
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(b) Corridor X=40, Y=520.
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FIGURE 9. Example of visual aliasing.

Additionally, the robustness of the descriptors is also tested
when partial occlusions or noise appear on the test images to
check if they could be able to operate if these phenomena
occur in real-operation situations. The occlusions are intro-
duced with four vertical stripes with different width that cover
different percentages of the panoramic images. Regarding the
noise, zero-mean Gaussian noise with different variances is
artificially added to the different color channels.

Fig. 10 presents a panoramic image with examples of the
occlusions, that vary from 5% to the 40% of the image, and
with Gaussian noise, whose variance takes values between
o = 0.0025 and 0 = 0.0200. They constitute specially
challenging situations for the methods.

V. LOCALIZATION FRAMEWORK AND EVALUATION

The main objective of the paper is carrying out a comparative
evaluation of the descriptors presented so far in a localization
framework, focusing on the relevance of color information.
This section is structured as follows. First, subsection V-A
presents the localization framework implemented to carry out
the tests and the measurements used to check the performance
of the descriptors. Then, subsection V-B details the main
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parameters of the descriptors, whose sensibility is studied
along the experiments.

A. ESTIMATING THE POSITION OF THE ROBOT

As outlined previously, the localization problem is addressed
as an image retrieval problem. First, the descriptor of each
training image is obtained. This set of descriptors is consid-
ered as the map. Second, for every test image, its descriptor
is obtained and compared with all the descriptors stored in
the map. The descriptor that presents the minimum Euclidean
distance (nearest neighbour) is retained. This association is
considered to be correct if the retrieved image is the one
which was captured from the geometrically closest point. The
performance of this process is evaluated throughout this work
using two representations: recall-precision curves, and geo-
metric distance between the capture point of the test image
(ground truth) and the capture point of the retrieved map
image.

Recall-precision curves [50], [51] permit evaluating the
performance of the descriptors in image association tasks.
The concepts of recall and precision are defined as:

# of correct matches retrieved

recall = (25)
# total of correct matches

. # of correct matches retrieved
precision = (26)
# correct matches

This way, recall represents the ability of the descriptor to
find all the correct associations, and precision the ability to
find the correct associations as the number of experiments
grows. Their values are between O (that would indicate that
no correct match has been retrieved) and 1 (that would mean
that the descriptor has found all the correct matches).

The process to obtain the recall-precision curves is the
following:

1) First, we calculate the image distance between the test
image descriptor and all the descriptors in the map.
We define Zsz = [drest,l s dTest 2y -+ dTest,,,]T as the
descriptor of the test image, which is a column vector
with n elements, and Zli = [di,l, di, ..., d,;,,]T the
position descriptor of the i-th image of the map. The
image distance is defined as:

n
Iest,i = dist(drest, di) = Z(dTesl,j —d;j)?,
Jj=1
i=1,---,N (@27

where N is the number of images in the map.
After this step, an array of distances is available
lTest = [lTest,l s lTest,2s ey lTest‘N]'

2) The match between the test image and the map is
determined from the minimum image distance in
the vector TTES,. Once the algorithm has calculated
the Euclidean distance between the test image and
all the images of the map, it selects the association with
the minimum distance.
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(e) Occlusion =25%

(f) Noise o = 0.0100

(g) Occlusion =40%

(h) Noise o = 0.0200

FIGURE 10. Test image including different levels of occlusion and Gaussian noise.

3) The algorithm determines whether the match is correct
by checking if the capture point of the retrieved image
is the one which is metrically closest to the capture
point of the test image (ground truth).

4) After repeating this process for all the test images
(N7 1s the number of test images) we obtain a matrix
with N7, rows and two columns. The first column
contains the minimum Euclidean distance of each test
image (min TTes,), and the result of the match (1 or O
depending on whether it is correct or not).

5) Then, we sort the association list in ascending order
using the image distance, and obtain the values of recall
and precision according to (25) and (26).

The distribution of the recall-precision curves provides
information about the robustness of the descriptors with
false positives considering a threshold in the image distance.
So that, it is desirable that the precision keeps near 1 for every
recall value, since it means that we have fewer false positives
under that threshold. As an example, Fig. 11 shows two
different recall-precision curves. Although the final values
are similar, the distribution of the blue curve shows a better
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Recall-Precision Curves

precision

0 0.1 0.2 0.3 0.4 0.5
recall

FIGURE 11. Comparison of two different recall-precision curves.

performance of the descriptor. If we set a threshold distance
corresponding to recall = 0.3, the precision of R-P I is
100%, but R-P 2 is 82%. It means that we are able to obtain the
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30% of correct matches with a 100% of probability in the first
case, and with a probability of 82% in the second example.

To complement the results, we consider three different
cases to create recall-precision curves, considering only the
image with the minimum image distance (Nearest Neighbour
or N.N.), looking for a correct match within the two cases
with the lowest image distance (Second Nearest Neighbour
or S.N.N.), or the three cases (T.N.N.).

We consider that it is interesting to analyze S.N.N. and
T.N.N. apart from N.N. for the following reason. In this paper
we focus on the role of color in the performance of the
descriptors. Therefore, we address the localization task in a
straightforward way: as a global localization problem, solved
with an image retrieval approach (among all the images in the
dataset). This assumes that we have no information about the
previous pose of the robot while solving the problem. Only
visual information is used. However, nowadays, many local
localization algorithms exist (i.e. probabilistic algorithms)
that take it into account the pose of the robot in the previous
time instant to estimate the pose in the current time instant
(apart from the odometry and visual information). In such
algorithms, not only the N.N. but also other k-NN neighbors
could play an important role, owing to the fact that the pre-
vious pose is known and the new pose should be at a relative
distance form it.

B. PARAMETERS OF THE DESCRIPTORS

In Section II, we detail each of the compression techniques
based on the global appearance that we include in this com-
parison. Next, we present a summary of the parameters of
each one.

Regarding the descriptors based on the DFT, it is possible
to select the number of elements of the transform in the fre-
quency space. In the case of the 1D-DFT, the parameter is the
number of elements retained from the transformed sequence.
In the case of 2D-DFT, we can select the size of the submatrix
that gathers the lower frequencies of the image. Finally, as
for the FS, the parameter is the number of elements kept
from every row. We select separately the number of elements
retained from the magnitudes’ matrix (NVp,;), that allow us to
carry out the estimation of the position of the robot in the map,
and the number of elements in the arguments’ matrix (N, ),
that provides information to estimate the orientation.

The technique that applies PCA over the FS is determined
by the number of elements per row retained from the mag-
nitudes’ matrix (Np,s), and the number of main eigenvectors
that compose the new projection basis (Vpc4 ). The orientation
works as in the case of FS (N,,;). About rotational PCA, the
main parameter of the descriptor is the number of rotations
per image (R;;,), and the number of eigenvectors that compose
the new basis (Vpca).

The parameters of HOG are the number of horizontal cells
(cells with the same width that the panoramic image, denoted
as Cp) used for localization purposes, and the width of ver-
tical cells (cells with the same height of the image, denoted
as Sy) as well as the distance between these vertical cells for
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the estimation of the orientation (Dy ). Horizontal cells have
no overlapping, so its number is determined by their height
and the number of rows of the image. However, vertical cells
may have some overlapping if the distance between consec-
utive cells is lower than their width. In the case of HOG, the
number of bins per histogram is another parameter. However,
we set this parameter to 8 since preliminary experiments
showed that increasing the number of bins, the precision does
not improve, but if it is lower, the precision decreases.

The parameters of gist-Gabor are the number of masks
the image is filtered with, and the number of cells used to
divide the filtered images. About the localization descriptor,
we use two spatial scales for Gabor filtering in order to
limit the computational cost. The variables are the number of
masks considered in each of the two spatial scales (Masks
and Masks;), and the number of horizontal cells that divide
each filtered image (Cp ). The filtering direction of the Gabor
masks depends on the number of masks, since they are
equally distributed between 0° and 180°. For the orientation
descriptor, we only use the information in the first level of
Gabor spatial filtering, with a maximum of 4 masks. So, for
orientation, the parameters that define the descriptor are the
width of the vertical cells (Sy) and the distance between
them (Dy).

Finally gist-color uses always the same number of Gabor
masks to filter the image, as stated in Section II, with 4 ori-
entations. The filtering spatial scales are determined by the
number of scales of the Gaussian pyramid. When a new
image arrives, we create a pyramid with six levels. For the
Gabor filtering, we use the three first levels of the pyramid.
Regarding the color features, it uses the six levels to carry out
the comparison between opposite color channels, as shown
in Table 1. The parameters of the position descriptor are the
number of horizontal blocks used to blockify the information
of Gabor-filtered images, denoted as Cyg, and the number
of cells used to blockify the information of color (Cgc). For
orientation, we use only the information of the Gabor masks.
The parameters are the number of vertical cells (Sy), and the
distance between them (Dy ).

In Table 4, a summary of the different parameters of each
descriptor is included.

VI. RESULTS
The experimental section focuses on the comparative evalu-
ation of the performance of the global-appearance descrip-
tors with color information. We study the precision in the
pose estimation (both position and orientation), using all the
images in the test dataset, and comparing them with the map
built from the descriptors of the training images (section IV).
We also include a comparison of the computational time of
each descriptor in the map building and pose estimation tasks.
This section is structured as follows. First, subsection VI-A
carries out a study using the initial description methods pre-
sented in Section II (FS, HOG, gist-Gabor and gist-color) to
adjust the different descriptor parameters, and to make a first
comparison of computational requirements and performance
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TABLE 4. Main parameters of the descriptors.

1D-DFT Position Npos Number of magnitude components
Orientation Nrot Number of argument components
2D-DFT Po_sition. Npos S?Ze of the magnitudes’ submagrix (Npos X Npos)
Orientation Nyot Size of the arguments’ submatrix (Nyot X Nrot)
FS Position Npos Number of magnitude elements per row
Orientation Nrot Number of argument elements per row
Position Noyos Number of magnitude elements of the FS per row
PCA over FS Vppc A Number of eigfnvectors selected after PCE analysis
Orientation Nyot Number of argument elements of the FS per row
. Position and Rim Equiangular artificial rotations of the image
Rotational PCA Orientation Vpca N?.lmbe% of eigenvectors selected after PC%\ analysis
HOG Position Cy Number of horizontal Cells
Orientation Sv Width of the vertical cells (pixels)
Dy Distance between consecutive vertical cells (pixels)
Gist-Gabor Position Masks1 Number of Gabor filter masks for the first scale
Maskso | Number of Gabor filter masks for the second scale
Cy Number of horizontal cells
Orientation Sv Width of the vertical cells (pixels)
Dy Distance between consecutive vertical cells (pixels)
Gist-color Position Cha Number of hor?zontal cells blocks of the Gabor images
Chc Number of horizontal blocks of the opponent color channels
Orientation Sv Width of the vertical cells (pixels)
Dy, Distance between consecutive vertical cells (pixels)

of the descriptors. Then, subsection VI-B completes the
experimental part including the use of color information as
described in Section III. Finally, the performance of the
descriptors when noise or occlusions are present in the test
images is evaluated in subsection VI-C. All the algorithms
and simulations have been developed using Matlab. The
experiments have been performed using a computer with two
Quad-core processors of 2.8GHz and 10GB of RAM. It is
necessary to point out that it has not been possible running
rotational PCA with the whole training dataset because of
the excessively large computational requirements, specially
RAM. For that reason, it appears with an asterisk in the
graphs. The experiments of this descriptor use only three
rooms of the training dataset, that correspond with the three
offices, i.e. zones 2, 3 and 4 (Table 3). Only in the case of this
descriptor, the reduced map is composed of 191 images, with
32 test locations, that means 512 test images considering their
rotations. In the case of the other descriptors all the training
and test images are considered.

In the remainder of this work we use the term Precision
with the meaning stated in (26), and Accuracy to refer to
the performance of the localization algorithms, as fas as
geometric distance or orientation (measured in the ground
plane between the pose of the test image and the pose of the
nearest neighbour) are concerned.

A. RESULTS OBTAINED USING RAW DESCRIPTORS

In order to select the parameters of each descriptor and
make a first study of feasibility, we consider only the ini-
tial descriptors (as presented in Section II) and the original
space of representation of each technique. This space is the
grayscale in the case of the descriptors based on DFT, HOG
and gist-Gabor, and RGB in the case of gisz-color. To tune the
parameters of the descriptors, it is necessary to check both the
performance in position and orientation estimation and the
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necessary calculation time. After a sensitivity analysis, the
values selected for each parameter are shown in Table 5.

TABLE 5. Parameters selected for each descriptor.

. Position Npos 32
Fourier 1D Orientation Nrot 4
. Position Npos 64
Fourier 2D Orientation Nyot 8
. . Position Npos 32
Fourier Signature Orientation N 16
PCA over Fourier Position Npos 32
Signature Vpca 872
Orientation Nyot 16
. Position and Rim 16
Rotational PCA Orientation Vooa | 100
Position Chy 16
HOG Orientation Sv 64
Dy 4
. Position Masks, | 4
Gist-Gabor Masks, |8
Cy 64
Orientation Sy 64
Dy 32
. Position Cua 8
Gist-color Cho 13
Orientation Sy 8
Dy, 16

The resulting recall-precision curves after solving the
image retrieval problem with each of the different descriptors
are shown in Fig. 12. They show that HOG and gist-color
(Fig. 12(f) and 12(h)) show a better performance than the
other descriptors. Moreover, the rates of false positives are
very similar. The results of rotational PCA can also be high-
lighted, specially its low percentage of false positives until a
relatively high recall value.

The final values of precision reached by FS (Fig. 12(b)),
2D-DFT (Fig. 12(c)) and gist-Gabor (Fig. 12(g)) are very
similar, although gist-Gabor shows higher precision until a
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FIGURE 12. Recall-precision results including three different measurements: the nearest neighbour (N.N.), the
second nearest neighbour (S.N.N) and the third nearest neighbour (T.N.N.).
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recall value of 40%. 1D-DFT and PCA over FS (Fig. 12(a)
and Fig. 12(d)) present the lowest rate of correct matches.

Next, Fig. 13 presents the accuracy of the position esti-
mation process. The legend shows the average geometric
distance between the capture point of each test image (ground
truth) and the capture point of the nearest neighbour of the
map (measured as the Euclidean distance on the floor). There-
fore, the figure shows the percentage of experiments under a
specific geometric distance. We can appreciate that the results
have a similar behaviour as shown in the recall-precision
curves, with HOG and gist-color the descriptors that present
a better performance, specially HOG.

Accuracy in the Estimation of the Position - Distance regarding N.N.

B d<=400cm

50

40 -

30

20

Percentage of Experiments (%)

<
wo°

FIGURE 13. Accuracy in the estimation of the position. The legend shows
the average geometric distance between the capture point of each test
image (ground truth) and the capture point of the nearest neighbour of
the map.

Although FS, 2D-DFT and gist-Gabor present final values
of precision which are similar, the descriptor based on gist
shows a better performance regarding the geometric distance
to the image retrieved from the map, obtaining similar results
than rotational PCA. It is important to highlight that, for some
experiments, it is not possible to have an error d < 10cm, due
to the resolution of the grid and the position of the capture
points of the test images (e.g. some test images are in the
middle of the 40 x 40 cm grid of the map). To know how
significant these rates are, the size of the environment is
shown in [49]. In order to understand the relative performance
of each localization algorithm, the size of the whole environ-
ment must be considered, since the experiments include all
the images of the map and they are not limited to individual
rooms (i.e. the localization is approached as a global local-
ization problem).

Regarding the orientation estimation, Fig. 14 presents
the error in the estimation. To evaluate the performance of the
descriptors in the orientation estimation, we consider only
the associations whose geometric localization error is lower
than 40 cm. That way, we avoid to estimate the phase lag
between images that are too far from each other and the per-
formance of each descriptor in orientation estimation is more
realistically addressed, making this study more independent
on the accuracy of the position estimation.
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FIGURE 14. Error in the estimation of orientation. Only experiments
whose geometric error in position estimation is < 40cm are considered.

The techniques that present the best results in the orien-
tation estimation are rotational PCA, gist-Gabor, gist-color
and HOG. However, we should remark that in those descrip-
tors, the phase information is sampled, either by the number
of rotations of the images included in the map (in rota-
tional PCA) or by the number of vertical cells.

The error in orientation estimation with FS and 2D-DFT is
similar. FS and PCA over FS estimate the orientation using
the same algorithm since PCA is not applied to the phase
information. The slight difference between both results is
consequence of the different associations during the position
estimation. 1D-DFT presents the highest error in the phase
estimation. Even so, it provides 80% of the experiments with
an error equal or less than 10° using only 4 terms per image.

In these experiments, the map is composed of the descrip-
tors of all the images from the different rooms. Fig. 15 shows
the size of the map using the different descriptors, including
the memory to store position and orientation information
separately. The most compact descriptor is 1D-DFT, followed
by HOG and gist descriptors. To improve the orientation
accuracy in HOG and gist, the growth of the orientation
descriptor size would be noticeable. Regarding rotational
PCA, the memory requirements include the projection basis
with the selected eigenvectors, the projection of the original
map into the new basis, and the difference of phases between
consecutive projections. As shown in Fig. 15, the information
of orientation is insignificant compared to the location. How-
ever, to improve the accuracy in orientation estimation, more
rotated siblings of each initial image should be considered
and the computational cost of the mapping process would be
even greater. Finally, we can see that after the projection to
the new basis, the database of position estimation of FS is
reduced from 29Mbytes to 4Mbytes when PCA is applied.

Fig. 16 shows the time spent in the map building and
in the pose estimation of the robot, including both position
and orientation. Regarding the map building (Fig. 16(a))
the techniques based on DFT can be considered the most
efficient, except for PCA over FS, since PCA is a compu-
tationally expensive process, being 15 times greater than FS.
Rotational PCA is the algorithm that spent more time in the
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FIGURE 15. Memory requirements to store the map, showing separately
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FIGURE 16. Time for (a) map building and (b) pose estimation.

map building task. Additionally, HOG and gist descriptors
require more time than the descriptors based on DFT, spe-
cially gist-color.

The pose estimation time, showed in Fig. 16(b), includes
the necessary time to create the descriptor of the test image,
the estimation of the position, and the orientation. HOG
and gist descriptors present similar time values to create
the descriptor. Compared to the other techniques, FS and
2D-DFT present a relatively high time in the estimation of
the pose compared to the map creation. This is due to the
estimation of the orientation, since it is a computationally
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complex process, specially in the case of FS. However, since
1D-DFT only uses 4 phase components, it is not affected
by this fact. Finally, rotational PCA is one of the fastest
algorithms in the pose estimation, since it only projects the
image into the new basis, and calculates the image distance.

B. RESULTS OBTAINED USING COLOR INFORMATION

IN THE DESCRIPTORS

In this section, the results of the position estimation and
computational requirements of each algorithm using the
color information are presented. The comparison includes
the application of the methods 1D-DFT, FS, 2D-DFT, PCA
over FS, rotational PCA, gist-Gabor and gist-color to differ-
ent color channels, to obtain a variety of descriptors. The
performance of each descriptor will be tested subsequently
in a position and orientation estimation task.

The next combinations are tested: (a) applying the
description method to each RGB channel, to obtain a unique
descriptor per scene; (b) the same to the HSV channels;
(c) appending the descriptors obtained with (a) and (b) to cre-
ate a unique descriptor; (d) applying the description method
to the intensity channel and appending the color informa-
tion using the Color Histograms (CH), as seen in (24). It is
worth highlighting that the CH information has been used
differently for each PCA based method, to adapt it to each
description method. In the case of PCA over FS, first, the FS
descriptor and CH are created, and then appended to form
a vector. After that, PCA is performed with these data vec-
tors. However, in the case of rotational PCA, the projection
of the images in the new basis is obtained first, and then
the vector CH is appended to this projection. In order to
complete the experimental evaluation, we create a version
of gist-color for grayscale space. The comparison among the
color channels is replaced by the multiscale comparison in
grayscale space. As far as the experiments are concerned,
we use the parameters included in Table 5. For the Color
Histograms, we use 8 or 16 horizontal cells depending on
the descriptor, and 32 bins per histogram. In order to limit
the number of variables when comparing the performance of
the different descriptors and color spaces, in the combination
of the greyscale descriptor and the Color Histogram (com-
bination (d), denoted as Greyscale+CH in the experiments)
we set the coefficients of the and color information, giving
them the same weight Wypariat = Weolor = 0.5). Atthe end
of the work, we include a study of the effect of varying these
weighting coefficients in the different descriptors.

Fig. 17 shows the precision in the estimation of the posi-
tion using all the combinations while building the descriptor.
According to the results, the descriptors improve their per-
formance substantially when the color information is used,
except FS with RGB, 2D-DFT with RGB+4-HSV and rota-
tional PCA using RGB+HSV. It is specially remarkable the
improvement of 1D-DFT applied to HSV, since it triples its
precision considering the T.N.N., from 19% to 57%. The
performance of HOG with CH can be also highlighted, with
a T.N.N precision over 80%.
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FIGURE 17. Precision in the estimation of the position using the color information. Results considering
(a) N.N. (b) S.N.N. and (c) T.N.N.
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The results of RGB color space show no significant
improvements with any descriptor compared to grayscale.
This is due to the high correlation between channels R, G
and B, as stated in Section III. The exception is gist-color.
As stated before, this descriptor is specially designed for the
RGB space, since it includes the color opponency comparison
of Hering (section II-D.2). When we add the information
of Color Histograms, the performance of all the descriptors
improves. 2D-DFT, HOG and gist-Gabor specially benefit
from the addition of this color information.

On a general basis, the application of the descriptors over
HSV channels presents the same or better results than over
RGB channels. The improvement is specially significant in
the case of 1D-DFT, FS and rotational PCA.

The necessary memory to store the map (position descrip-
tors), using each combination, is presented in the bar graph
included in Fig. 18. As expected, the use of RGB or HSV
color spaces triples the memory of the map, and the joint
use of both color spaces (RGB+HSV) multiplies by six.
Regarding the Color Histogram, it adds a fixed quantity of
information. PCA over the FS is the only descriptor that does
not increase the size of the map using different color spaces,
since PCA is applied to all the information that composes the
original basis, and a fixed number of eigenvectors is selected
in all the cases.

Fig. 19 shows the necessary time to build the map
(Fig. 19(a)) and to estimate the pose of the robot in this map
(Fig. 19(b)). As far as the map building task is concerned,
PCA over FS and rotational PCA are the algorithms that take
more time. This fact demonstrates again that PCA is a com-
putationally expensive process, specially when the size of the
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map increases when using RGB and HSV color spaces. Last,
gist techniques require, in general, more time than methods
based on DFT or HOG.

In the pose estimation task, methods based on PCA are
remarkably fast. Additionally, except for 1D-DFT, all the
techniques based on DFT use approximately the same time
than gist methods. HOG is a descriptor with relatively low
computational time. Regarding the color spaces, when we
increase the number of color channels, the time rises, as
expected. When we use descriptors over HSV, although the
number of channels is the same than RGB, the time increases
slightly due to the color space transformation of the original
image.

The calculation of the Color Histogram varies between
about 0.05 and 0.1 seconds depending on whether we use
8 or 16 cells per image. In the case of 1D-DFT, PCA over
FS and rotational PCA, when we add the CH, the estimation
of the pose takes more time than when we use the other color
channels. For FS and 2D-DFT, the pose estimation time using
the CH is only lower than RGB+HSV.

In general, the precision when we use the color informa-
tion is higher than using only greyscale space. HSV and
grayscale4+-CH are the methods that present the best results,
except for PCA over FS, that achieves the best performance
using RGB+-HSV.

C. ROBUSTNESS AGAINST THE PRESENCE OF
OCCLUSIONS OR NOISE IN THE TEST IMAGES
In order to complete this comparative evaluation, a set of
additional experiments is performed to test the robustness of
the descriptors. In these experiments, the effect of Gaussian
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FIGURE 19. Necessary calculation time using the color information for (a) map building and (b) position

estimation.

noise and partial occlusions in the test images is tested. These
experiments allow us to check the performance of the dif-
ferent techniques under challenging, complex and changing
environments, as it happens in real environments under real-
operation conditions.

Fig. 10 shows a test image with different percentages of
occlusion and with Gaussian noise with different variances.
These challenging test images are used in this section to test
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the performance of the descriptors. Fig. 20 shows the results
for the occlusion experiments. The horizontal axis shows the
different description combinations considered in the analysis
and, for each combination, the percentage of occlusion in
each test image.

According to the results, the descriptors that are more
negatively affected by occlusions are 1D-DFT and rotational
PCA, specially the last one. HOG and gist descriptors are less
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FIGURE 22. Channels of a sample image from the map in HSV space: original channels and with Gaussian noise.

sensitive to occlusions in the image, specially HOG using
Greyscale+CH, and gist-color using any color method. We
can highlight the performance of FS, 2D-DFT and gist-color
up to 10% of occlusion in the test image. On a general
basis, the higher percentage of occlusion, the lower precision,
as expected. However, some descriptors present a relatively
good behaviour for occlusion percentages up to 10%, such as
FS with HSV, 2D-DFT with HSV and gist-color.
Additionally, Fig. 21 shows the performance of the descrip-
tors when the test images are affected by different levels
of Gaussian noise. The horizontal axis shows the different
description combinations considered in the analysis and, for
each combination, the variance of the Gaussian noise which
is present in each test image. We can see that the HSV color
space is specially sensitive to Gaussian noise. Only HOG
along with HSV presents a precision which is similar to the
precision obtained with other color spaces. To obtain the
images with noise, the Gaussian noise is added to R, G and B
channels of each original test image separately. Fig. 22 shows
the channels H, S and V of a test image without noise and with
Gaussian noise with mean equal to zero and o = 0.0200.
We can observe that channels H and S are especially affected
by noise, doing it almost impossible to recognize the origi-
nal image. When the descriptors use the Color Histograms,
the results present a reduction of the performance when
the image present noise. Comparing the results of grayscale
and grayscale+CH, the CH improves the location precision
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only with 1D-DFT. As far as the description techniques are
concerned, FS, 2D-DFT and rotational PCA present a better
performance.

Next, we include the results in the estimation of orientation
when the test images are affected by occlusions (Fig. 23(a))
and by Gaussian noise (Fig. 23(b)). As in subsection VI-A,
the error in the estimation of the orientation is only calculated
in the experiments whose position error is equal or less than
40 cm in the map. Moreover, the orientation information is
calculated only from the greyscale space. First, regarding
occlusions, methods based on the DFT present a significant
increase of the error. Results show that, for 40% occlusion,
the error doubles compared to the original test images (with
no occlusion). This is specially significant in the case of
1D-DFT. Rotational PCA shows the best performance in the
orientation estimation. In the case of gist-Gabor, the average
error is below 3° for any occlusion level of the test image.
HOG and gist-color present a similar precision, with a mean
error lower than 8°. Second, about the presence of Gaussian
noise, the most affected descriptors are gist-Gabor and PCA
over FS. The orientation error in gist-Gabor is specially high,
multiplying by 6 the mean error when the noise variance is
0.020. Techniques based on DFT (except for PCA over FS)
present little variation when the test image is affected by
noise, with a similar error in all the cases. Finally, HOG and
gist-color present a better performance in the orientation esti-
mation when the image presents noise than with occlusions.
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FIGURE 23. Orientation error when the test images present (a) occlusions and (b) Gaussian noise.

Finally, an experiment has been conducted to study the
effect of considering different weighting factors in (24) when
combining the greyscale descriptor and the Color Histogram
(denoted as Greyscale+CH). Figure 24 includes the precision
in localization for all the descriptors using Greyscale + CH
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when the weighting coefficients vary. On a general basis, the
precision is higher when the combination Wypasiai — Weolor
is 0.5 — 0.5 or 0.6 — 0.4. However, in 1D-DFT we can see
that the results improve when w,,, increases. The reason is
that this spatial descriptor is very compact and contains little
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FIGURE 24. Precision in the estimation of the position for Greyscale + CH space varying the weighting coefficients.

information about the scene. On the contrary, gist descriptors
and PCA over FS present a better performance when wypasial
is higher, specially in the Nearest Neighbour experiments.

VIi. CONCLUSION
In this work, the role of color information in the construction
of global-appearance descriptors has been explored. A com-
plete comparative evaluation has been carried out to uncover
the performance of a variety of description methods and
color channels in a pose estimation task. This evaluation has
included the calculation time and the memory requirements
of the different descriptors in the creation of a dense map,
and the time consumed and precision in the estimation of
the position and orientation of a robot in this map. Also, the
robustness of these methods against the presence of noise or
occlusions has been studied.

Next, we gather the main conclusions of this evaluation:

Position estimation and computational requirements

« In general, the use of the color information improves the
performance of the descriptor in the localization task.
This happens with all the description techniques.

o The color space HSV provides better results than RGB,
except when the test images are affected by Gaussian
noise.
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When the Color Histogram information is appended to
the descriptors, the percentage of correct localization
improves (comparing it with the case of using only the
information in the grayscale space).

Except for the FS and 2D-DFT, the computational cost
that supposes appending the Color Histogram informa-
tion is higher than if the color information is obtained
by applying the descriptor over RGB and/or HSV
channels.

The combined use of RGB+HSV does not mean an
improvement in the localization performance compared
to the use of only a color space (RGB or HSV), but
it supposes a significant increase of the computational
requirements (both time and memory).

Rotational PCA presents high precision in the pose esti-
mation task, although the computational requirements
make it infeasible for the task of dense map building in
large environments. Moreover, together with PCA over
FS, they are the only techniques that do not permit us
building the map incrementally (i.e. all the images to be
included in the map must be available initially). When
a new image must be added to the map, PCA must be
carried out with all the images (including the new one)
from the scratch.
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HOG presents a good trade-off between precision and
computational requirements, specially when we intro-
duce the Color Histogram to the descriptor. Moreover,
it is a very compact descriptor.

1D-DFT is the most compact descriptor using any color
space. Although the precision of position estimation is
low when we use only the grayscale image and the RGB
color space, the precision increases to 58% when we
use HSV. It becomes an interesting descriptor if the
algorithm application has important restrictions of time,
and specially, memory.

The FS and 2D-DFT present a reduced computational
cost during the map building process. However, the nec-
essary memory to store the map is high compared to the
rest of descriptors, and so the calculation time for the
pose estimation is, because of the orientation estimation
algorithm.

Gist-color shows a better performance in the local-
ization task than gis-Gabor, although it also needs
more time during the map building and pose estimation
processes.

The gist descriptors need more time than the descrip-
tors based on the DFT in the map building process,
although they lead to maps whose size is substantially
lower.

Estimation of the orientation

o Regarding the estimation of the orientation, all the

descriptors present an average error lower than 8° when
the test image is not affected by occlusions or noise.
The DFT-based techniques produce a higher error in
orientation estimation compared to the other description
techniques.

However, it is worth noting that the angular resolution
depends directly on the information included in the
descriptor in the case of gist, HOG and rotational PCA,
since it is sampled. This resolution can be increased
at the expense of increasing the size of the descriptor
and the calculation time both to build the map and to
solve the orientation estimation problem. Therefore, in
those descriptors, the phase information is less flexible
and more sensitive than the descriptors based on DFT.

Localization when the test images present partial occlusions

o In general, the effect of the occlusions is more signifi-

cant when we use the color spaces than using grayscale
images. However, the different descriptors still present
a better performance using color spaces than greyscale
space.

Gist and HOG are the techniques which are less affected
by occlusions. The results obtained with the combina-
tions HOG using grayscale4+-CH, and gist-color over
RGB and HSV are specially remarkable.

In the orientation estimation, the DFT-based descriptors
are the least robust against the presence of occlusions in
the test images, specially 1D-DFT. However, except this
descriptor, the average error remains below 8°.
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Localization when the test images present noise

o The Gaussian noise remarkably affects the channels Hue

and Saturation in the space HSV. This implies a signifi-
cant reduction in the localization precision when we use
the color space HSV and RGB+HSV.

Descriptors based on the DFT, rotational PCA and gist-
color present the lower reduction in the precision when
noise is present in the test images.

In the estimation of the orientation, only PCA over FS
and gis-Gabor show an important increase in the error.
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