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ABSTRACT The in-network caching is a considerably significant feature of Information-Centric Net-
working (ICN), especially the heterogeneous-cached ICN has been widely investigated since it accords
with the actual network deployment. For the heterogeneous-cached ICN, although there have been many
proposals to improve network performance, it is very difficult for these approaches to reach the optimal
network performance with multiple metrics consideration. Therefore, in this paper, we propose a heuristic
transferring strategy which selects some Content Routers (CRs) and combines them to facilitate the optimal
network performance under a constrained total cache budget. At first, we quantify energy consumption, CR
load, cache hit ratio and throughput, because the optimal network performance depends on four objects,
i.e., minimizing energy consumption and CRs load as well as maximizing cache hit ratio and throughput.
Then, based on the given network constraints and objects, we convert the CR transferring problem into
0-1 Knapsack Problem (KP01). Finally, in order to effectively obtain the optimal solution, we propose a
heuristic approach based on Ant Colony Optimization (ACO) and expectation efficiency to solve KP01. The
simulation is driven by the real YouTube dataset from campus networkmeasurement over GTS andDeltacom
topologies, and the experimental results demonstrate that the proposed strategy is more efficient compared
to three baselines.

INDEX TERMS Heterogeneous ICN, transferring strategy, KP01, ACO, expectation efficiency.

I. INTRODUCTION
Information-Centric Networking (ICN) has attracted much
attention from the global research communities in the past
decade (2009-2019) due to its clean-slate architecture [1], [2].
To the best of our knowledge (according to the rough statistics
referring to ACM, IEEE, Springer and Elsevier databases),
the overwhelming majority of ICN achievements belong to
the category of caching because the in-network caching is
a considerably significant and differentiated feature of ICN.
In addition, the in-depth study on ICN caching can greatly
not only improve network performance and but also enhance
Quality of Experience (QoE) of users. For example, a good
caching policy, which pulls the frequently used contents to
be cached at the edge Content Routers (CRs) can reduce the
delivery delay and make users obtain the requested content in
a relatively short time. We might as well do an assumption
where there is no further research on the caching except

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

the inherent ICN caching strategy [3]. If so, on one hand,
the name-based ICN routing perhaps cannot show the effi-
cient interest forwarding and content delivery; on the other
hand, it is very difficult to find the appropriate application
scenarios (e.g., edge computing [4], big data [5] and 5G [6])
for ICN. As a conclusion, the research on ICN caching has
the non-negligible value.

The caching strategies usually involve four types of
research categories [7], i.e., what are the cached contents,
how to cache the contents, how many contents are cached
and which CRs are exploited. To be specific, the first one
pays attention to the caching of hot contents based on pop-
ularity prediction, content replacement, caching granular-
ity or others; the second one studies the on-path/off-path
caching, the collaborative/non-collaborative caching, the dis-
tributed/centralized caching or others; the third one focuses
on the cache allocation which distributes different CRs for
different cache sizes; the last one concentrates on the CRs
transferring which selects and combines some CRs from all
CRs. In fact, the cache-enabled CR is very expensive and
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energy-cost. For example, a CR with 10TB cache can cost
30,0000 dollars and consume 500W at the full work [8].
It means that the research on cache allocation and CRs
transferring is more significant than that on the other two
problems. However, some practical conditions conduct that
the CRs transferring should be in a more formal sense com-
pared to the cache allocation. On one hand, if all CRs are
opened and used to cache the contents during the process
of work, it is very wasteful because the cache utilization of
some CRs is very low. On the other hand, the demander
(consumer) of ICN network usually pays a constrained and
fixed total cache budget while hopes to obtain the optimal
network performance and QoE of users.

By reviewing the above statements, CRs Transferring
Problem (CTP) is described as: selecting some CRs from all
CRs and combining them to facilitate the optimal network
performance under a constrained total cache budget. In this
paper, we use four common evaluation metrics (i.e., energy
consumption, CR load, cache hit ratio and throughput) to
measure the optimal network performance, that is, minimiz-
ing energy consumption and CR load as well as maximiz-
ing cache hit ratio and throughput. It is obvious that CTP
is subject to the multi-objective optimization. In order to
simply and effectively solve the multi-objective optimization
problem with a total cache budget, we convert it into 0-
1 Knapsack Problem (KP01) [9]. From the mathematical
perspective, KP01 is an NP-hard problem which is addressed
by two types of approaches, i.e., exact approach and heuristic
approach. Although the exact approach can always produce
the optimal solution, it performs the poor convergence when
deploying the large-scale ICN network. Under such context,
the heuristic approach is usually employed to solve KP01.
In fact, the existing heuristic approaches include the gen-
eral heuristics with the self-established rules (e.g., expec-
tation efficiency [10] and differential evolution [11]) and
the intelligent heuristics with the ready-made natural laws
(e.g., bee colony algorithm [12] and butterfly optimization
algorithm [13]), in which the former shows good execution
efficiency and the latter shows the relatively optimal solution.
Given this, we plan to integrate their advantages and design a
hybrid heuristic approach for solving KP01.

This paper investigates CTP in ICN, and the main contri-
butions are summarized as follows. (i) We quantify energy
consumption, CR load, cache hit ratio and throughput and
use them as four evaluation metrics of the optimal network
performance. (ii) Based on minimizing energy consumption
and CR load as well as maximizing cache hit ratio and
throughput, we convert the multiple-objective optimization
problem into KP01. (iii) We propose a heuristic approach
based on Ant Colony Optimization (ACO) and expectation
efficiency to solve KP01 so that the optimal solution (network
performance) can be obtained effectively.

The rest paper is structured as follows. Section II
reviews the related work. In Section III, CTP is presented
and analyzed. Section IV introduces a heuristic approach
for the optimal solution. The experimental results are

reported in Section V and finally Section VI concludes this
paper.

II. RELATED WORK
There have been lots of caching strategies. In this section,
we review the related work from four aspects, what are the
cached contents, how to cache the contents, how many con-
tents are cached and which CRs are exploited.

Many strategies on what are the cache contents have been
proposed. In terms of cache replacement, in [14], a content
popularity and user locality based cache replacement strategy
was devised, which put the hot contents at the appropriate
CRs by analyzing the user locality. In [15], an energy-
efficient cache replacement strategy was proposed by ana-
lyzing contents distribution and users distribution. In [16],
authors proposed a fluid-based strategy for cache replace-
ment, in which the fluid dynamics theory to reveal the time-
evolving formulation process of request influences for a
CR. Furthermore, in terms of other perspectives, in [17],
an object-oriented packet caching was proposed, where the
caching granularity was the packet-level rather than the
whole content. In [18], authors explored the possibilities of
improving the storage efficiency of the cache space based on
global detour algorithm instead of the more common latency
improvement so that the cache space was utilized to its most.
In [19], a distributed probabilistic caching strategy was intro-
duced, in which each CR made cache decision individually
and cached the passing content with a certain probability.

Some approaches on how to cache the contents have also
been proposed. For example, in [20], authors presented a
proactive selective neighbor caching approach to enhance
mobility support, by a simple procedure for selecting the
appropriate subset of neighbors which considered the mobil-
ity behavior of users. In [21], a collaborative caching scheme
was proposed to maximize the overall hit ratio by partitioning
content space and hash-routing. In [22], inspired by taking an
orthogonal approach by pro-actively eliminating redundancy
via an independent intra-AS procedure, authors proposed an
intra-AS cache cooperation scheme to effectively control the
redundancy level and allow neighbor CRs to collaborate in
serving each other’s requests. In [23], a collaborative on-path
and off-path caching policy was devised, in which the on-
path CRs optimally stored the requested contents and were
supported by a strategically placed central off-path CRs for
the additional level of caching. In [24], a lightweight regional
cache collaboration approach was proposed to share the pop-
ular contents among small-range CRs with the least cache
information exchanges. It enabled collaborators to exchange
the aggregated prefixes instead of data structures to fun-
damentally reduce the collaborating cost of communication
and maintenance. In [25], a Bloom filter based collaboration
caching approach was devised. It considered different forms
of caching for different types of contents by setting the con-
tent lift time in accordance with its request frequency.

A number of cache strategies on how many contents are
cached have also been investigated. For example, in [26],
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the in-network optimal content placement and cache allo-
cation problem was formulated by the linear programming.
It took into account capacity constraints on the downlink and
uplink for provisioning the cache. In [27], a two-steps mech-
anism based on economics and game theory was proposed
to solve heterogeneous cache allocation problem, where a
predefined payment rule by auctions was used to decide the
selling price of the storage unit. In [28], a practically feasible
centrality-based heuristic method was leveraged to obtain the
sub-optimal cache location in the SPT-tree rather than the
dynamic programming in the exact method. In particular,
it preferred the top centrality node as cache location, which
dramatically reduced the computing complexity of finding
the cache location. In [29], a utility-driven cache partitioning
approach was devised to do cache allocation among multiple
content providers. It partitioned a cache into a lots of slices
and each one is dedicated to a particular content provider.
In [30], authors proposed a max-min utility fairness scheme
for distributing cache resources under the context of video
delivery, based on the benefit of individual user and the rele-
vance of video. In [31], a heuristic algorithm with threshold
was designed to allocate cache resources reasonably, where
the chunks with high popularity were cached at the leaf-
CRs. In [32], authors regarded cache resource allocation as
the convex programming relaxation problem. Then, they used
game theory to solve it by combining with a distributed
gradient estimation scheme.

Regarding which CRs are exploited, there have also been
a few proposals. The previous researches usually concentrate
on two views, i.e., edge caching and intermediate caching. For
example, in [33], an edge caching with mobility prediction
was proposed, which put the contents at the edge CRs as
many as possible. In [34], a centrality-measures based scheme
was proposed to select the core CRs; and in [35] the density-
based spatial clustering was exploited to detect the core CRs,
which put the contents at the intermediate CRs. Different
from [33]–[36] fully considered their advantages and pro-
posed a heuristic greedy strategy, which cached the most pop-
ular contents at the edge CRs, recalculated the relative popu-
larity of each piece based on the request miss stream and then
determined the contents to be cached at the core CRs. In spite
of this, they did not really pay attention on CTP. To the best of
our knowledge, there are almost no researches on it and some
possible reasons are listed as follows. (i) From the network
perspective, most researchers maintain that some edge CRs
or/and some intermediate CRs can satisfy the caching of
contents. (ii) In terms of consumer, most deployments assume
that the cache resources are sufficient. (iii) In a mathematical
sense, CTP is an NP-hard problem and the optimal network
performance is easy to be ignored. However, the research on
CTPwith themulti-objective optimization is an indispensable
part in the practical scenarios, which motivates this paper.

III. CTP MODELLING
This section includes three parts. At first, we formalize CTP
with four performance evaluation metrics. Then, we quantify

TABLE 1. Abbreviations in alphabetical order.

these four metrics. At last, we convert CTP into KP01. In par-
ticular, to make the readers more easily follow this paper,
the frequently used abbreviations are listed in Table 1.

A. CTP FORMALIZATION
In this paper, the heterogeneous-cached ICN topology with
n CRs is expressed as G = (V ,E,C), where V is the set of
CRs, E is the set of edges and C is the set of cache capacities.
Here, V , E and C are defined as follows.

V = {CRi|1 ≤ i ≤ n}

E = {eij|1 ≤ i, j ≤ n}

C = {ci|1 ≤ i ≤ n}

where ci is the allocated cache size. In addition, as the cache
scenario is heterogeneous, it exists ci 6= cj.

Before modelling CTP, we first give the definition of CTP,
as follows.
Definition 1 (CTP):Given a constrained total cache budget

Cgt ,mCRs are selected and combined to facilitate the optimal
network performance, where m < n and

∑n
i=1 ci = Cgt .

As a matter of fact, the optimal network performance in
Definition 1 is an abstract object. To embody the abstract
object, it requires to employ several metrics for the evaluation
of network performance. In this paper, we use energy con-
sumption, CR load, cache hit ratio and throughput to evaluate
the network performance. Based on this, the optimal network
performance is concluded as obtaining the smallest energy
consumption and CR load besides the highest cache hit ratio
and throughput.

Let eci, loi, hri and tpi denote the consumed energy, load,
cache hit ratio and throughput in terms of CRi respectively,
and we have the definition of optimal network performance,
as follows.
Definition 2 (Optimal Network Performance): Given

xi = {0, 1}, here xi = 0 means that CRi is selected otherwise
not, and four objects need to be optimized, that is,

Minimize Etotal =
∑n

i=1
ecixi

Minimize Ltotal =
∑n

i=1
loixi

Maximize Htotal =
∑n

i=1
hrixi

Maximize Ttotal =
∑n

i=1
tpixi

(1)
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where Etotal , Ltotal , Htotal and Ttotal are the consumed energy,
load, cache hit ratio and throughput in terms of the whole
network respectively.

With Definition 2 consideration, the Definition 1 is re-
described in mathematic, as the following formula.

Subject to
∑n

i=1
cixi ≤ Cgt

Minimize Etotal,Ltotal
Maximize Htotal,Ttotal

(2)

B. METRICS QUANTIFICATION
This section builds models for four metrics. At first, we quan-
tify eci. As a rule, the consumed energy at CR depends
on the transmitted traffic and the fixed configuration [37],
where different network devices are configured with different
details. In fact, the same network usually deploys the same
network devices due to the convenient implementation, thus
the main concern on the modelling of energy consumption is
related to the transmitted traffic. Regarding the relationship
between energy consumption and traffic, we consider it as
the linearity. Given this, eci is defined as follows.

eci = Pti + ξ trai (3)

whereP is the fixed power of CR, ξ is the consumed energy in
cased of processing a bit traffic, trai is the transmitted traffic
via CRi, and ti is the working time of CRi.
Then, we quantify loi that is expressed by the traffic, and

we have

loi = trai (4)

which indicates that the larger traffic causes more serious
load.

Next, we quantify hri which is defined as follows.

hri =
N suc
i

N rec
i

(5)

where N rec
i is the number of interest requests received by

CRi and N suc
i is the number of interest requests successfully

satisfied by CRi.
At last, we quantify tpi which is defined as the processed

quantity of traffic per unit time, and we have

tpi =
trai
ti

(6)

In summary, equations (3), (4), (5) and (6) show the embod-
ied forms of energy consumption, CR load, cache hit ratio and
throughput respectively.

C. KP01 CONVERSION
According to the above, we know that CTP tries to optimize
four objects with a constraint, which is considerably complex.
Thus, we convert it into KP01 for the convenient and simple
computation. Let gpi denote the generated performance at
CRi, and we have

gpi ∝ (eci, loi, hri, tpi)

which is an abstract formula. As four metrics have different
units, we use the min-max method [38] to standardize eci, loi,
hri and tpi, and the results are denoted by ec′i, lo

′
i, hr

′
i and tp

′
i

respectively. By reviewing equations (3-6), we observe that
eci, loi and tpi are linearly proportional to trai, while hri is
not related to trai. Based on this, we modify gpi as follows.

gpi = αhr ′i + β(tp
′
i − ec

′
i − lo

′
i) (7)

where α and β are two important parameters.
LetOptotal denote the total network performance, and CTP

is converted into KP01, as follows.Subject to
∑n

i=1
cixi ≤ Cgt

Maximize Optotal =
∑n

i=1
gpi

(8)

Combine KP01, and we redescribe CTP as follows. Given
n CRs, where CRi owns ci and gpi, and a knapsack holds a
fixed capacityCgt , the goal of KP01 is to select some possible
CRs to be loaded into knapsack so that the total network
performance generated by the selected CRs is the optimal
while the total cache size of these CRs is not larger than Cgt .

IV. HEURISTIC STRATEGY
In this section, we introduce a hybrid heuristic strategy to
solve the converted KP01. To be specific, ACO [38], [39]
is used to select some initial CRs which are removed from
knapsack no longer and the improved expectation efficiency
model is used to determine which CRs can be loaded into
knapsack in terms of the remaining CRs.

A. PRELIMINARY
In [10], we have proposed an efficient and effective strategy
based on expectation efficiency to solve KP01, including two
stages. At first, a greedy degree model (please see equation
(2) in [10] for details) inspired by greedy strategy is devised
to selectQ items (called CRs in this paper) as the initial deter-
mination; in particular, the selected items are never removed
from the knapsack at the later stage. Then, the expectation
efficiency model (please see equation (8) in [10] for details)
is devised to select some items from the remaining n−Q items
and put them into the knapsack, in which each item owns
one expectation efficiency value. In spite of this, the strategy
still exits two limitations that have been mentioned. On one
hand, the determination of Q is imprecise enough, because
some item that belongs to these Q items is not the part of
the optimal solution while it is loaded into the knapsack,
which can cause the large deviation with the optimal solution.
On the other hand, the number of calculations with respect to
expectation efficiency model is n − Q which is high (that is
to say, computing expectation efficiency value for each item,
especially for the last some items is unnecessary), at the same
time, the model’s formula is a little complex (that is to say,
the slightly simpler formula should be devised). As a result,
we optimize the two points in this paper.
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B. ACO FOR INITIAL CRs
We improve ACO and use it to determine the initial Q
CRs. For ICN topology, let ri denote the influence rate of
CRi (the large ri means that CRi has the high probability
to be loaded into knapsack), and it is defined as a ratio
between the generated performance and the allocated cache
size, as follows.

ri =
gpi
ci

(9)

Let costij denote the weight of eij, and we have

costij =
1

|ri − rj|
(10)

The updating of pheromone is considerably important for
ACO. Let τij(I ) denote the total pheromone over eij after
I iterations, according to the discrete updating strategy of
pheromone, we have

τij(I ) = (1− ρ)τij(I − 1)+ aphij(I ) (11)

where ρ is a volatilization coefficient of pheromone,
1 − ρ is a residual factor of pheromone and aphij(I ) is the
pheromone accumulated by a number of ants after the I -th
iteration. Assume that there areNa ants, for any ant antλ (here
1 ≤ λ ≤ Na), and aphij(I ) is defined as follows.

aphij(I ) =
Na∑
λ=1

aphλij(I )yλ (12)

where yλ = {0, 1}, here yλ = 1 means that antλ goes through
eij otherwise not, and aphλij(I ) is the pheromone over eij left
by antλ after the I -th iteration. Next, we define aphλij(I ) by
considering two perspectives: one is the ant behaviors and
the other one is the inherent features of ICN. Let Lλ and hopj
denote the total cost traversed by antλ within one iteration and
the hop count between interest requester and content provider
respectively, and we have

aphλij(I ) = κ
1

hopjLλI
(13)

where κ is a regulatory factor to avoid the situation where
hopjLλI becomes too large or small.

For the forwarding probability of antλ, it is related to the
pheromone but not limited to the pheromone. If the forward-
ing probability only relies on the pheromone, the solution is
easy to trap in the local optimum. Given this, we need to
find another factor to conduct the possibility of the diverse
forwarding. Based on the situationwhere all CRs are arranged
by ri in descending order, let dij denote the location distance
between CRi and CRj, and we have

dij = |di − dj| (14)

where di and dj are the location numbers of CRi and CRj
respectively.

Based on pheromone and location distance, let fpλij(I )
denote the forwarding probability of antλ from CRi and CRj,
and we have

fpλij(I ) =
[τij(I )]ν[dij]ω∑

CRk∈Awλi
[τik (I )]ν[dik ]ω

(15)

where Awλi is a set of CRs which can be used to receive antλ;
ν and ω are the inspired factors of pheromone and location
distance respectively. In particular, both large pheromone and
location distance can further conduct the forwarding of ant.

We introduce the method of determining Q based on ACO
as follows. At first, we arrange n CRs by ri in descending
order, in which the location number of CRi is probably not
equal to i. Let c′i denote the allocated cache size of CR
whose location number is i, we have the following constraint
condition.

Cgt −
θ∑
i=1

c′i ≥ 0 (16)

Then, for each location number, if inequality (16) is sat-
isfied, we can obtain some shortest paths, and each shortest
path corresponds to a location number. It is obvious that the
number of shortest paths is equal to θ ; in other words, ACO
is used for θ times. Finally, for θ location numbers, we regard
the location number whose shortest path value is the minimal
as Q. According to the above statements, the pseudo-code of
Q determination is described in Algorithm 1, where Imax is
the maximal number of iterations for each usage of ACO.
In particular, the first ‘‘for’’ handles each location, the second
one handles each iteration of ACO, the third one handles each
CR and the last one handles each ant.

Algorithm 1 Q Determination Based on ACO
Input: Na ants, Cgt , G
Output: Q
01: for i = 1 to Q, do
02: for I = 1 to Imax , do
03: for j = 1 to n, do
04: for λ = 1 to Na, do
05: Compute τij(I ) with equation (11);
06: Compute dij with equation (14);
07: Forward antλ with equation (15);
08: endfor
09: endfor
10: endfor
11: Obtain one shortest path and one location number;
12: if inequality (16) is not satisfied, then
13: Break;
14: endif
15: Obtain Q shortest path values;
16: Q = the location number whose shortest path value
is smallest;
17: endfor
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C. EXPECTATION EFFICIENCY FOR REMAINING CRs
As the above mentioned, to compute expectation efficiency
values for the last some CRs is unnecessary. In addition,
by reviewing equation (8) in [10], its format is a little complex
and also need to be optimized. Thus, we improve expectation
efficiency model and use it to determine which remaining
CRs can be loaded into the knapsack.

1) COMPUTATION OPTIMIZATION
Given a boundary ψ , if

∑ψ

i=1
c′i ≤ Cgt∑ψ+1

i=1
c′i > Cgt

is satisfied, it means that the maximal greedy degree is ψ .
On this basis, we scan the following n− ψ CRs, if

c′i > Cgt −
ψ∑
i=1

c′i, ψ + 1 ≤ i ≤ n (17)

is satisfied, it means that the i-th CR cannot be loaded into
knapsack. Suppose that the number of CRs which satisfy
constraint condition (17) isQ′, and the number of calculations
with respect to expectation efficiency model is n − Q − Q′

rather than the pervious n− Q.

2) FORMULA OPTIMIZATION
Based on the above symbols and computation optimiza-
tion, the expectation efficiency model in [10] is defined as
follows.

eefi

=
ri
ri−1

∗

ri−1
(
Cgt−

∑Q
k=1 c

′
k −

∑i−1
k=Q+1 c

′
kxk
)
−(n−i+1)gp′i(

Cgt−
∑Q

k=1 c
′
k−
∑i−1

k=Q+1 c
′
kxk
)
−(n−i+ 1)c′i

,

i ∈ [Q+ 1, n]− A (18)

where A is a set of CRs which satisfy constraint
condition (17).

In fact, ri/ri−1 is a ratio of two influence rates and it is used
to coordinate the second part of equation (18); ri−1(Cgt −∑Q

k=1 c
′
k −

∑i−1
k=Q+1 c

′
kxk ) is used to evaluate the corre-

sponding network performance generated by the rest cache
size. Instead, ri/ri−1 is removed and the ri−1 of ri−1(Cgt −∑Q

k=1 c
′
k −

∑i−1
k=Q+1 c

′
kxk ) is optimized by referring to these

CRs which have been loaded into knapsack. Let gfr denote
the global influence rate in case of loading the i-th CR into
knapsack, and we have

gfri =

∑Q
k=1 gp

′
k +

∑i
k=Q+1 gp

′
kxk∑Q

k=1 c
′
k +

∑i
k=Q+1 c

′
kxk

(19)

Let eef ′ denote the improved expectation efficiency value
of the i-th CR, and the simplified model is defined as

follows.

eef ′i

=

gfri−1
(
Cgt−

∑Q
k=1 c

′
k−
∑i−1

k=Q+1 c
′
kxk
)
−(n−i+1)gp′i(

Cgt−
∑Q

k=1 c
′
k−
∑i−1

k=Q+1 c
′
kxk
)
−(n−i+1)c′i

,

i ∈ [Q+ 1, n]− A (20)

Based on computation optimization and formula optimiza-
tion, the improved expectation efficiency strategy for han-
dling the remaining n−Q−Q′ CRs is introduced as follows.
At first, n−Q−Q′ expectation efficiency values are computed
according to equation (20) and are arranged in descending
order. Then, the corresponding CRs are put into the knapsack
one by one while the total cache size cannot exceed Cgt .
The pseudo-code of the improved expectation efficiency is
described in Algorithm 2.

Algorithm 2 The Improved Expectation Efficiency
Input: Q, Cgt
Output: Optotal
01: for i = Q+ 1 to n, do
02: if constraint condition (17) is not satisfied, then
03: Compute eef ′i with equation (20);
04: else
05: Continue;
06: endif
07: endfor
08: n = n− Q− Q′;
09: Arrange these expectation efficiency values;
10: for j = Q+ 1 to n, do
11: Put the j-th CR into knapsack;
12: if the total cache size exceeds Cgt , then
13: Break;
14: endif
15: Optotal = gp′j +

∑Q
i=1 gp

′
i;

16: endfor

V. SIMULATION RESULTS
A. SETUP
The proposed Heuristic transferring strategy based on ACO
and Expectation Efficiency (HAEE) is implemented via two
parts: one is the implementation of CTP based on NS3 [40]
and the other one is the implementation of KP01 based on
Visual Studio, running on a personal computer with Intel(R)
core(TM)i5-6200u, CPU2.92 GHZ, 4GB RAM. The simula-
tion is driven based on the real YouTube dataset [41], of which
the collection of trace comes from a campus network mea-
surement, including 18751 user requests, 13764 short videos
and 2377 hosts. In particular, the performance evaluation is
done over GTS topology (149 nodes and 193 edges) [42] and
Deltacom topology (113 nodes and 183 edges) [43], as shown
in Figs. 1 and 2 respectively.

Furthermore, we compare the proposed HAEE with three
the-state-of-the-art mechanisms, i.e., edge caching [33], core
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FIGURE 1. Europe-GTS with 149 nodes and 193 edges.

FIGURE 2. USA-Deltacom with 113 nodes and 183 edges.

caching [34] and greedy caching [36], called Baseline in
Future Generation Computer Systems (BFGCS), Baseline
in Multimedia Tools and Applications (BMTA) and Base-
line in Computer Networks (BCN) respectively. In addi-
tion, Average Energy Consumption (AEC), Average CRs
load (ACL), Average Cache Hit Ratio (ACHR) and Aver-
age Throughput (AT) are considered as four evaluation met-
rics. In terms of comparison experiments, we divide these
18751 interest requests into five intervals in chronological
order. For each interval, we extract 400 interest requests,
i.e., [1,400], [3751,4150], [7501,7900], [11251,11650] and
[15001,15400] and report the corresponding experimental
results. As shown in Table 2, we give the settings for the
involved simulation parameters.

TABLE 2. Simulation settings.

B. CACHE COMBINATION ANALYSIS
In order to test the proposedHAEE,we give the cache deploy-
ment of two topologies at first. To be specific, the nodes are
numbered from left to right and top to bottom, and the cache
size of each node is allocated varying from 50M to 100M in
a random style. In this way, the heterogeneous-cached ICN
topologies are completed. In addition, the constrained total
cache budget is set as 6809M in GTS topology and 4792M in
Deltacom topology. Based on the above, the allocation results
and combination results with respect to two topologies are
shown as follows.

(i) Cache allocation results overGTS:C= {CR1,CR2, · · · ,
CR148,CR149} ={ 59, 81, 91, 91, 98, 90, 88, 76, 97, 54, 70,
73, 67, 94, 56, 60, 76, 61, 52, 53, 75, 92, 77, 75, 88, 98, 68,
56, 82, 51, 63, 71, 70, 93, 94, 77, 90, 94, 97, 74, 65, 77, 79,
66, 68, 73, 64, 58, 73, 68, 82, 90, 69, 77, 85, 95, 71, 63, 90,
64, 94, 75, 55, 96, 66, 78, 56, 96, 79, 87, 72, 71, 93, 94, 55,
77, 54, 71, 90, 55, 84, 82, 65, 89, 77, 50, 66, 54, 88, 90, 71,
50, 53, 90, 78, 76, 76, 97, 68, 73, 54, 68, 54, 88, 93, 77, 92,
81, 76, 68, 89, 71, 99, 73, 89, 68, 99, 79, 83, 92, 50, 83, 72,
96, 77, 88, 73, 60, 95, 99, 75, 72, 50, 51, 80, 64, 56, 81, 67,
68, 92, 84, 70, 82, 97, 97, 89, 78, 87}.

(ii) Cache allocation results over Deltacom: C =

{CR1,CR2, · · · ,CR112,CR113} ={ 59, 81, 91, 91, 98, 90, 88,
76, 97, 54, 70, 73, 67, 94, 56, 60, 76, 61, 52, 53, 75, 92, 77,
75, 88, 98, 68, 56, 82, 51, 63, 71, 70, 93, 94, 77, 90, 94, 97,
74, 65, 77, 79, 66, 68, 73, 64, 58, 73, 68, 82, 90, 69, 77, 85,
95, 71, 63, 90, 64, 94, 75, 55, 96, 66, 78, 56, 96, 79, 87, 72,
71, 93, 94, 55, 77, 54, 71, 90, 55, 84, 82, 65, 89, 77, 50, 66,
54, 88, 90, 71, 50, 53, 90, 78, 76, 76, 97, 68, 73, 54, 68, 54,
88, 93, 77, 92, 81, 76, 68, 89, 71, 99}.

(iii) Combination results over GTS: Q = 57, and the
corresponding set of CR numbers is {19, 18, 10, 92, 134, 112,
50, 1, 114, 83, 75, 13, 148, 65, 63, 71, 93, 86, 31, 106, 100,
137, 47, 149, 27, 111, 84, 122, 79, 4, 55, 108, 82, 56, 28, 54,
94, 39, 87, 52, 89, 95, 34, 96, 11, 126, 98, 128, 6, 64, 66, 5, 8,
41, 110, 105, 104}. The number of CRs loaded into knapsack
by expectation efficiency model is 31, and the corresponding
set of CR numbers is {124, 44, 48, 57, 140, 7, 109, 40, 146,
136, 68, 99, 62, 90, 135, 127, 43, 78, 35, 116, 70, 107, 119,
131, 14, 132, 12, 22, 36, 46, 123}.

(iv) Combination results over Deltacom: Q = 37, and the
corresponding set of CR numbers is {19, 18, 10, 92, 112,
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FIGURE 3. The change of Optotal over GTS.

FIGURE 4. The change of Optotal over Deltacom.

FIGURE 5. Average energy consumption over GTS in terms of different
experiment numbers.

50, 1, 83, 75, 13, 71, 63, 86, 31, 106, 100, 93, 65, 111,
47, 27, 4, 79, 108, 84, 55, 82, 54, 28, 56, 39, 87, 89, 94,
95, 96, 52}. The number of CRs loaded into knapsack by
expectation efficiency model is 23, and the corresponding set
of CR numbers is {34, 11, 64, 5, 8, 41, 98, 110, 66, 6, 105,
44, 57, 104, 48, 7, 109, 40, 68, 99, 90, 62, 78}.

Furthermore, according to the computation results gen-
erated from the testing of YouTube dataset and the cache
allocation results, we report the corresponding change of
Optotal in Figs. 3 and 4.
In Fig. 3, Optotal of GTS topology is obtained by the

combination of 88 CRs, via 131 iterations. Among them,
the first 57 iterations mean that Q = 57 based on ACO and
the corresponding 57 CRs are loaded into knapsack one by
one; the following 43 iterations mean that it only requires
43 CRs (smaller than 149-57 = 92 CRs) to be performed by

FIGURE 6. Average energy consumption over Deltacom in terms of
different experiment numbers.

expectation efficiencymodel; the last 31 iterations means that
only 31 CRs can be loaded into knapsack. Similarly, in Fig. 4,
Optotal of Deltacom topology is obtained by the combination
of 60 CRs, via 98 iterations. Among them, the first 37 itera-
tions mean thatQ = 37 based on ACO and the corresponding
37 CRs are loaded into knapsack one by one; the following
38 iterations mean that it only requires 38 CRs (smaller than
113-37= 76 CRs) to be performed by expectation efficiency
model; the last 23 iterations means that only 23 CRs can be
loaded into knapsack.

C. COMPARISON ANALYSIS
1) AVERAGE ENERGY CONSUMPTION
The energy consumption is obtained by equation (3). AECs
of HAEE, BFGCS, BMTA and BCN over GTS and Deltacom
topologies in terms of five different experiments are reported
in Figs. 5 and 6. We observe that the proposed HAEE always
has the smallest AEC, followed by BFGCS, BCN and BMTA.
To be specific, HAEE uses the smallest number of CRs
to reach the optimal network performance. On one hand,
the consumed energy due to opening CRs is the smallest; on
the other hand, the cache utilization rate in terms of these
selected CRs is the highest, and there is no more congested
traffic consuming energy. As a result, HAEE has the optimal
AEC. For the three baselines, BFGCS only caches the con-
tents at the edge CRs and most CRs are not opened, which
saves a lot of energy. Thus, BFGCS has smaller AEC than
BMTA and BCN. For the remaining two baselines, BMTA
considers centrality measures including closeness centrality,
reach centrality, degree centrality and betweeness centrality,
which requires to transmit the traffic via most CRs and obtain
the measured results. Given this, BMTA has larger AEC than
BCN.

2) AVERAGE CRs LOAD
The total CRs load is obtained by equation (4). ACLs of
HAEE, BFGCS, BMTA and BCN over GTS and Deltacom
topologies in terms of five different experiments are reported
in Figs. 7 and 8. We observe that the proposed HAEE always
has the smallest ACL, followed by BMTA, BCN and BFGCS.
Similar to the pervious section, HAEE aims to facilitate the
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TABLE 3. The average reduced rate of traffic over GTS and Deltacom in terms of different experiment numbers (%).

FIGURE 7. Average CRs load over GTS in terms of different experiment
numbers.

FIGURE 8. Average CRs load over Deltacom in terms of different
experiment numbers.

optimal network performance including CRs load which is
related to the traffic. Because KP01 is exploited to select
the most appropriate combination of CRs, HAEE has the
highest ability to handle the transmitted traffic. It is obvious
that HAEE has no the load pressure and thus has the optimal
ACL. Different from the previous section, BMTA has smaller
ACL than BCN and BFGCS, this is because it analyzes the
global network traffic by considering closeness centrality,
reach centrality, degree centrality and betweeness centrality,
which causes that HAEE has higher efficiency to transmit the
traffic than BCN and BFGCS. Thus, HAEE faces the lighter
load than BCN and BFGCS. For the last two baselines, BCN
has higher transmission efficiency for traffic than BFGCS,
because it first puts the popular contents at the core CRs and
then puts the secondary popular contents at the edge CRs. The
relatively comprehensive combination of core caching and
edge caching can greatly relieve CRs load, thus BCN has
smaller ACL than BFGCS.

Furthermore, Table 3 shows the average reduced rate of
traffic which is defined as the difference between 1 and
the ratio of ACL and the YouTube dataset size (166GB).
We observe that the average reduced rate of HAEE can reach

FIGURE 9. Average cache hit ratio over GTS in terms of different
experiment numbers.

73.4% over GST and 76.42% over Deltacom in case of the
late stage, which further indicates that the proposed HAEE
has the satisfactory performance optimization on CRs load.

3) AVERAGE CACHE HIT RATIO
The cache hit ratio is obtained by equation (5). ACHRs of
HAEE, BFGCS, BMTA and BCN over GTS and Deltacom
topologies in terms of five different experiments are reported
in Figs. 9 and 10. We observe that the proposed HAEE
always has the highest ACHR, followed by BCN, BMTA and
BFGCS. In particular, ACHR of HAEE can reach around
99.43% over GTS and 99.51% over Deltacom, which sug-
gests that these selected CRs based on network analysis,
ACO and expectation efficiency can create the satisfactory
ACHR. Different from BMTA and BFGCS, BCN leverages
the collaboration of edge caching and core caching, of which
the distributions of interest requests and user locations are
considered. In addition, if the core CRs do not be matched,
the edge CRs play the important role to try their best to
satisfy these requests, because the edge CRs always cache
the secondary popular contents. In other words, BCN almost
caches the frequently used contents at the network while
the corresponding caching locations are dynamic. Given the
above statements, BCN has higher ACHR than BMTA and
BFGCS. As the above section mentioned, BMTA analyzes
many network factors and it can satisfy interest requests at the
most extent. Thus, BMTA has higher ACHR than BFGCS.

4) AVERAGE THROUGHPUT
The throughput is obtained by equation (6). ATs of HAEE,
BFGCS, BMTA and BCN over GTS and Deltacom topolo-
gies in terms of five different experiments are reported
in Figs. 11 and 12. We observe that BFGCS has the largest
AT, followed by HAEE, BCN and BMTA, that is to say,
the proposed HAEE only has the suboptimal AT. The reasons
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FIGURE 10. Average cache hit ratio over Deltacom in terms of different
experiment numbers.

FIGURE 11. Average throughput over GTS in terms of different
experiment numbers.

on why BFGCS has the largest AT are concluded as two
aspects. On one hand, BFGCS uses cloud computing and 5G
techniques to accelerate the transmission of traffic although it
faces the most serious CRs load. In other words, the low delay
results in the large AT. On the other hand, HAEE introduces
ACO to determine the number of CRs loaded into knapsack
in advance, which increases the certain network delay. For
HAEE, BCN and BMTA, although HAEE introduces ACO,
its AT is always larger than BCN and BMTA. Two related
reasons are listed as follows. At first, HAEE has smaller ACL
than BCN and BMTA, which can be found from Figs. 7 and 8.
Then, BCN considers the collaboration of edge caching and
core caching while BMTA considers closeness centrality,
reach centrality, degree centrality and betweness centrality,
both of them analyze the total traffic, which consumes much
more time compared to the introduction of ACO. As a result,
HAEE has larger AT than them. For the remaining two base-
lines, BMTA only caches the contents at the core CRs and
facesmore serious CRs load, thus it has smaller AT thanBCN.

D. DISCUSSION
By reviewing the experimental results reported in
Section V-C, we know that the proposed HAEE has the opti-
mal network performance on AEC, ACL and ACHR as well
as the suboptimal AT. Although HAEE does not reach the
optimal network performance on AT, it has the close perfor-
mance to BFGCS and reaches around 8.3Gb/s over GTS and
8.8Gb/s over Deltacom when the interest requests are stable.

FIGURE 12. Average throughput over Deltacom in terms of different
experiment numbers.

However, under the condition where the network bandwidth
is 10Gb/s, the obtained AT by HAEE is considerably accept-
able. In fact, we also can exploit other techniques to accelerate
the transmission of traffic similar to BFGCS that uses cloud
computing and 5G, such as DPDK (Data Plane Development
Kit) [44] by bypassing the kernel and network coding by
improving cache utilization rate. In summary, by evaluating
the above four metrics, we think that the proposed HAEE can
facilitate the optimal network performance.

VI. CONCLUSION
This paper investigates CTP of ICN to facilitate the opti-
mal network performance, i.e., obtaining the minimal energy
consumption and CR load as well as the maximal cache hit
ratio and throughput. In terms of the multi-objective opti-
mization problem, we convert it into KP01 based on the given
network constraints and four objects. Furthermore, we pro-
pose a hybrid heuristic strategy to solve KP01 including two
parts. At first, we improve ACO and use it to determine
the number of CRs loaded into knapsack in advance. Then,
we improve the expectation efficiency model via compu-
tation optimization and formula optimization to select how
many and which CRs can be loaded into knapsack from the
remaining CRs. The proposed heuristic transferring strategy
is simulated based on the real YouTube dataset over GTS and
Deltacom topologies, and the comparison experiments reveal
that the proposed strategy outperforms three the-state-of-the-
art benchmarks in terms of energy consumption, CR load,
cache hit ratio and throughput.
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