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ABSTRACT The emerging Internet of Underwater Things (IoUT) and deep learning technologies are com-
bined to provide a novel, intelligent, and efficient data processing and analyzing schema, which facilitates
the sensing and computing abilities for the smart ocean. The underwater acoustic (UWA) communication
network is an essential part of IoUT. The thermocline, in which temperature and density change drastically,
affects the connectivity and communication performance between IoUT nodes, as well as the network
topologies. In this paper, we propose DeepOcean, a deep learning framework for spatio-temporal ocean
sensing data prediction, which consists of a generative module and a prediction module. We implement the
generative module with a multi-layer perceptron (MLP) to capture the spatial dependencies and construct
high-resolution data based on sparse observations. The prediction module is implemented with our proposed
Multivariate Convolutional LSTM (MVC-LSTM) neural network, which captures both the spatio-temporal
dependencies and the interactions of different oceanographic features for prediction. We evaluate the
effectiveness of DeepOcean with Argo data, where the proposed framework outperforms fifteen state-of-art
baselines in terms of accuracy.

INDEX TERMS Internet of Underwater Things (IoUT), deep learning, spatio-temporal prediction,
multivariate convolutional LSTM (MVC-LSTM) neural network, thermocline.

I. INTRODUCTION
The Internet of Underwater Things (IoUT) is the network
of interconnected underwater systems, which is envisioned
to facilitate a variety of applications, such as oceanographic
data collection, pollution monitoring, offshore exploration,
disaster prevention, assisted navigation, and tactical surveil-
lance [1]. Due to the challenging nature of communication in
the ocean environment, underwater acoustic (UWA) commu-
nication plays an essential role in the networking of various
underwater systems in an IoUT. Since the speed of sound in
an ocean environment is mainly affected by the temperature,
salinity, and pressure, the distribution of these oceanographic
features determines the attenuation, reflection, refraction, and
scattering of UWA waveforms, which results in a complex
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convergence zone and shadow zone distribution of a UWA
IoUT. The complex distribution of convergence zones and
shadow zones determines the connectivity and communica-
tion performance between IoUT nodes, as well as the network
topologies. Thus, learning the distribution and dynamics of
these oceanographic features could be beneficial to the devel-
opment of IoUT networking strategies.

According to the acoustic velocity, the ocean can be verti-
cally divided into three layers: the surface layer (0 to∼100m),
the thermocline layer (∼100 to∼600m), and the deep isother-
mal layer (600+m) [2]. The sound velocity increases with the
depth in the surface layer, and then drastically decreases with
the depth in the thermocline, and finally slowly increases with
the depth in the isothermal layer [3]. Thus, as the refraction
rate of acoustic waveform changes with the depth, and total
reflection could happen when the acoustic wave is propa-
gating at the boundary area between layers from a specific
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direction. For example, at the boundary area between the
surface layer and thermocline layer, the acoustic waveform
rays from a source IoUT node in a shallow water area could
split into two folds. The rays with a larger pitch angle to
the direction of gravity propagate along a convex curve until
being reflected by the surface, and then it propagates within
the surface layer and never be able to penetrate the thermo-
cline layer. On the other hand, the rays with a smaller pitch
angle to the direction of gravity propagate along a concave
curve after penetrating the thermocline layer. Thus, there will
be a shadow zone in the deep area around 5km away from
the source, which significantly affects the topology of the
IoUT, because IoUT nodes in the shadow zonewill not be able
to receive the UWA communication signal from the source
node.

In the thermocline, temperature, salinity, and density
change drastically [4], [5]. Defined by temperature gradients,
the thermocline changes with geographic location (longitude,
latitude), depth, and time. The design of routing and media
access control strategy in underwater sensor networks can
benefit a lot from the precise prediction of thermocline distri-
butions [6]. We formulated the prediction of thermocline as a
regression problem.

Existing prediction models mainly include data-driven sta-
tistical models and deep learning-based models. Mathemati-
cal and statistical models, including Kalman Filters, Support
Vector Regression, and K-Nearest Neighbors, are commonly
applied for prediction. These methods have better perfor-
mance in prediction and ideal time complexity. However,
these methods cannot capture the spatial dependencies and
the evolution of the dependencies on the temporal domain
simultaneously [7].

In recent years, deep learning techniques have made sig-
nificant achievements in areas such as natural language pro-
cessing, which encourages researchers to apply deep learning
techniques to spatio-temporal prediction problems. With the
development of sensing technologies, the massive volume
of observations is available for model training. Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) are the two most popular techniques among
deep learning techniques [8]. In [9], CNN is applied to traffic
speed prediction problems for the capabilities of extracting
abstract spatial features predicting future states. RNNs are
utilized to learn the temporal dependencies for predicting
the traffic speed of a single location from historical traf-
fic time series [10]. However, CNNs and RNNs consider
either the spatial dependencies or temporal dependencies,
so they do not apply to spatio-temporal prediction problems.
In [11], the authors propose a graph-based RNN (SRNN) for
short-term traffic prediction. By incorporating feature vectors
containing spatial dependencies into the RNN sequence, all
the spatial and temporal dependencies are jointly learned.
Zhang et al. propose a deep spatio-temporal residual net-
work (ST-ResNet) in [12] to predict the human flow in the
area. They summarized the spatio-temporal dependencies

of regional traffic and modeled each feature using a deep
residual network. In [13], the authors propose a scalable
graph convolutional deep learning architecture (GCDLA)
to forecast the wind-speed time series of the whole graph
nodes. By modeling the wind farms as an undirected graph
and using LSTM, the proposed architecture captures both
temporal and spatial features. He et al. proposed STCNN,
which employees a general encoder-decoder architecture
based on ConvLSTM units [8]. The encoder is composed
of ConvLSTM and Skip-ConvLSTM, which explores the
global spatio-temporal dependencies. The decoder utilizes
the learned spatio-temporal hidden states from the encoder
to make spatial and temporal predictions.

These methods have excellent performance in spatio-
temporal predictions, but most of them are designed for 2-D
terrestrial scenes and do not apply to 3-D ocean scenes com-
posed of longitude, latitude, and depth. Besides, the sparsity
that arises from the difference between terrestrial IoT and
IoUT of raw observations is ignored. In [14], the authors con-
sider the 3-D structure of the ocean and propose a model of
multi-layer ConvLSTM (M-convLSTM) to predict the ocean
temperature. However, the authors also failed to consider
the impact of data sparseness on marine-related applications.
We can learn from the encoder-decoder structure to solve the
problem of data sparsity in ocean time-series predictions by
capturing the data dependencies [15].

In this paper, we propose DeepOcean, a deep learn-
ing framework for predicting oceanographic feature dis-
tributions, which consists of a generative module and a
prediction module. The generative module is implemented
with a multi-layer perceptron (MLP), which learns spatial
dependencies and constructs high-resolution datasets based
on sparse observations. The prediction module is imple-
mented with our proposed Multivariate Convolutional LSTM
(MVC-LSTM) neural network. By stacking multivariate
spatio-temporal observations into fixed-dimensional repre-
sentations and coupling ConvLSTMs and Conv3Ds into a
single framework, MVC-LSTM further captures the hidden
correlation among different features. Besides, MVC-LSTM
also maintains the consistency of the input and output forms,
avoiding the loss of edge information.

The effectiveness of DeepOcean is demonstrated using one
representative and challenging task: thermocline prediction
with raw observations. We choose the task because 1) the
prediction of the thermocline is a spatio-temporal task, whose
position and shape differ according to geographical location
(longitude, latitude), depth, and time; 2) historical observa-
tions are generally sparse while the predictions require inputs
of high-resolution, which can reflect the data sparseness of
the IoUTs. We predict the accordingly temperature profiles
to infer the position of thermoclines. This task, therefore,
illustrates the capacity of DeepOcean to learn hidden depen-
dencies and predict future states.

The task is evaluated with collected data or exist-
ing datasets. We compare DeepOcean to state-of-the-art
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algorithms that perform the time-series predicting tasks.
Experimental results reveal that DeepOcean outperforms
other methods in terms of accuracy.

The main contributions are as follows:
1) Propose DeepOcean, a general time-series predicting

framework that accommodates a wide range of appli-
cations based on raw, sparse historical observations.

2) Implement the generative module with a multi-layer
perceptron to model both nearby and distant spa-
tial dependencies of historical observations to build
high-resolution datasets for the reason that IoUTs are
by nature sparse network structures.

3) Implement the prediction module with our proposed
Multivariate Convolutional LSTM (MVC-LSTM) neu-
ral network and creatively stack the observation
sequences of different variables into a multivariate
matrix, capturing the hidden dependencies including
spatio-temporal dependencies and interactions of dif-
ferent features, to predict future states and changing
trends. MVC-LSTM keeps all the spatial informa-
tion and interactions between multivariate observations
throughout the predictions.

4) Evaluate DeepOcean using Argo data. The results
reveal the effectiveness of DeepOcean compared with
fifteen state-of-art baselines.

The remainder of this paper is organized as follows: In
Section II, we introduce related work on Recurrent Neural
Networks and time-series predicting researches. We describe
the proposed DeepOcean in Section III. The evaluation and
discussions are presented in Section IV and sectionV. Finally,
we conclude in Section VI.

II. RELATED WORK
The prediction of ocean sensing data can be formulated as
a regression problem. There are several conventional meth-
ods, including linear regression, logistic regression, ridge
regression, and support vector regression. Jiang et al. exploit
SVR for regressive predictive analysis [16]. Gou et al. apply
the KNN regression algorithm to predict ocean temperature
and salinity [17]. Most of these methods do not consider
the spatio-temporal dependencies of the ocean, or they only
consider the temporal variability of a specific position but
ignore the dynamic spatial correlations.

Recently, deep learning has become one of the most pop-
ular technologies in time-series prediction tasks, such as
traffic flow prediction, citywide crowd flows prediction, and
weather forecasting [12], [18], [19]. Recurrent neural net-
works with Long Short Term Memory (LSTM) architec-
ture have been successfully applied to various supervised
sequence learning tasks [20]. Sutskever et al. presented
a general end-to-end approach to sequence learning that
makes minimal assumptions on the sequence structure [21].
Based on LSTM, Xingjian et al. proposed the convolutional
LSTM (ConvLSTM) and used it to build an end-to-end train-
able model for the precipitation nowcasting problem [22].
Sagheer and his colleagues proposed a deep learning

approach capable of addressing the limitations of traditional
forecasting approaches and showing accurate predictions.
The proposed approach is a deep long-short term mem-
ory (DLSTM) architecture as an extension of the traditional
recurrent neural network. The genetic algorithm is applied
in order to configure DLSTM’s optimum architecture [23]
optimally. In [24], Althelaya et al. studied the integration of
deep learning methodologies into stock market forecasting.
They evaluated and compared several variants of Deep Recur-
rent Neural Network based on LSTM and GRU. Ghaderi
and some other researchers proposed a framework to model
the spatio-temporal information by a graph whose nodes are
data-generating entities and its edges model how these nodes
are interacting with each other [25].

Recurrent neural networks (RNNs) and LSTM architec-
tures are employed to process sequential data. Deep learning
techniques are widely utilized to predict seawater temper-
atures. Zhang et al. (2017) take sea surface temperature
prediction as a time-series prediction problem. They adopt
the LSTM architecture to predict sea surface temperature
(SST) [26]. The method proposed by Yang et al. includes
a fully connected LSTM layer (FC-LSTM) and a convo-
lutional neural network layer. They combined both spatial
and temporal information to improve the prediction perfor-
mances [27]. This paper proposes a general deep learning
framework for time-series predictions, which considers both
the spatio-temporal dependencies and the interactions of dif-
ferent oceanographic features. As a result, it improves the
prediction accuracy.

Many researchers are working on the thermocline recently.
Peng et al. researched the responsibilities of the thermo-
cline depth to the El Niño-Southern Oscillation (ENSO)
events [28]. They found that the response of the thermocline
depth in the South China Sea to the ENSO events is mainly
caused by the sea surface buoyancy flux and the wind stress
curl. Jiang et al. calculated the depths of the upper thermo-
cline boundaries in the South China Sea based on the sea
temperature profiles of China Ocean Reanalysis from 1986 to
2008. Seasonal variation characteristics of the thermocline
are also revealed in their paper [29].

To the best of our knowledge, DeepOcean is the first uni-
fied time-series prediction framework that considers the spe-
cialty of ocean observations, including the spatio-temporal
dependencies, the internal relationships between oceanic fea-
tures(such as temperature and salinity), and the sparsity of
the observations. Moreover, it is the first research focused on
predicting the position of the thermocline.

III. FRAMEWORK
In this section, we introduce DeepOcean, a general deep
learning framework for ocean time-series sensing data pre-
diction. Our proposed DeepOcean, as shown in Fig. 1,
mainly consists of a generative module and a predic-
tion module. The generative module is the same for all
applications, which learns spatial dependencies and con-
structs high-resolution datasets based on sparse multivariate
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FIGURE 1. Main architecture of DeepOcean. The generative module is implemented with a multi-layer perceptron
(MLP), which consists of an input layer, an output layer, and n hidden layers with hidden neurons. The prediction
module is implemented with our proposed Multivariate Convolutional LSTM (MVC-LSTM) neural network, including
the input layer, ConvLSTM layers, Batch Normalization layers, Conv3D layer, and output layer.

observations. The prediction module further captures both
the spatio-temporal dependencies and the interactions of dif-
ferent oceanographic features for predictions based on the
previously constructed high-resolution datasets.

A. GENERATIVE MODULE
The generative module is implemented with a multi-layer
perceptron (MLP), which is useful when there are (unknown)
relationships between the inputs and the outputs. Fig. 2
demonstrates the structure of the MLP and algorithm 1 shows
how we construct high-resolution datasets using MLP. MLP
consists of several neurons, which are clustered into an input
layer, an output layer, and n hidden layers with p hidden
neurons.

FIGURE 2. Architecture of the generative module.

In the generative module, we use A to denote the matrix
of historical observations, which is further divided into a
spatio-temporal feature submatrix X and a variable sub-
matrix S. Let (x, t) ∈ X denotes a piece of space-time
coordinate in X , which contains spatio-temporal informa-
tion and uniquely identifies an oceanographic feature vector
s(x, t) ∈ S. Equation 1 denotes the relationship ofA,X , and S.

A = [X;S] (1)

The input matrix X to the generative module consists of
nsamples×p elements, where nsamples is the number of observa-
tions and p represents the number of spatio-temporal features
in one piece of observation. The variable submatrix S contains
nsamples×q elements, where q is the number of oceanographic

features in feature vector s(x, t). MLP learns non-linear trans-
formation functions for each of these p features to represent
the spatio-temporal dependencies from input to output.

Let set F denotes all non-linear transformation functions
learned from input X to each vector si in matrix S, and f̂i
denotes the optimal non-linear transformation function in set
F for feature si. The hidden layers and neurons are trained
according to these p input coordinates and their correspond-
ing output variables. We hope that the non-linear transforma-
tion function fi(·) : Rp → R can better represent the spatial
dependencies from inputs to outputs. Through the optimal
model f̂i we can get a predicted output ŷ, corresponding to
a piece of observation y ∈ si. We use DH to denote the
high-resolution dataset constructed by the generative mod-
ule, which contains nhighResolution × (p + q) elements in
total. Similarly, nhighResolution is the number of samples in a
high-resolution dataset. Noting that the generative module
constructs high-resolution datasets for all variables inV using
MLP, which will be used in data prediction at the prediction
module.

In this paper, the space-time coordinate (x, t) =

(xlongitude, xlatitude, xdepth, torder ), where xlongitude, xlatitude,
xdepth, and torder represent the longitude, latitude, depth,
and order of the variables to be predicted, respectively.
The corresponding variable set is denoted as s(x, t) =
{stemperature, ssalinity}. Thus the number of input features p of
MLP is 4, and the number q is 2. Noting that the torder refers
to the month order starting from January 2004.

Like most neural network algorithms, more hidden layers
and neurons mean better learning performance. However,
more hidden layers and neurons also increase the possibility
of overfitting. We adopted L2 regularization as a penalty and
added θ = 1

2‖w‖
2 to the objective function to reduce the

generalization error and the risk of overfitting.

B. PREDICTION MODULE
In order to have more accurate and robust prediction
results, we propose the Multivariate Convolutional LSTM
(MVC-LSTM) neural network to implement the predic-
tion module. As demonstrated in Fig. 3, our MVC-LSTM
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FIGURE 3. The structure of the proposed Multivariate Convolutional LSTM (MVC-LSTM) neural network.

can be generally divided into four components: input
layer, ConvLSTM layer, Conv3D layer, and output layer.
By stacking multivariate spatio-temporal observations into
fixed-dimensional representations and coupling ConvLSTMs
and Conv3Ds into a single framework, MVC-LSTM captures
not only the spatio-temporal dependencies but also the hidden
correlation among different features. We customize the filter
number and size of the ConvLSTM layer and the Conv3D
layer according to specific applications and different inputs.

In the leftmost input layer, sequences of specified variables
at a position in the generated high-resolution dataset DH
are stacked into AH , which is a matrix of m variables at n
depths and contains m × n elements. aij ∈ AH is the value
of the i− th variable at the j− th depth. Comparing aij to
a pixel in a single-channel image, we can view the matrix
as a three-dimensional tensor that has only one channel. The
adopted time step length and the number of variables jointly
decided the numbers and size of the tensors. For a thermo-
cline prediction task in this paper, the matrix AH contains
high-resolution sequences of temperature and salinity at the
same longitude and latitude, while the depths of different
samples are different.

Besides are the ConvLSTM layers. Batch normaliza-
tion is applied at each layer to reduce the internal covari-
ate shift [30]. Convolutional LSTMs (ConvLSTM) are the
main components of our proposed MVC-LSTM. ConvLSTM
has convolutional structures in both the input-to-state and
state-to-state [22] connections. We can regard all the
inputs S1, . . . ,St , cell outputs C1, . . . , Ct , hidden states
H1, . . . ,Ht , and gates it , ft , ot of the ConvLSTM as 3D
tensors whose first two dimensions are spatial and vari-
able dimensions, the last dimension is the temporal dimen-
sion. The outputs of ConvLSTM cells depend on the inputs
and actual states of local neighbors. The key equations of
ConvLSTM are as follows, where ’∗’ denotes the convolu-
tion operator, ’◦’ denotes the Hadamard product, and ’σ (·)’
denotes the logistic sigmoid function.

it = σ (Wxi ∗ St +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi) (2)

ft = σ (Wsf ∗ St +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf ) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wsc ∗ St +Whc ∗Ht−1 + bc)

(4)

Ht = ft
⊙

mt−1 + it
⊙

ct (5)

ht = ot ◦ tanh(Ct ) (6)

We use convolution filters of different sizes to capture
the interactions among variables and spatio-temporal depen-
dencies at different scales (spatial and temporal). A larger
filter can learn the changing trends of a larger area and in a
more extended period. Meanwhile, a larger convolution filter
means that more information about the interaction between
variables can be learned each time. While the smaller filters
mainly capture the closeness in both spatial and temporal
dimensions. The network depth, filter number, and filter sizes
are customized in different applications — the customizable
representative ability of our MVC-LSTM better prediction
accuracy.

After multiple convolution operations, the input size
becomes smaller and smaller. Besides, the marginal data
have fewer impacts on the output than those central data,
because the convolution operation ends when it moves to
the edge. The data in the center will participate in multiple
operations, but the data at the edge may only participate in
one operation, which leads to the loss of edge information.
To ensure the output of the i− th layer, that is, the input of the
(i + 1) − th layer, has the same size as the input tensor,
and retain the edge information, padding is employed before
applying the convolution operation, which allows the filter
to go outside the border of its input [12], padding each area
outside the border with a zero.

MVC-LSTM structure also includes a 3D convolution
component (Conv3D). The Conv3D layer takes the multivari-
ate spatiotemporal features learned by the ConvLSTM layer
as input, and further extracts more global spatio-temporal
relationships between different features. Besides, the 3D con-
volution transforms the number of output channels and maps
the prediction results to an output space that has the same
shape as the input.

The output layer returns the prediction result of 3D
convolution, which has the same size as input tensor.
MVC-LSTM keeps all the spatial information and inter-
actions between multivariate observations throughout the
predictions. By stacking multiple ConvLSTM and Conv3D
layers, the entire structure has strong abilities in representing
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spatio-temporal dependencies and interactions of various
features. Therefore, our proposed MVC-LSTM has good
performances in complex spatio-temporal data predictions.
Section IV-C gives the empirical evaluations and discussions.

IV. EXPERIMENTS
In this section, we first introduce the datasets used in the ther-
mocline prediction tasks. Subsequently, the method of how to
select the optimal model is introduced. Finally, we compare
DeepOcean with several baseline algorithms in the thermo-
cline predicting tasks. The experimental results show that
the proposed DeepOcean architecture outperforms the state-
of-art time-series prediction methods in this task.

Experiments are mainly run on a single GTX 1080Ti GPU.
We implement our models in Python with the help of Tensor-
Flow and Keras libraries.

The proposed DeepOcean framework is implemented
using TensorFlow and Keras with GPU acceleration to speed
up the training process. The models run on a single-GPU
computer system with an NVIDIA GTX 1080Ti GPU and a
3.5 GHz CPU.

A. DATASETS
The data used in this experiment is from the Global Ocean
Argo Grid Data Set (BOA_Argo) [31]. The grid dataset pro-
vides monthly average temperature and salinity data from
January 2004 to December 2017 covering the global ocean
(180◦W–180◦E, 80◦S–80◦N). The spatial resolution is 1◦×1◦

horizontally and is unevenly divided into 58 standard layers
from 0–1975m in vertical.

The experimental area (165.5◦E–179.5◦E, 0.5 ◦N–9.5◦N,
0–500 m), locates at the tropics and is suitable for the ther-
mocline research and analyzation, is selected to speed up
the training of DeepOcean. That is, the experimental area is
a 15(Longitude)×10(Latitude)×35(Depth) space-time grid.
In this area, the large temperature difference between the
sea surface and the deep sea leads to an evident thermocline
phenomenon. Each sample contains features of longitude,
latitude, depth, acquisition time, temperature, and salinity.
There are 35 raw historical observations from 0-500 m.
By the generative module, we construct a high-resolution
dataset of the 1-meter interval from 0 to 500 m based on
the raw, unevenly distributed 35 samples, including the raw
observations.

B. GENERATIVE MODULE PERFORMANCES ANALYSIS
1) TRAINING AND VALIDATION DATASETS
We select the optimal model for each algorithm by cross-
validation. In this paper, we randomly divide the historical
observations into training set and test set at a ratio of 6 : 4.
We further divide the training set into five mutually exclusive
subsets of similar size to minimize the structural risk and
prevent overfitting. Each time we select a different subset as
validation subset and the other four sets as training subsets,
which provide five groups of training and validation sets.

The final result of the cross-validation is the mean of these
five evaluation values(R2) for each model. The parameters
that make the optimal model are selected based on the means.
At last, we use the test set to evaluate the optimal model of
each algorithm for comparison.

2) GENERATIVE MODULE CONFIGURATIONS
In the evaluations, the number of hidden layers is set to
five, and each layer has 200 neurons. The Rectified Linear
Unit (ReLU) is employed as the activation function of all
neurons. The Adam optimizer, with learning rate equals to
0.001, is used for gradient descent learning. The batch size is
set to 200, and the model stops training when the loss is not
improving by at least ten iterations or at maximum iterations
of 200.

The inputs to MLP contain spatio-temporal information,
including longitude, latitude, depth, and order as demon-
strated in section III-A. The outputs are the predictions
of corresponding oceanographic feature values. Generative
module trains models for both temperature and salinity,
respectively. By applying algorithm 1 to the models, the pre-
vious 15 (longitude)×10 (latitude)×35 (depth)×168 (time)
sparse grid data is constructed into a 15 × 10×501 × 168
high-resolution datasets.

Algorithm 1 Constructing High-Resolution Datasets Using
Generative Module
Require: Historical observations: A, X and S; optimal gen-

erative model f̂i ∈ F for variable si ∈ S; raw depth
oir ∈ Or ; high-resolution depth ojh ∈ Oh;corresponding
spatial information: x ilon, x

i
lat , and temporal information

t i.
Ensure: High-resolution datasets DH .
1: O← Oh − Or ;
2: repeatRandomly select a variable si from S;
3: for i = 1→ n do
4: hi = f (x ilon, x

i
lat , o

i
r , t

i);
5: Put ({x ilon, x

i
lat , o

i
r , t

i
}, hi) into DsiH ;

6: DH = DH ∪ D
si
H ;

7: end for
8: Remove si from S
9: until S = ∅
10: DH = DH ∪ A;
11: return DH for all variables;

3) EVALUATION METRICS
We employ Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and coefficient of determination R2

as the performance metrics to evaluate the models.

MAE(s, ŝ) =
1

nsamples

nsamples−1∑
i=0

∣∣si − ŝi∣∣ (7)

RMSE =

√∑nsamples
i=1 (si − ŝi)2

nsamples
(8)
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R2(s, ŝ) = 1−

∑nsamples
i=1 (si − ŝi)2∑nsamples
i=1 (si − s̄)2

(9)

where si and ŝi denote the real value and generated value of
the i− th sample, while s̄ is the mean value of all samples.

4) COMPARISON WITH BASELINES
Here we compare the performance of the proposed MLP
generative module with two other baseline methods, namely
Ridge Regression (RR) and K-Nearest Neighbors (KNN).
• Ridge Regression(RR): Ridge Regression is a tech-
nique for analyzing multiple regression data that suffer
from multicollinearity.

• K-Nearest Neighbors(KNN): Regression-based
k-nearest neighbors (KNN) method predicts the tar-
get according to the k nearest neighbors. By cross-
validation, the parameter k for temperature and salinity
analyzations are 8 and 6, respectively.

FIGURE 4. Comparisons of predicted values and real values.

Fig. 4(a) and Fig. 4(b) show comparisons of the real val-
ues (Target) and predicted values (Output) obtained through
these three methods. The x-axis and y-axis represents pre-
dicted temperature and salinity, and real temperature and
salinity, respectively. The black dotted line represents the best
case where the predicted value is the same as the real value.
The points in the figure are the values predicted through
different methods. The distance between the point and the
black dotted line represents the magnitude of the prediction
error. We can observe that KNN and MLP are better fitted to

the rules of data variation. The linear regression method RR
failed to fit the data accurately, and the predicted data results
deviated significantly from the real values.

FIGURE 5. Performances of our generative module and the baselines.
A better model should have lower MAE and RMSE, while the R2 is
closer to 1.

TABLE 1. Evaluations of different methods in predicting temperature.

TABLE 2. Evaluations of different methods in predicting salinity.

Fig. 5(a) and Fig. 5(b) show how different algorithms
perform in predicting temperature data and salinity data,
respectively. Table 1 and 2 show the detail evaluation results.
In order to ensure the fairness of the experimental results,
we select the parameters through cross-validation before
comparing the algorithms to construct models that can reflect
the optimal performances of the algorithms. The models
used for comparison can reflect the optimal performance of
the algorithm. Fig. 5(a) is a comparison of spatial predict-
ing abilities for temperature data. Compared with the other
three algorithms, DeepOcean achieves the best performance
(MAE: 0.0511, RMSE: 0.0825, and R2: 0.9932). Fig. 5(b)
is a comparison of spatial predicting abilities for salinity
data. Similar to the results of the temperature prediction
task, MLP and KNN achieved better performance than the
other two algorithms in the salinity predicting tasks. At the
same time, DeepOcean still achieves the best performance
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(MAE: 0.1577, RMSE: 0.2394, and R2: 0.9429). The com-
parison results reinforce the effectiveness of our generative
module in the DeepOcean architecture.

C. PREDICTION MODULE PERFORMANCES ANALYSIS
1) GENERATING HIGH-RESOLUTION INPUT SEQUENCES
The input sequence to the prediction module consists of
the high-resolution multivariate matrix AH of different time
step length at the same longitude and latitude, and different
depth. The selected data is from the depth of 0 ∼ 300 m.
Each single data sample has the size of 301(depth) ×
2(temperature, salinity)×n(time step length). The time inter-
val between adjacent time steps is a month. From 2004 to
2017, the constructed high-resolution data sequence has a
size of 301 × 2 × 168, and the 301 high-resolution values
are generated from 26 raw observations by our generative
module.

Different time step length affects the prediction perfor-
mance of the model. We construct data sequences with dif-
ferent time step lengths. When setting time step length to n,
the size of the data sequence from time t to t − n + 1 is
301×2×n, and the size of the predicted value at time t+1 is
301×2×1. We stack n+1 matrix into a sequence as a group
of sample, and its size is 301×2× (n+1). In a slide-window
manner, (168−n+1) samples with the size of 301×2×(n+1)
can be obtained from a 301 × 2 × 168 high-resolution data
sequence in total. In the following experiments, we use the
last 36 samples as the test sets each time.

2) PREDICTION MODULE CONFIGURATIONS
There is an input layer, two ConvLSTM layers, two Batch
Normalization (BN) layers, a Conv3D layer, and an output
layer in our proposed MVC-LSTM model. Settings of the
filter size, filter number, and network depth will be discussed
in section IV-C.5. Conv3D layer has the filter size of 2×2×2.
Batch Normalization (called BN) layers normalize the acti-
vations of the previous layer at each batch and accelerating
network training [32]. In the training process, the momentum
of BN is set to 0.99. Adam optimizer, which has a learning
rate of 0.001, is used for gradient descent learning. The batch
size is set to 32, and the model is trained in epochs of 600.

3) EVALUATION METRIC
We measure the proposed method and the baselines by Root
Mean Square Error (RMSE) as shown in equation 8.

4) COMPARISON WITH BASELINES
In this section, we predict the temperature at time t
based on previously constructed high-resolution sequences.
Table 3 shows the RMSE of all baselines and our proposed
MVC-LSTM. Intuitively, we display the evaluations of these
methods and the time steps they need in Fig. 6, respectively.
Note that we choose different time step lengths for different
methods for comparison because different model attains its

TABLE 3. Comparisons with baselines on historical observations.

FIGURE 6. Comparison of MVC-LSTM and other baselines with different
time step length using RMSE. The smaller the better.

best performance with the lowest RMSE at different time step
length.

The lines in Fig. 6 represent the 15 baselines and our
MVC-LSTM. The x−axis denotes the length of the time step.
The y − axis is the evaluations. For different input lengths,
we observe that M-DGRU and M-DLSTM are worse than
other methods. For the same predicting task, a smaller time
step refers to better learning ability and less dependence on
input length. As can be seen in Fig.6, RNN, GRU, LSTM,
B-RNN, M-GRU, MVC-LSTM require shorter time steps to
achieve their best performances. However, the RMSE of these
methods is 2.58 times to 3.34 times than that of MVC-LSTM.
This result reveals the role of a reasonable network structure
in reducing computational network complexity. In summary,
with a more reasonable network structure, MVC-LSTM fur-
ther releases the storage and computing resources under the
premise of improving the prediction accuracy.

5) RESULTS OF DIFFERENT MVC-LSTM VARIANTS
We here present the results of different MVC-LSTM variants,
including changing filter size, filter number, and network
depth.
• Different Filter Size. The filter size determines the
receptive field of a convolution. In this experiment,
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we change the filter size at the first convolution layer
from 4×4 to 6×6, and 2×2 to 4×4 in the second layer.
The rightmost 3D convolution layer has a filter size of
2 × 2×2 in all variants. Table 4 implies that a structure
with both lager filters for long-term dependencies and
smaller filters for short-term dependencies has lower
RMSE.

TABLE 4. Comparisons of MVC-LSTM Variants with Different Filter Size.
Each of them has two ConvLSTM layers with 50 filters, one Conv3D layer
with (2 × 2×2) 3D filters, and two BN layers.

• Different Filter Number. In the previous comparisons
of different size, we found that the ’(6× 6)-50-(2× 2)-
50-(2× 2×2)-1’ variant has a lower RMSE. Therefore,
we compare the variants with different filter numbers
based on this structure. From table 5, we can find that
more filters better result.

TABLE 5. Comparisons of MVC-LSTM Variants with Different Filter
Number. ’10’, ’30’, and ’50’ represent the number of filters at each layer.
The filter size is 6 × 6 in ConvLSTM 1, 2 × 2 in ConvLSTM 2, and 2 × 2 × 2
in Conv3D.

• Different Network Depth. Table 6 shows the RMSE
of variants with different network depths. As the num-
ber of convolution layers increases, the RMSEs of the
MVC-LSTM variants first decrease and then increase.
The changes imply that a deeper structure can better
capture the temporal dependencies and the interactions
between multiple variables. However, as the network
keeps going deep, training becomes more difficult
and confronted with a higher possibility of overfitting
(although the BN unit is adopted).

TABLE 6. Comparisons of MVC-LSTM Variants with Different Network
Depth. All three ConvLSTM layers (if exist) have 50 filters, two BN layers,
and a Conv3D layer with a 3D filter of 2 × 2 × 2.

D. PREDICTION OF THE THERMOCLINE
Thermoclines change with geographic location (longitude,
latitude), depth, and time. We define thermoclines when their
temperature gradients are higher than the critical value δ,

as shown in equation 10 and 12. Equation 11 shows how to
calculate the thickness, Hspan, of a thermocline where Htop is
the upper bound of the thermocline and Hbottom is the bottom
of the thermocline.

G(◦C/m) =
4temperature(◦C)
4depth(m)

(10)

Hspan(m) = Hbottom − Htop (11)

|GH | (◦C/m) =

∣∣∣∣THbottom − THtopHspan

∣∣∣∣ > δ (12)

FIGURE 7. Comparison of predicted temperature and real value in the
past 12 months. The blue and black solid lines represent predicted
temperature and real temperature, respectively.

FIGURE 8. Comparison of predicted temperature gradients G and real
ones in the past 12 months. The orange and black solid lines represent
predicted G and real G, respectively.

Based on historical observations, DeepOcean captures
temporal and spatial dependencies and the interactions
between variables to predict future temperature. Fig. 7 and
Fig. 8 use data at the position of 165.5◦E and 0.5◦N, and
from 0∼300 m in the past 36 months (from January 2015 to
December 2015). In Fig. 7, the blue line is the predicted val-
ues, and the black line represents real temperatures. In Fig. 8,
the orange line represents corresponding predictions, and
the black line shows the changes in temperature gradients
(4depth = 1 m). We can observe that the shapes of temper-
ature profiles change with time in Fig. 7. The temperature of
the first month (the first of the first row) changes drastically
at a depth of 100 m, while the temperature of the 12th month
(the last of the third row) at a depth of 40 m. Also, the changes
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in temperature (temperature gradient) at different times are
different. Assuming that the temperature gradient critical
value δ = 0.1, the thickness of the thermocline changes from
50m to 100m, and the upper bounds vary from 40m to 150m.
The results show that the data predicted by DeepOcean fit
the real values well and predict different trends with higher
accuracy.

V. DISCUSSION
In section IV-C.5, we have discussed the impact of different
filter numbers in MVC-LSTM. Here, we mainly discuss the
impact of network complexity on accuracy and training time,
as shown in Fig. 9. All variants have the same network
structure but different filter numbers in ConvLSTM layers.
The black dotted line represents the RMSEs of the variants,
while the bars show the training time. The red dotted line
refers to the lowest RMSE of the other 15 baseline methods.

FIGURE 9. Impact of network complexity. In this experiments, ’5’, ’10’,
’30’, ’50’, and ’100’ represent the number of filters at each layer. The filter
size is 6 × 6 in ConvLSTM 1, 2 × 2 in ConvLSTM 2, and 2 × 2 × 2 in Conv3D.

In comparison, all variants perform better than other base-
line methods (RMSE < 0.0202). Networks with more filters
can better learn input features frommore perspectives. As the
number of filters increases, the RMSE of the model first
decreases and then increases. The model achieves its optimal
performance at ’50’ filters. After that, training becomes more
difficult, and the possibility of overfitting increases.

Nevertheless, the model still performs better than the other
baselines. On the premise of acceptable prediction accuracy,
we can customize the network complexity according to the
particular requirements of training time in different applica-
tions. Some components can be removed to trade accuracy for
training time. Evaluation results show that some variants take
acceptable degradation on accuracy with less training time.

VI. CONCLUSION
In this paper, we propose DeepOcean, a general deep learn-
ing framework for ocean timeseries sensing data prediction.
The proposed DeepOcean is capable of capturing all spatial
(horizontal and vertical) and temporal (long-term and recent)
dependencies as well as interactions of different features
(e.g., temperature, salinity). We demonstrate the effective-
ness of DeepOcean using the thermocline prediction task

on BOA_Argo, where DeepOcean outperforms the other fif-
teen baselines in terms of accuracy and structural flexibility,
confirming that DeepOcean is better and more applicable to
the time-series prediction. We also compared the predictive
performance of different MVC-LSTM variants under the
same generative module. The experimental results provide
valuable insights and promising guidelines for future research
to improve the universality of the framework. For future
work, we will improve the framework and apply it to the
classification and prediction of underwater sonar images. One
possible solution is to involve the convolution-based network
structure into the generative model for better capturing the
spatial dependencies.
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