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ABSTRACT The required time for surgical interventions in operating rooms (OR) may vary significantly
from the predicted values depending on the type of operations being performed, the surgical team, and
the patient. These deviations diminish the efficient utilization of OR resources and result in the disruption
of projected surgery start times. This paper proposes a two-stage chance-constrained model to solve the
OR scheduling problem under uncertainty. The goal is to minimize the costs associated with OR opening
and overtime as well as reduce patient waiting times. The risk of OR overtime is controlled using chance
constraints. Numerical experiments show that the proposed model provides a better trade-off between
minimizing costs and reducing solution variability when compared to two existing models in the literature.
It is also shown that the three models converge as the overtime probability threshold approaches one.
Moreover, it is observed that the individual chance constraints result in the opening of fewer rooms, lower
waiting times, and shorter solution times when compared to that of joint chance constraints. A decomposition
algorithm is applied that solves large test instances of the OR scheduling problem, that of which is known to
be NP-hard. Strong valid inequalities are derived in order to accelerate the convergence speed. The proposed
approach outperformed both a commercial solver and a basic decomposition algorithm after solving all test
instances with up to 89 surgeries and 20 ORs in less than 48 minutes.

INDEX TERMS Chance constraints, mixed-integer programming, operating room scheduling, two-stage
stochastic programming, uncertainty.

I. INTRODUCTION
Health care expenditures are expected to constitute 25% of
the US gross domestic product (GDP) in 2025, an increase
from 15.9% in 2005 [21]. Surgical expenses contribute to
30% of health care expenditures and are expected to grow
from $572 billion in 2005 to $912 billion (2005-valuated dol-
lars) in the year 2025. Surgical procedures are complex tasks
requiring a variety of specialized and expensive resources.
In 2011, hospitalizations involving surgical procedures con-
stituted 29% of total hospital stays while contributing to
48% of total hospital costs in the US [33]. In light of these
reports, surgeries are recognized as the most crucial activities
performed in hospitals from a social, medical and economic
point of view.
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Several survey articles have recognized the surgery dura-
tion uncertainty as a major obstacle to developing practical
and cost-effective OR schedules [18]. This paper proposes
a chance-constrained programming model that: 1) provides
cost-effective OR schedules by considering both determinis-
tic and stochastic costs, 2) maintains a lowOR overtime prob-
ability and compares individual and joint chance constraints,
3) results in a better cost-variability trade-off compared to
two existing models in the literature and 4) solves such prob-
lems at a faster rate than the two aforementioned existing
models before applying any solution algorithms. Moreover,
a computationally efficient solution method and strong valid
inequalities are provided to facilitate timely decision-making
in the case of disruptions in the schedule.

The OR scheduling literature has been reviewed in several
survey articles [2], [18], [28]. The published literature has
been classified using several categories, including uncer-
tainty. Variable surgery duration is one of the most commonly
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TABLE 1. Research gaps in the chance-constrained OR scheduling literature.

studied sources of uncertainty by the Operations Research
community. It is shown that mitigating the impact of disrup-
tions in the schedule due to uncertainty can lead to higher
capacity utilization and lower costs [19], [20]. Hence, it is
crucial to ensure that the provided schedule works reliably in
the presence of large variability in surgery durations.

Numerous works have used stochastic programming to
model the uncertain surgery durations in the OR scheduling
problems [1], [7], [25], [32]. The majority of these models
consider optimizing the expectation of costs/revenues during
the planning horizon [10]. For problems with moderate vari-
ability, using the expected value (EV) can result in desirable
outputs. However, the obtained solutions may show poor
performance for problems displaying frequent changes in a
less predictable manner [24]. A number of articles considered
using the Conditional Value-at-Risk (CVaR) [27] to account
for undesirable realizations of the uncertain parameters [15],
[22], [29]. The CVaR function minimizes the expected tail of
costs.

Another array of articles have used the chance-constrained
programming (CCP) models [3] to address the uncertainty.
This approach mitigates the risk of disadvantageous events
(e.g., OR overtime, patient waiting time) exceeding the
specified thresholds, rather than merely minimizing their
expected value [4], [13], [35]. Shylo et al. [30] applied
chance-constraints to control the OR block overtime in the
OR surgery planning problem. Zhang et al. [36] studied
a chance-constrained OR surgery allocation problem. Deng
and Shen [4] developed a two-stage stochastic model for the
multi-server appointment scheduling problem with a joint
chance constraint on server overtime. They applied the pro-
posed model and solution approach to solve OR scheduling
problem test instances. Jebali and Diabat [11] studied the
surgery planning problem under uncertain surgery duration,
length of stay in the intensive care unit (ICU), and emergency
patient arrival. They employed chance constraints to control
the violation of ICU capacity. Wang et al. [31] proposed
a distributionally robust chance-constrained model for the
surgery planning problem with stochastic surgery durations.
Noorizadegan and Seifi [23] proposed a CCP model for the

surgery planning problem with uncertain surgery durations.
Kamran et al. [12] proposed a two-stage stochastic model
with chance constraints on OR overtime for the advance
scheduling problem. Deng et al. [5] developed a distribution-
ally robust chance-constrained model for the OR scheduling
problem. They control the risk of OR overtime and surgery
waiting using joint chance constraints.

Table 1 summarizes the selected published literature and
identifies the research gaps that are addressed in this paper.
First, it can be observed that very few articles proposed a
CCPmodel for the OR scheduling problem under uncertainty
[4], [5]. Surgery scheduling problems often have a more com-
plex structure resulting from a variety of decisions, such as
OR opening, patient-to-OR assignment, surgery sequencing,
and projected and actual start times before and after the real-
ization of random surgery durations, respectively. CCP-based
models have the potential to effectively handle such large
variabilities in daily surgery scheduling problems [18].

Second, a majority of themodels have neglected the impor-
tance of minimizing the stochastic second-stage costs. Their
primary focus has been on providing schedules within the
specified risk tolerances while also aiming to minimize deter-
ministic performance measures, such as fixed OR opening
costs [5], [23]. Unlike existing approaches, this paper pro-
poses a chance-constrained model that aims to minimize
both deterministic and stochastic costs for the OR scheduling
problem. The significance of considering both classes of costs
is highlighted using numerical experiments.

Third, we provide insightful observations about the per-
formance of three different models (CCP, CVaR and EV) in
solving the stochastic OR scheduling problem under various
risk thresholds. The proposed model is compared alongside
EV and CVaR models using several metrics such as total
costs, OR utilization and solution time. Moreover, the per-
formances of both individual and joint chance constraints are
compared in terms of OR opening decisions, minimizing the
second-stage costs and computational efficiency.

Finally a computationally efficient decomposition algo-
rithm is applied to provide high-quality solutions for the
large-scale test instances within reasonable time frames.
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TABLE 2. Sets, parameters and variables used in the model.

We proposed an algorithm to derive feasibility cuts using the
first-stage solutions that accelerates finding feasible solutions
and the convergence speed.

II. MATHEMATICAL FORMULATION
A. PROBLEM DESCRIPTION
Let I be the set of elective surgeries and R be the set of
operating rooms. The problem is to schedule surgeries over
a daily planning horizon. We assume that operating rooms
use the block booking policy [6]. Each OR is allocated to a
surgical specialty according to the master surgery schedule.
The incidence matrix E = {eir } for all i ∈ I , r ∈ R allows
specific surgery-to-OR assignments. The surgery duration is
random, denoted by a random vector δ = (δ1, . . . , δ|I |)T ∈
R|I |+ where δi shows the random duration for surgery i ∈ I .
We assume that the random surgery duration has finite and
discrete support S for δ. The probability density of each
scenario s is denoted by ps, where

∑
s∈S ps = 1. Each

realization of δ in scenario s is shown by δs = (δs1, . . . , δ
s
|I |)

T .
Every surgery on the daily booking list must be operated.
No interruption is allowed once an operation has started. It is
desired to decrease the probability of working OR overtime.
This restriction is enforced using chance constraints. Each
surgery must be assigned an OR and a projected start time.
Our goal is to minimize the sum of fixed OR opening costs
and expected costs corresponding to OR overtime and patient
waiting times.

B. CHANCE-CONSTRAINED OR SCHEDULING PROBLEM
We propose a two-stage stochastic model for the daily
OR scheduling problem with individual chance constraints

enforcing overtime restrictions on every OR. Table 2 intro-
duces the notation used in our model.

The first-stage problem involves deterministic decision
making (i.e., OR opening and surgery case assignment) prior
to the realization of uncertain surgery durations. After the
uncertain parameters are revealed, the second-stage problem
determines recourse actions (e.g., adjusting start times and
adding OR overtime) that incur additional costs to provide
meaningful schedules based on first-stage decisions. The
goal is to minimize total costs as well as satisfy the chance
constraints on OR overtime.

The first-stage problem (M1) can be formulated as follows:

min
∑
r∈R

frur (1)

x ∈ X (2)

where x = (u, y) is the vector of first-stage variables. Set X
is the resulting set from the deterministic constraints (3)-(7)
formulated as follows:

yikr ≤ ur , ∀i ∈ I , k ∈ K , r ∈ R (3)∑
k,r

yikr = 1, ∀i ∈ I (4)

yikr ≤ eir , ∀i ∈ I , k ∈ K , r ∈ R (5)∑
i

yi(k+1)r ≤
∑
i

yikr , ∀k ∈ K \ {|K |}, r ∈ R (6)

ur ∈ B|R|, yikr ∈ B|I |×|K |×|R|, ∀i ∈ I , k ∈ K , r ∈ R (7)

Objective function (1) minimizes the total cost of opening
operating rooms. Constraints (3) and (4) ensure that every
surgery will be assigned to one and only one spot in an open
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OR during the day. Constraint (5) enforces eligible surgery-
to-OR assignments. Constraint (6) determines the order of
operating surgical cases in each OR. Constraint (7) enforces
binary values for the first-stage decision variables.

The chance-constrained second-stage problem (M2) is for-
mulated as follows:

tpkr ≤ tp(k+1)r , ∀k ∈ K \ {|K |}, r ∈ R (8)

tpkr ≤ trkrs, ∀k ∈ K , r ∈ R, s ∈ S (9)

trkrs ≤ tr(k+1)rs, ∀k ∈ K , r ∈ R, s ∈ S (10)∑
k

(trkrs − tpkr ) ≤ wrs, ∀r ∈ R, s ∈ S (11)

Pr{trkrs +
∑
i

δisyikr ≥ capr : ∀k ∈ K , s ∈ S}

≤ αr , ∀r ∈ R (12)

tpkr , trkrs, wrs ≥ 0, ∀k ∈ K , r ∈ R, s ∈ S (13)

Constraint (8) determines the projected start time for each
surgery according to the sequencing decisions. Constraint (9)
ensures that each surgery starts after its projected start time.
Constraint (10) is similar to (8) in that the actual start times
must follow the sequencing decisions. Constraint (11) calcu-
lates the amount of waiting time in every OR per scenario.
The chance constraints (12) state that the surgeries assigned
to an OR must be finished during the regular hours (i.e.,
no overtime) with high probability. Constraint (13) enforces
the non-negativity of the second-stage decision variables. The
objective function of the second-stage problem is formulated
in the remainder of this section.
The set P(s) of the first-stage solutions that are made to sat-

isfy the chance-constrained second-stage problem is derived
as follows:

P(r, s) =
{
x ∈ X | ∃tp, tr : trkrs +

∑
i

δisyikr ≤ capr

}
(14)

P(s) =
⋂
r∈R

P(r, s) (15)

Proposition 1: Let αr |S| be an integer for every r. Then,
chance constraints (12) are equivalent to:

trkrs+
∑
i

δisyikr ≤ capr+Mzrs, ∀k ∈K , r ∈ R, s ∈ S (16)∑
s

zrs ≤ αr |S|, ∀r ∈ R, s ∈ S (17)

where binary variable zrs = 1 when the time capacity of
room r is violated.

Proof: See Appendix A-A.
For each scenario s ∈ S, an operation may be completed

during regular hours (zrs = 0) or may run into overtime
(zrs = 1). Therefore, the second-stage cost, g(x, s), will be
calculated differently in each case:{

g1r (x, s) = cwrwrs zrs = 0 (18)

g2r (x, s) = cwrwrs + corors zrs = 1 (19)

where ors is a non-negative variable representing overtime.
Therefore, the objective function of the second-stage problem
can be formulated as follows:

Es [g(x, s)] = Es

(∑
r

(1− zrs)g1r (x, s)+ zrsg
2
r (x, s)

)
(20)

Objective function (20) minimizes the expected costs cor-
responding to OR overtime and patient waiting times.
The deterministic equivalent formulation for the two-stage
chance-constrained OR scheduling model (MDEF ) can be
modeled as follows:

min obj =
∑
r

frur +
1
|S|

∑
r,s

(cwrwrs + corors) (21)

s.t. (8)− (11), (13)

trkrs +
∑
i

δisyikr ≤ capr

+ M zrs, ∀k ∈ K , r ∈ R, s ∈ S (22)

trkrs +
∑
i

δisyikr ≤ capr

+ M (1− zrs)+ors, ∀k ∈ K , r ∈ R, s ∈ S (23)∑
s

zsr ≤ αr |S|, ∀r ∈ R, s ∈ S (24)

x ∈ X , zrs ∈ B|R|×|S|, ∀k ∈ K , r ∈ R, s ∈ S (25)

Using a big M value can lead to weak LP relaxations.
Assigning a smaller value forM can help tighten the feasible
region for the LP relaxation of MDEF . Therefore, instead of
setting a single large value for M , constraint-specific for-
mulae used to calculate the big M values are developed for
constraints (22) and (23) as shown below:

Mrs =
∑
i

eirδis, ∀r ∈ R, s ∈ S (26)

The values in (26) are valid because the total operation time
in each OR does not exceed the duration of all surgical cases
that can be allocated to the specific operating room.

III. SOLUTION APPROACH
This section describes a decomposition algorithm that solves
the proposedmodel in Section II. The proposed algorithm can
solve themodel to optimality if the following assumptions are
satisfied [16], [17]:
1) The random vector S has discrete and finite support.

Specifically, ps = 1
|S| for s ∈ S.

We have stated this assumption in the problem descrip-
tion in Section 2.1.

2) Set X and P(s), s ∈ S are non-empty compact sets.
Without loss of generality, we can assume that for every
s ∈ S, there exists a feasible first-stage solution that
satisfies the chance constraints. Therefore, sets X and
P(s) are finite sets of points that qualifies them as
compact sets.

3) Set conv (P(s)), s ∈ S have the same reces-
sion cone, i.e., there exists C ⊆ RN such that
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C =
{
θ ∈ RN

|x + λθ ∈ P(s); ∀x ∈ P(s), λ ≥ 0
}
for

all s ∈ S, where N := |R| + |I | × |K | × |R|.
Proof: See Appendix A-B.

4) There does not exist an extreme ray θ̃ of conv(X) with
f T θ̃ < 0, i.e., the two-stage problem has a bounded
optimal solution.

Proof: See Appendix A-C.
Proposition 2: Model MDEF has an optimal solution

(x∗, z∗) in which
∑

s z
∗
rs = αr |S| for all s ∈ S [17].

Proof: See Appendix A-D.
We begin the decomposition algorithm by defining feasi-

bility (F) and optimality (O) sets as follows:

F =
{
x ∈ X , z ∈ B|R|×|S| :

∑
s

zrs = αr |S|,

r ∈ R, zrs = 0⇒ x ∈ P(r, s), s ∈ S
}

(27)

O =
{
(x, z, ρ) ∈ F× R+ :

ρ ≥
1
|S|

∑
r,s

(1− zrs)g1r (x, s)+ zrsg
2
r (x, s)

}
(28)

These sets will be approximated using feasibility and opti-
mality cuts in the following master problem (MP):

min
x,z,ρ

f T u+ ρ∑
s

zrs = αr |S|, ∀r ∈ R

x ∈ X , z ∈ B|R|×|S|, ρ ≥ 0

(x, z) ∈ F̃
(x, z, ρ) ∈ Õ (29)

The sets F̃ and Õ are the outer approximations of the feasibil-
ity (F) and optimality (O) sets, respectively. In the remainder
of this section, we will derive strong valid inequalities to
define F̃ and Õ.

A. FEASIBILITY CUTS
Two sets of subproblems are required to formulate the
strong feasibility cuts: single-scenario optimization and
single-scenario separation [16]. The optimization subprob-
lem for the OR scheduling problem is formulated as follows:

hrs(γ ) = min
x

{
γ x | x ∈ P(r, s) ∩ X̄

}
(30)

where γ ∈ RN and X̄ ⊇ X , such that P(r, s) ∩ X̄ 6= 8.
Proposition 3: Problem (30) is feasible and has a finite

optimal value if γ ∈ RN .
Proof: See Appendix A-E.

The separation subproblem can be formulated as follows:

%rs(x̂) = max
π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
(31)(

π1
(k−1)rs − π

1
krs

)
+ π5

rs ≤ 0, ∀k ∈ K (32)

(
π2
(k−1)rs−π

2
krs

)
+π3

krs−π
4
krs − π

5
rs ≤ 0, ∀k ∈ K (33)

π4
krs ≤ cor , ∀k ∈ K (34)

π5
rs ≤ cwr (35)∑
k

(
π1
krs + π

2
krs + π

3
krs + π

4
krs

)
+ π5

rs = 1 (36)

π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0, ∀k ∈ K (37)

Solving this subproblem to optimality returns a separating
hyperplane of the form γ x ≥ β for all x ∈ P(r, s).
Let x̂ be a solution to the master problem (MP).
If %rs(x̂) > 0 and π̂ is the optimal solution, the separating
hyperplane −

∑
k π̂

4
k
∑

i d̃iyikr ≥ −
∑

k π̂
4
k capr cuts off x̂

from F̃. Therefore, we define the valid feasibility cuts as
follows:
Theorem 1: The following sets of inequalities are valid

for F:

γ x +
l∑
i=1

(
hgi (γ )− hgi+1 (γ )

)
zgi ≥ hg1 (γ ) (38)

where hσ1 ≥ hσ2 ≥ . . . ≥ hσ|S| , G = {g1, g2, . . . , gl} ⊆{
σ1, σ2, . . . , σp

}
and hgl+1 = hσp+1 .

The remainder of this section presents another class of
feasibility cuts derived from the solutions to the first-stage
problem (M1) or master problem (MP) that result in the
violation of chance constraints (12).
Theorem 2: The following set of inequalities are valid

for F:

zrs −
∑
i∈TB,k

yikr ≥ 1− |TB|, r ∈ R, s ∈ S (39)

where TB is the subset of surgeries that lead to the violation
of chance constraints when they are assigned to the same OR.

Let ŷikr be the set of surgery-to-OR assignments obtained
from solving (M1) or (MP). Algorithm 1 generates inequali-
ties of type (39).

Algorithm 1 Feasibility Cut Generation
1: input: Sets and parameters in Table 2, ŷikr .
2: initialize: vrs← 0, Cntr ← 0, TB← 8.
3: Calculate vrs =

∑
k,i δisŷikr − capr ,∀r ∈ R, s ∈ S.

4: if vrs > 0,∀r ∈ R, s ∈ S then
5: • Cntr ← Cntr + 1.
6: if Cntr > αr |S|,∀r ∈ R then
7: • TB← {i|ŷikr = 1}.
8: • Add feasibility cut (39) to F̃ in (MP).
9: end if

10: end if
11: output: Feasibility cuts to add to the model (MP).

B. OPTIMALITY CUTS
In this section, we derive optimality cuts to add to Õ. First,
we formulate the dual problems for regular and overtime
modes of the second-stage problem. For every r ∈ R and
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s ∈ S where zrs = 0, the regular mode dual problem is
formulated as follows:

ν1rs(x̂) = max
π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
(40)(

π1
(k−1)rs − π

1
krs

)
+ π5

rs ≤ 0, ∀k ∈ K (41)(
π2
(k−1)rs−π

2
krs

)
+π3

krs−π
4
krs − π

5
rs ≤ 0, ∀k ∈ K (42)

π5
rs ≤ cwr (43)∑
k

(
π1
krs + π

2
krs + π

3
krs + π

4
krs

)
+ π5

rs = 1 (44)

π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0, ∀k ∈ K (45)

Since the only difference between the regular and over-
time mode is the introduction of overtime variables (when
zrs = 1), the overtime mode dual problem can be derived
by replacing π with π̄ and adding the dual constraints corre-
sponding to overtime variables:

ν2rs(x̂) = max
π̄

∑
k

π̄4
krs

(∑
i

d̃isŷikr − capr

)
(46)

s.t. (41)− (45)

π̄4
krs ≤ cor , ∀k ∈ K (47)

The set of dual optimal solutions for the regular and over-
time modes are shown by 5rs and 5̄rs, respectively. Then,
we formulate optimality subproblems for each mode. For a
given τ ∈ RN , r ∈ R and s ∈ S, we formulate the optimality
subproblem for the regular mode as follows:

ψ1
rs(τ ) = min

{
g1r (x, s)+ τ

T x : x ∈ P(r, s)
}

(48)

Similarly, we formulate the optimality subproblem for the
overtime mode as follows:

ψ2
rs(τ ) = min

{
g2r (x, s)+ τ

T x : x ∈ X
}

(49)

Proposition 4: Let dom ψrs(τ ) = {τ ∈ RN
: ψrs(τ ) >

−∞}. There exists D ⊆ RN where dom ψ1
rs(τ ) = dom

ψ2
rs(τ ) = D.

Proof: See Appendix A-F.
Proposition 5: Let Q ⊆ S, πrs ∈ 5rs and τrs =∑
i,k π

4
krsd̃is for s ∈ Q, and π̄rs ∈ 5̄rs and τrs =

∑
i,k π̄

4
krsd̃is

for s ∈ S \ Q. The following inequality is valid for O:

ρ +
1
|S|

∑
r,s∈Q

(
−

∑
k

π4
krscapr − ψ

2
rs(τrs)

)
zrs

+
1
|S|

∑
r,s∈S\Q

(
−

∑
k

π̄4
krscapr − ψ

1
rs(τrs)

)
(1− zrs)

≥
1
|S|

∑
r,s∈Q

(
−

∑
k

π4
krscapr

)

+
1
|S|

∑
r,s∈S\Q

(
−

∑
k

π̄4
krscapr

)
+

1
|S|

∑
i,r,s

(
τrsŷikr

)
(50)

C. DECOMPOSITION ALGORITHM
Adecomposition algorithm is proposed to solve the two-stage
chance-constrained OR scheduling problem. This algorithm
has a similar structure to the Benders decomposition algo-
rithm [26]. Rather than traditional Benders cuts, we use
strong valid inequalities derived in Section III-A and
Section III-B. Parameter ε in Algorithm 2 represents the
upper bound on the relative optimality gap, calculated
as UB−LB

UB .

Algorithm 2 Decomposition Algorithm
1: input: sets and parameters in Table 2, model MDEF .
2: initialize: LB := −∞, UB := +∞, ε ∈

[
10−3, 10−6

]
3: while UB−LB

LB > ε do
4: Solve master problem (29).
5: if (29) is infeasible then
6: Stop. Original problem is infeasible.
7: else
8: Let

(
x̂, ẑ, ρ̂

)
be an optimal solution to (29).

9: • LB← f T û+ ρ̂.
10: • Check feasibility of the second-stage problem by

calling Algorithm 1 and evaluating the inequalities
(38).

11: if there exists violated inequalities then
12: • Add feasibility cuts (38) and (39) to F̃.
13: else
14: • UB←

∑
r fr ûr+

1
|S|
∑

r,s
[
g1r (x̂,s)+g

2
r (x̂,s)

]
15: • Add optimality cuts (50) to Õ.
16: end if
17: end if
18: end while
19: output: optimal cost obj∗ and decision variables

(x∗, z∗, tp∗, tr∗, o∗,w∗).

Theorem 3: Algorithm 2 converges to an optimal solution
in finite iterations.

Proof: See Appendix A-G.

IV. NUMERICAL EXPERIMENTS
Test problem instances are obtained from Leeftink and
Hans [14]. The instances consist of different surgical special-
ties such as orthopedic, otorhinolaryngology, and oncology.
The surgery durations follow a three-parameter lognormal
distribution [9]. We used the Monte Carlo sampling method
to generate a finite set of scenarios for random surgery dura-
tions. The overhead and variable costs for operating rooms
are determined using the cost settings in [7]. The OR opening
cost is calculated by multiplying the overhead cost by the
OR available time. Each OR operates an 8-hour workday
and has one block that is assigned to a surgical specialty.
Optimization models are implemented in Python using IBM
CPLEX on a workstation with 24 cores, 3 GHz processors,
and 384 GB of memory. A time limit of one hour is imposed
for all instances. The valid cuts are implemented using the
CPLEX lazy constraint callback function.
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A. COMPARING CCP WITH OTHER STOCHASTIC MODELS
We compare the performance of the proposed chance-
constrained model with the two models proposed in [22]:
SDORS-EV and SDORS-CVaR. SDORS-EV is a stochas-
tic programming model that attempts to optimize the
expected value of OR overtime and patient waiting costs.
SDORS-CVaR is a risk-based model that minimizes the
expected tail of overtime andwaiting costs by using the CVaR
function [22]. For simplicity, the following terminology is
used in our experiments: CCP (chance-constrained), CVaR
(SDORS-CVaR) and EV (SDORS-EV). The performance of
these models are evaluated using several criteria.

Table 3 compares the performance of the three models after
solving eight OR scheduling instances within the specified
time limit. A finite set of 100 scenarios is generated for each
surgery, and the parameter αr is set to 0.10. The second
and third columns show the number of surgical cases and
available ORs for surgery operation. The column Time shows
the computational time in seconds. Finally, the optimality gap
reported in the last column is calculated as

(UB−LB
UB

)
×100%.

It can be observed that the CCPmodel outperforms CVaR and
EV in convergence speed. The chance-constrained model can
solve all instances to optimalitywithin the specified time limit
while EV and CVaR only solve instances with up to 12 and
16 patients, respectively.

TABLE 3. Computational efficiency of CCP, CVaR and EV.

FIGURE 1. Trade-off between average total cost and variability of total
cost.

In Figure 1, the trade-off between minimizing costs and
controlling the variability of costs is compared for each
model. Several values are used for the confidence level
parameter α in order to mimic the behavior of these models
under different risk attitudes. A high α resembles an aggres-
sive approach to minimize expected costs while accept-
ing a substantial risk of OR overtime. On the contrary,
a low α depicts conservative decision making (i.e., accept-
ing higher costs given that the chance of OR overtime is
low). As observed in Figure 1, CVaR places emphasis on
minimizing variability while EV focuses on providing the
minimum average costs. However, CCP provides a more
moderate trade-off between minimizing average costs and
reducing variability. Assuming a given tolerance for the OR
schedule variability, CCP outperforms CVaR by providing
more cost-effective solutions. Similarly, CCP outperforms
EV by providing OR schedules with lower variability, assum-
ing a fixed budget.

In Figure 2, we use several metrics to compare the per-
formance of CCP, EV and CVaR under different values
for α. The metrics are [A,B,C,D,E] = [total cost, total
waiting time & overtime, utilization, overtime scenarios,
open ORs].

For small α values, CCP and CVaR suggest opening more
ORs to reduce the risk of overtime and reduce the expected
tail costs, respectively. Therefore, they incur higher average
total costs and lower OR utilization than EV. EV displays
better OR utilization at the risk of experiencing increased
overtime. CPP is the superior method in terms of reducing
overtime and patient waiting times. Moreover, CCP performs
best in reducing the number of scenarios where overtime
occurs. Overall, using CCP results in fewer occurrences of
overtime and better OR utilization than CVaR when α is not
very restrictive (i.e., α > 0.1 in our numerical experiments).
It is also observed that the three models converge in all
metrics as α increases.
Proposition 6: CCP, CVaR and EV provide the same opti-

mal solution when α = 1.
Proof: See Appendix A-H.
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FIGURE 2. Impact of using different risk thresholds on the performance of CCP, EV and CVaR.
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TABLE 4. Performance of different feasibility cuts.

TABLE 5. Performance of different solvers/algorithms on large-scale problems.

B. SOLVING LARGE-SCALE TEST INSTANCES
It is observed in Table 3 that the solution times increase
exponentially as the problem size grows. Therefore, we apply
the valid inequalities and the decomposition algorithm pre-
sented in Section III to solve larger test instances in shorter
time periods. We used the Monte Carlo sampling method to
generate a set of 100 scenarios, and the parameter αr was set
to 0.10. Table 4 compares the performance of feasibility cuts
(38) and (39) when used separately and combined to solve the
test problem instances shown in Table 3. It can be observed
that both valid inequalities are effective in reducing the solu-
tion time when compared to the cuts generated by the CPLEX
solver. It is also observed that using both types of cuts leads to
longer solution times for small test instances due to the time
spent for generating inequalities. However, as problem size
grows, adding both types of feasibility cuts to F̃ leads to sig-
nificantly faster convergence than applying them separately.
Therefore, we use valid inequalities (38) and (39) to generate
feasibility cuts in the following numerical experiments.

Larger test problem instances are solved and reported
in Table 5 to evaluate the performance of the proposed decom-
position algorithm.We compare the performance of our algo-
rithm with that of the IBM CPLEX MIP Solver 12.9 [38]
and a decomposition algorithm that uses the big-M optimality
cuts introduced in [17]. The solution time and the optimal-
ity gap are reported for each algorithm. The column Basic
Decomposition illustrates the results from the decomposition
algorithm using feasibility cuts (38) and big-M optimality

cuts. The last column highlights the results of the proposed
decomposition algorithm in this paper. As shown in Table 5,
we observe that the CPLEX solver is the least desirable
option for solving MDEF , as expected. For the largest prob-
lem instance, the CPLEX solver does not find any feasible
solutions within the time limit. User-defined feasibility and
optimality cuts can improve solution speed. It can also be
observed that using stronger optimality cuts rather than the
big-M cuts can reduce solution time significantly. Neither
the CPLEX solver nor the basic decomposition algorithm can
solve any of the instances to global optimality within the time
limit. Nevertheless, the proposed decomposition algorithm
outperforms other methods by solving all test instances to
optimality within 48 minutes.

C. IMPORTANCE OF MINIMIZING EXPECTED COSTS
Our numerical experiments show that a significant portion
of total costs comes from the expected overtime and waiting
time costs. Neglecting thesemeasures in OR schedulingmod-
els can result in surpassing the predicted overtime budget by
200%, disheartening staff from longer-than-expected shifts,
and causing dissatisfaction to patients [8].We solved 10 repli-
cations of all test instances in Table 3 using two different
objective functions: objective (21); and objective (21) minus
the expected second-stage costs. Then, we calculated the sum
of costs pertaining to OR opening, OR overtime, and patient
waiting time for each optimal solution of each case. The
percentage of savings obtained from optimizing both
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TABLE 6. Computational performance of MJoint and MDEF .

FIGURE 3. Advantage of minimizing expected costs when solving the
chance-constrained OR scheduling model.

deterministic and stochastic costs is calculated as(
obj∗2−obj

∗

1
obj∗2

× 100%
)
. It is observed from Figure 3 that min-

imizing the expected costs leads to greater savings when
larger α values are used. This highlights the importance of
minimizing the expected costs in addition to satisfying the
chance constraints when solving stochastic OR scheduling
problems.

D. INDIVIDUAL VS. JOINT CHANCE CONSTRAINTS
The chance constraints in Section II-B are enforced on each
OR independently. However, a decision-maker might be
interested in controlling the chance of OR overtime on an
aggregate level. In such cases, the chance constraints (12) are
replaced by:

Pr{trkrs +
∑
i∈I

δisyikr ≤ capr : ∀k, r, s} ≥ 1− α (51)

This section compares the joint chance-constrained OR
scheduling model (MJoint ) with the proposed model MDEF

presented in Section II. In the following numerical experi-
ments, the Monte Carlo sampling method is used to generate
a set of 100 scenarios for each test instance. We applied
the decomposition algorithm proposed in Section III and the
same classes of valid inequalities to both models. Figures 4
and 5 compare MDEF and MJoint after solving the larger test
instances shown in Table 5. Figure 4 illustrates that MJoint
tends to open more ORs to satisfy the tighter limit on OR
overtime. The joint chance constraints restrict the occurrence
of overtime to α|S| scenarios while the individual chance
constraints allow up to min{αr |S||R|, |S|} scenarios with OR
overtime. As the probability threshold α loosens, the gap
between the optimal number of open ORs obtained by the
two models shrinks due to the converging feasible regions.
Similar to Proposition 6, it can be shown that the two models
achieve equivalent optimal solutions when α = 1. Figure 5
compares the performance of MJoint and MDEF in reducing
the OR overtime and patient waiting times. The vertical axes
depict the average overtime and waiting time per OR per

FIGURE 4. Optimal number of open ORs.
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FIGURE 5. Optimal overtime and waiting times.

scenario, respectively. It can be observed thatMJoint achieves
greater success at controlling OR overtime by opening more
ORs and setting the projected start times earlier to satisfy the
stricter chance constraints. However, these measures lead to
lower OR utilization and higher waiting times when com-
pared to that of MDEF .

Table 6 compares the run times of the two models after
solving the test instances presented in Table 3 and Table 5.
Column First Feasible shows the run time to find the first
feasible solution. Column 1% Gap details the run time to
reach 1% optimality gap. It is observed that MDEF can find
feasible solutions and attain near-optimal solutions in shorter
time lengths compared toMJoint . For the largest test instance,
MDEF finds a feasible solution within half the time required
byMJoint and solves the problem to optimality within 48 min-
utes. On the other hand, MJoint fails to reach 1% optimality
gap within the one-hour time limit.

V. CONCLUSIONS
In this paper, a chance-constrained mixed-integer program-
ming model was proposed for the OR scheduling problem
with stochastic surgery durations. The individual chance con-
straints controlled the risk of OR overtime. The goal was to
minimize the sum of OR opening, OR overtime and patient
waiting costs. Our model was compared with two other
stochastic models in the literature: an expected value model
and a CVaR-based model. We demonstrated that minimiz-
ing the expected costs when solving the chance-constrained
OR scheduling model results in significant savings com-
pared to the case where only the deterministic costs are
minimized. Moreover, we compared the individual and joint
chance constraints in terms of allocated ORs, second-stage
stochastic costs and solution times. A decomposition algo-
rithm with strong feasibility and optimality cuts was applied
to effectively solve large-scale test instances. We proposed
an algorithm that generated feasibility cuts using the first
stage solutions, and as a result, significantly reduced the time
required to find feasible solutions. Numerical experiments
demonstrated that the decomposition algorithm outperformed
both the IBM CPLEX solver and a basic decomposition
algorithm by solving the largest test instances to optimality
within the one-hour time limit. Moreover, it is shown that the
individual chance constraints lead to higher OR utilization,
reduced patient waiting times and shorter solution times. This
work has the following limitations. First, it is assumed that

the surgery duration follows a known probability distribu-
tion. Second, we considered the upstream and downstream
resources (e.g. nurses, beds) to be sufficiently available.
However, such assumptions do not hold true for all real-life
cases. It is also demonstrated that finding strong cuts can
increase the convergence speed significantly. Therefore,
relaxing the above assumptions and discovering stronger fea-
sibility and optimality cuts in order to solve more complex
problems in shorter time frames can be a promising topic for
future research.

APPENDIX A
PROOFS
A. PROPOSITION 1

Proof: According to constraints (12) and (13), an over-
time occurs if:

trkrs +
∑
i

δisyikr > capr , ∀k ∈ K , r ∈ R, s ∈ S (52)

Therefore, the value of zrs in (16) captures scenarios where
an OR runs overtime. Given that the random surgery duration
has a discrete and finite support, constraint (17) limits the
number of scenarios where each OR can run overtime.

B. ASSUMPTION 3
Proof: Since all of the first-stage decision variables

are binary, P(s) is bounded by a hypercube of dimension N .
Therefore, θ = 0 is the only solution that satisfies the
condition in the definition of C. In other words, C = {0} for
all s ∈ S.

C. ASSUMPTION 4
Proof: We need to show that both first-stage and

second-stage problems have bounded optimal solutions.
We know from Assumption 2 that both problems are feasi-
ble. The highest objective function value for the first-stage
problem is when all operating rooms are open, i.e.,

∑
r fr ,

which is bounded. Given the first-stage solution, every open
operating room will run overtime in up to αr |S| scenar-
ios. The amount of overtime is bounded by maxk∈K {trkrs +∑

i δisyikr − capr }, which is also a finite value given trkrs ≥ 0
and the minimization objective function in the second-stage
problem.

D. PROPOSITION 2
Proof: This holds for the individual chance constraints

in our model without loss of generality. Assume that in the
optimal solution to our model, there exists r ∈ R where∑

s z
∗
rs = ε < αr |S|. The optimal solution will allow

(αr |S| − ε) scenarios to run in overtime mode (zrs = 1) with
the corresponding overtime variables ors set to zero.

E. PROPOSITION 3
Proof: First, we know from Assumption 2 that P(s) ∩

X 6= 8. Given that X̄ ⊇ X , we have P(s) ∩ X̄ 6= 8 that
ensures the feasibility of (30). Second, the single-scenario
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optimization subproblem is bounded if γ is chosen to be
a vector in the dual cone of C (recession cone). The dual
cone of C is defined as C∗ =

{
γ ∈ RN

| γ θ ≥ 0,∀θ ∈ C
}
.

From Assumption 3, we know that C = {0} for model (M1).
Therefore, any γ ∈ RN is a vector in C∗.

F. PROPOSITION 4
Proof: From Assumption 4, we know that both

(18) and (19) are non-negative and bounded. We also know
that x is binary. It suffices to have τ ∈ RN

+ such that ψ1
rs(τ ) >

−∞ and ψ2
rs(τ ) > −∞. Therefore, D = RN

+ satisfies the
condition.

G. THEOREM 2
Proof: The feasibility cuts are added to the master

problem (29) to remove the first-stage decisions that result
in infeasible M2. It is known from Assumption 2 that the
set of feasible solutions to M1 is finite. Therefore, a finite
number of inequalities of type (38) and (39) can be added
to (29). Moreover, the sets 5rs and 5̄rs of the optimal solu-
tions to the dual problems in Section III-B are finite since
there is no constraint parallel to the objective function (40).
Therefore, a finite number of optimality cuts (50) will be
generated. Given that there are finite numbers of feasibility
and optimality cuts, Algorithm 2 converges in a finite time
following the convergence of the Benders decomposition
algorithm [26].

H. PROPOSITION 6
Proof: When α = 1, the chance constraints (12) can be

written as:

Pr{trkrs +
∑
i

δisyikr ≤ capr : ∀k, s} ≥ 0, ∀r ∈ R (53)

which holds for all feasible solutions to the first-stage prob-
lem. Therefore, the chance constraints are redundant and we
have CCP ≡ EV when α = 1. Now, it suffices to show that
CVaR ≡ EV . CVaR is defined as the expectation of those
outcomes where total costs exceed a threshold value, called
Value-at-Risk (VaR) [27]. For α = 1, the VaR of second-stage
costs is defined as:

VaR1 = min {g(x, s) : CDF (g(x, s)) ≥ 0} (54)

where CDF represents the cumulative density function. Given
that CDF ≥ 0 for every random variable, we conclude:

g(x, s) ≥ VaR1, ∀x ∈ X , s ∈ S (55)

Therefore, from Assumption 2 and inequality (55), the CVaR
model minimizes the total costs over all scenarios, thus indi-
cating equivalence to using the EV model.
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