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ABSTRACT Mobile robots have recently attracted the attention and applicability in field areas ubiquitously.
Within the context of autonomous navigation, path planning is relevant for comfortability, safety, execution
time and energy savings. In this paper, we propose an approach to suggest smooth paths from observed robot
trajectories by optimizing fitting and smoothness criteria using Differential Evolution with distinct modes
of initialization, selection pressure, exploration and exploitation. Our rigorous computational experiments
using a relevant set of real-world robot trajectories from the Boe-Bot mobile robot architecture show the
feasibility and efficiency of our approach in computing smooth curves, suggesting the superior performance
of the greedy initialization scheme based on the triangular convex hull of the robot trajectory, and Differential
Evolution with exploitative and parameter adaptation schemes such as Rank-Based Differential Evolution
(RBDE), Adaptive Differential Evolution with External Archive (JADE) and Strategy Adaptation Differen-
tial Evolution (SADE). Our obtained results offer the building blocks to further advance towards developing
data-driven curve fitting and path planning algorithms, which may find use in several real-world applications
in Robotics and Operations Research.

INDEX TERMS Smooth curve fitting, optimization, differential evolution, mobile robots, path smoothing.

I. INTRODUCTION
In recent years, mobile robots have extended their application
scope in field areas, including agriculture, forestry and manu-
facturing. In line of the above, to realize efficient navigation,
path planning with smoothness considerations is relevant for
comfortability, safety, minimum execution time, and energy
savings.

Path planning has been extensively studied in the litera-
ture. Often, in the context of autonomous robot navigation,
collision-free trajectories are generated considering safety
and optimality. In line of these achievements, well-known
methods such as Rapidly-exploring Random Tree (RRT)
and Probabilistic Roadmaps (PRM) guarantee probabilis-
tic completeness, while RRT* guarantees asymptotic opti-
mality. However, challenges in scalability often arise, since
approaches based on RRT and PRM have to extend over large
maps to find optimal trajectories. To avoid covering the entire
map, often approaches based on optimization using heuristic
sampling and gradient of the cost function (length) are used.
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Examples of these approaches include CHOMP [1], STOMP
[2], and TrajOpt [3]. However, these methods are sensitive
to initial conditions (initial trajectory). Also, according to the
presence or absence of knowledge of the environment, it is
well-known the division between global and local methods in
path planning. Also, the incrementalmethods such as Rapidly
Exploring Random Trees (RRT), and their extensions, are
well-known in the literature for its exploratory features. Fur-
thermore, path planning algorithms using graph-theory and
search heuristics are also well-known, e.g. Dijkstra and A*,
visibility graphs combined with sampling heuristics [4]–[8].

Also, researchers have tackled the path planning problem
by using geometric and graph-based approaches [9]–[13].
In line of these schemes, it has been shown that path planning
in triangulated space is highly accurate and efficient. For a
map having polygonal obstacles with n vertices, it is possible
to use the Delaunay Triangulation of the free space to render
a connected graph with O(n) nodes, each of which represents
the triangles conforming the free-space. Then, path planning
can be efficiently achieved by graph search methods on the
adjacency graph of the triangulation. If one uses the Dijkstra-
based search [9], time complexity is bounded by O(n.log(n)).
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Complementarily, it is possible to use A* search [10], [11]
along with the funneling algorithm [12], [13] to achieve a
quasi-linear time complexity.

On the other hand, in order to consider safety and comfort-
ability in mobile robot driving, the inclusion of smoothness
factors in path planning has attracted the attention of the
community [4], [14], [15]. In terms of safety, path planning
methods usually maximize the distance between the vehicle
and obstacles [16], and in terms of comfortability, path plan-
ning methods usually consider the change and continuity of
curvature of the path. For instance, in [17] paths using Bézier
curves are smoothed, in which theta* RRT is able to render
feasible any-angle paths by using geometric information of
the workspace and satisfying the non-holonomic constraints.
Also, in [18], the Dijkstra algorithm is used to compute short-
est paths, and then smooth trajectories are generated by cubic
Bézier curves. In [19], clothoid curves are used to achieve
paths which are shorter and have lower curvature derivatives.
In [20], various types of Bézier curves are used to generate
smooth road trajectories. Furthermore, in [21], vehicle and
road constraints are considered in order to generate collision-
free paths. In [14], Support Vector Machines are used to
compute the critical points in obstacle-prone environments,
and the control points of Bézier curves are optimized to com-
pute smooth paths. In [22], Bézier curves were smoothed by
Genetic Algorithm with diversity factors. In [23], the lattice-
based motion planners were proposed to compute feasible
paths, in which the ACADO Toolkit has the role of path
smoothing and a Model Predictive Controller (MPC) has the
role of optimizing control outputs to follow the trajectory.
In [24], the global path planning was developed based on
Visibility Graphs and Bézier curves were used to minimize
the maximum curvature in order to generate a smooth path.

In line with the above, in [25], the path planning for corri-
dors with curvature discontinuities is proposed by composing
half-S-shaped paths of the Four Parameter Logistic (4PL)
family achieving zero-end curvature and collision-avoidance
with passages. In [26], quintic Bézier curves compute the
smooth sequence of curves of A*-based paths by solving
the constrained problem and globally-convergent moving-
asymptotes (MMA) algorithm. In [27], the generation of
smooth paths by gradient-informed post-smoothing algo-
rithm (GRIPS) is proposed, in which locally placed vertices
are optimized by considering the safe distance between the
robot and the obstacles.

In order to generate smooth trajectories, the conventional
methods basically have focused on the knot placement of
polynomial curves to compute smooth paths and then perform
trajectory following to ensure compliance with the gener-
ated path. In this paper, we propose an approach to gener-
ate smooth trajectories from given robot trajectory points.
This problem is related to the well-known curve fitting and
reconstruction problem, that is fitting data points to curves,
which has attracted the attention of the non-linear opti-
mization community due to the gradient-free and ability to
deal with multimodal optimization approaches, e.g. Particle

Swarm Optimization [28], Artificial Immune Systems [29],
Lasso [30], Estimation of Distribution Algorithms [31], Inva-
sive weed optimization [32], Differential Evolution [33], and
Hybrids [34].

Although the above-mentioned schemes have rendered
competitive curve fitting metaheuristics, it is unclear
whether initialization, selection pressure, parameter adap-
tation, exploration or exploitation play key roles for the
competitive performance to fit and compute fair curves to
robot trajectory data. Thus, in this paper, to tackle the above-
mentioned line of inquiry, our focus and contribution are as
follows:

• We propose an approach to generate smooth paths from
observed robot trajectories by optimizing the fitting and
the smoothness performance with Differential Evolution
with distinct modes of initialization, parameter adap-
tation, selection pressure, exploration and exploitation.
In particular we used the following five relevant classes:

– DERAND: DE/rand/1/bin strategy
– RBDE: Rank-Based Differential Evolution
– JADE: Adaptive Differential Evolution with Exter-

nal Archive
– SADE: Strategy Adaptation Differential Evolution
– DESIM: Differential Evolution with Similarity

Based Mutation

• The exhaustive experiments using all feasible scenar-
ios of torque control of Boe-Bot mobile robot show
(1) the feasibility and efficiency of our approach to gen-
erate smooth curves from given trajectory data, (2) the
improvement of the convergence rate by a greedy initial-
ization scheme considering the triangular convex hull of
trajectory data, and (3) the competitive convergence and
curvature profiles being attainable by the class of Differ-
ential Evolution algorithms with exploitative and param-
eter adaptation schemes: RBDE, JADE and SADE.

• Our proposed approach offers insights on the perfor-
mance of relevant Differential Evolution algorithms gen-
erating smooth paths for mobile robots complying with
fitting and smoothness criteria, thus being potential to
enable comfortability, energy-efficiency, and computa-
tionally efficient controllers.

In the following sections, we describe the basic idea of
our proposed approach, and discuss our computational exper-
iments.

II. PROPOSED APPROACH
Basically, we tackle the problem of fitting and computing
fair curves to prescribed robot trajectory data. Smooth curves
are computed by minimizing a cost function comprising the
fitting error to trajectory inputs and the smoothness defined
by the curvature profile of a curve. To show an example
of our proposed scheme, Fig. 1 shows the main elements
involved in our approach. Here, the curve r(u) is defined
by the control points pi, i = 0,1, . . . ,n, each of which is
computed by minimizing the fitting error and the smoothness
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FIGURE 1. Basic concept and main elements of the curvature profile in the Bézier curve. (a) The curve is defined by locations from both the control
points and the Bernstein polynomials, (b) the vector aj points from cj in the curve towards the point qj in the trajectory.

component of the curve. The fitting error aims at minimizing
the shortest distances from prescribed input coordinates qj,
j = 1,2, . . . ,m defined by the robot trajectory to the curve
r(u), as shown by Fig. 1-(b). The smoothness of the curve is
defined by aiming at finding the monotone variation in the
curvature profile of r(u), as portrayed by the green-colored
region of Fig. 1 showing the magnitude of the radius of
curvature along the curve r(u) for u ∈ [0,1].

In the following section, we briefly describe the key com-
ponents and dynamics of our proposed approach.

A. BASIC CONCEPT
Let a Bézier curve of degree n be defined by

r(u) =
n∑
i=0

Bni (u)pi, u ∈ [0,1] (1)

Bni (u) =
(
n
i

)
ui(1−u)n−i (2)(

n
i

)
=

n!
i!(n− i)!

, (3)

where pi is the i-th control point of the Bézier curve in the
domain R2, and Bni (u) is the i-th Berstein polynomial of
degree n for i ∈ {0,1,2, . . . ,n}. For simplicity, and without
loss of generality, we use the degree n= 3, in which Bernstein
polynomials are represented by

B30(u) = (1−u)3, (4)
B31(u) = 3u(1−u)2, (5)
B32(u) = 3u2(1−u), (6)
B33(u) = u3. (7)

Basically, the curve r(u) lies within the convex hull of the
control points pi, i= 0,1, . . . ,n. Also, each point lying in r(u)
is computed by the weighted-average of the control points pi,
with weights defined by Bernstein polynomials, and fulfilling
the condition

∑n
i=0B

n
i (u)= 1.

Then, smooth paths are computed by minimizing the fol-
lowing cost function

min
pi

F = E+λH , (8)

where pi is the i-th control point of the Bézier curve r(u),
depicted by nodes connected by lines in pink color on
Fig. 1-(a), E is the component related to the fitting error of

the curve r(u) to given input trajectory coordinates qj, j =
1,2, . . . ,m, H is the smoothness component (fairness metric)
of the curve r(u), and λ is the user-defined parameter to bal-
ance the fitting error and the smoothness factors. Concretely
speaking, the following relation computes the fitting error:

E =
m∑
j=1

‖aj‖2 (9)

aj = qj− cj, (10)

where
• m is the number of input trajectory points,
• aj is the vector pointing from cj to qj,
• qj ∈ R2 is the j-th input trajectory coordinate obtained
from the robot’s trajectory measurements,

• cj ∈ R2 is the nearest point in the curve r(u) to the input
coordinate qj, which is obtained by the following:

min
u
‖qj− r(u)‖, (11)

where u ∈ [0,1], and ‖ · ‖ denotes the Euclidean norm.
Furthermore, the smoothness component of the curve is

computed by

H =
∫ (d2κ

ds2

)2
ds, (12)

where κ is the curvature of the curve r(u) and s is the arc-
length of the curve r(u).

In the above expression

κ =
‖r′× r′′‖
‖r′‖3

, (13)

ds
du
= ‖r′‖ (14)

By the chain rule,
d2κ
ds2
=
‖r′× riv‖+‖r′′× r′′′‖

‖r′‖5
−4
‖r′× r′′′‖(r′× r′′)

‖r′‖7

−3

(
‖r′×r′′‖(r′ · r′′′+r′′·r′′)+‖r′× r′′′‖(r′× r′′)

)
‖r′‖7

+18
‖r′× r′′‖(r′× r′′)2

‖r′‖9
, (15)

where r′ = dr(u)
du , r′′ = d2r(u)

du2
, r′′′ = d3r(u)

du3
, riv = d4r(u)

du4
.
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To give a glimpse of the smoothness factor, Fig. 1 also
shows an example of the curvature profile of a Bézier curve
as well as the main components to compute the error in curve
fitting. Here, the radius of curvature ρ = 1/κ is depicted by
green color in Fig. 1. The reader may note that the errors
in curve fitting E as well as the smoothness component H
(fairness metric) are contradicting terms, determining the
optimal ratio λ is out of the scope of this paper.

Furthermore, we use the integration of
(
d2κ
ds2

)2
due to its

relevance to compute curvature profiles with linear nature.
The reader may note that using other fairness metrics, such as
theminimum energy curvature (MEC) and theminimum vari-
ation curvature (MVC), is also possible. Also, once curves
minimizing the criterion in Eq. 8 are computed, it becomes
possible to generate compounded smooth paths with C0 con-
tinuity by joining the curvature profiles of Bézier paths and by
matching the tangent angles α and β between two consecutive
curvature profiles. However, compounded paths will require
further pruning to satisfy optimality of the cost function F
(and smoothness componentH ) at the connecting node points
of two path elements. The study of compounded fair curves
is out of the scope of this paper, and left in our future agenda.

B. DIFFERENTIAL EVOLUTION
The cost function depicted by Eq. 8 is of non-linear land-
scape, and computing its gradient is of non-trivial nature.
Thus, we use we use the class of gradient-free optimization
algorithms considering features of balance between explo-
ration and exploitation. In this paper, we use the relevant
classes of Differential Evolution (DE) [35] algorithms due
to the flexibility and the versatility to realize diversity of
exploration and exploitation during search. In line of the
above, we used five relevant classes of Differential Evolution
as optimization heuristics, each of which denotes distinct
modes of selection pressure and balance between exploration
and exploitation. Considering other nature-inspired heuris-
tics is straightforward, yet including a large number of such
heuristics is out of the scope of this paper.

Solutions in a minimization problem are sampled by:

xt+1 =

{
ut f (ut )≤ f (xt )
xt otherwise

(16)

ut = xt +bt ◦ (vt −xt ) (17)

bt = [bt,1,bt,2,bt,3, . . . ,bt,k , . . . ,bt,D] (18)

bt,k =

{
1, rt,k ≤ CR or k = krand
0, otherwise,

(19)

where t denotes the iteration index, xt is a D-dimensional
(individual) vector (xt ∈ RD), ut is the trial solution at iter-
ation t , ◦ is the element-wise Hadamard product, vt is the
mutant vector at iteration t , bt is a D-dimensional binary
vector, rt,j is a random number with uniform distribution
U [0,1], krand is a random integer uniformly distributed in
U [1,D], andCR is the cross-over probability. Due to handling
Bézier curves of degree n= 3 and due to control points laying

FIGURE 2. Basic idea for greedy initialization.

in the plane (pi ∈ R2, i ∈ {0,1,2,3} in the formulation of
Eq. 1 and Eq. 8), the (individual) vector xt encodes the x− y
coordinates of the control points of the Bézier curve, thus
D= 2(n+1)= 8.

Generally speaking, Differential Evolution considers the
evolution of the set P of individuals, with NP= |P| denot-
ing the population size, in which three relevant processes are
performed:
• initialization to generate the population P ,
• mutation to generate the vector vt ,
• crossover to generate the trial vector ut (Eq. 17),
• selection to generate the vector xt+1 (Eq. 16).
As for initialization of the population, we used two differ-

ent procedures, as follows:
• Random Initialization. Control points pi ∈ R2 are set
arbitrarily within the convex hull defined by the x − y
coordinates of−εqm and εqm, for a constant ε ≥ 1. This
procedure is in line with the conventional initialization
schemes inDifferential Evolution, in which solutions are
sampled from the hypercube defined by the lower and
upper bound of the search space. Since the coordinate
qm represents the last input coordinate from the observed
robot trajectory, new coordinates sampled within −εqm
and εqm ensure the feasibility of the search space.

• Greedy Initialization. Here, the first (last) control point
is set equal to the first (last) input trajectory; and p2
and p3 are computed from interpolating the vertices of
the triangular convex hull of the coordinates qj (j ∈
[m]), as portrayed by Fig. 2. Concretely speaking, this
procedure is realized as follows:

p0 = q1 (20)

p1 = p0+d1(z−p0) (21)

p2 = p0+d2(z−p3) (22)

p3 = qm (23)

z = εqmax−
p0+p3

2
, (24)

where qmax is the farthest coordinate from the segment
p0p3, ε ≥ 1 is a user-defined constant to estimate
the triangular convex hull of the input coordinates
q1,q2, . . . ,qm, and d1, d2 ∈ [0,1] are interpolation con-
stants. This procedure enables to define the control
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points of the Bézier curve such that the coordinates
defined by the robot trajectory lie within the convex hull
of the polygon defined by p0,p1,p2 and p3.

After initialization, procedures related to mutation,
crossover and selection are performed until the number of
maximum number of evaluations of the cost function is
attained. In line with our goal of evaluating distinct modes of
selection pressure, exploration and exploitation, we describe
the relevant heuristics used in our study in the following
sections.

1) DE/rand/1/bin (DERAND)
This algorithm is one of the well-known strategies able to
handle nonlinear cost functions [35], offering exploration
abilities during search. Here, the mutant vector vt are sampled
as follows:

vt = x
r1
t +Fd (x

r2
t −x

r3
t ), (25)

where r1,r2,r3 ∈ U [1,NP], with r1 6= r2 6= r3 6= k , NP is the
population size, and Fd is the scaling factor. In the above,
exploration is tunable by the factor Fd .

2) RANK-BASED DIFFERENTIAL EVOLUTION (RBDE)
Here, the mutant vector vt is computed by [36]:

vt = x1t +Fd (x
2
t −x

3
t ), (26)

where x1t , x
2
t and x

3
t are individual vectors selected from the

population by using theWhitley Distribution. That is, for iw=
{1,2,3}:

xiwt = PS
c (27)

c =
⌊

NP
2(θ −1)

(
θ −

√
θ2−4(θ −1)r

)⌋
, (28)

where PS
c is the c-th individual in the population sorted by

fitness from best to worst, θ is a user-defined bias term, r is
a random number uniformly distributed in U [0,1], and b·c
denotes the floor function.

The above-mentioned sampling scheme focuses on the
selective pressure to allow the improved exploitation by using
a rank-based ordering of the population. The range of θ ∈
(1,3] is found to be favorable to improve the convergence in
non-separable problems [36].

3) ADAPTIVE DIFFERENTIAL EVOLUTION WITH EXTERNAL
ARCHIVE (JADE)
This algorithm uses the successful historical references to
update the learning parameters CR and Fa [37]. The mutation
is based on DE/current-to-pbest/1 with an archive of inferior
solutions, as follows:

vt = xt +Fxt (x
pbest
−xt )+Fxt (x

r1
t − x̆

r2
t ), (29)

where Fxt is the mutation scaling factor associated to vector
xt , xpbest is a random individual from the 100p% best of the
population P for a constantp ∈ (0,1], r1 is an (integer) index

chosen randomly from [1,NP], x̆r2t is a random individual
from P ∪A (r2 ∈ [1,NP+|A|], r1 6= r2 6= k), in which:
• A denotes the set of inferior solutions,
• A is empty during initialization,
• The vector xt is added to the set A if the selection of ut
succeeds in (Eq. 16), and

• Elements of the set A are deleted arbitrarily if |A|> NP.
Also, the scaling factor and crossover rate are updated by

the following rules:

CRxt ∼ N(µCR,σCR) (30)

Fxt ∼ Cauchy(µF ,σF ), (31)

where N(·, ·) is a random number with normal distribution,
Cauchy is a random number with Cauchy distribution (trun-
cated at [0,1]), and CRxt is the crossover rate associated to
vector xt . During initialization,µCR =µF = 0.5; σCR = σF =
0.1. Then, after selection (Eq. 16), the following is computed:

µCR = (1− c)µCR+ cSCR (32)

µF = (1− c)µF + cSF , (33)

where c ∈ [0,1] is a user-defined constant for averaging, SCR
and SF are sets of successful parameters corresponding to
CRxt and Fxt , respectively, SCR is the arithmetic mean of SCR,
and SF is the Lehmer mean of SF as follows:

SF =

∑
Fs∈SF Fs

2∑
Fs∈SF Fs

(34)

4) STRATEGY ADAPTATION DIFFERENTIAL
EVOLUTION (SADE)
SADE allows a pool of strategies learn selection probabili-
ties over a number of generations, wherein probabilities are
updated in line with successful mutation [38]. Thus, rather
than implementing one mutation strategy, SADE uses a set of
strategies. Here, vg,t denotes the vector generated by the gth
strategy at iteration t . We use the original pool of strategies as
those used in [38], that is the DE/rand/1/bin strategy defined
by Eq. 25, and four additional strategies, as follows:
DE/rand-to-best/2/bin

vt = xt +Fd (xbestt −xt )+Fd (x
r1
t −x

r2
t ) (35)

DE/current-to-best/2/bin

vt=xt+Fd (xbestt −xt )+Fd (x
r1
t −x

r2
t )+Fd (x

r3
t −x

r4
t ) (36)

DE/rand/2/bin

vt = x
r1
t +Fd (x

r2
t −x

r3
t )+Fd (x

r4
t −x

r5
t ) (37)

DE/current-to-rand/1/bin (with CR= 1)

vt = xt +Fd (x
r1
t −xt )+Fd (x

r2
t −x

r3
t ), (38)

where r1,r2,r3,r4,r5 are mutually exclusive random integers
in the uniform range [1,NP].
Furthermore, the probability to select strategies, the

crossover probability CR and the scaling factor Fd are com-
puted adaptively following the same learning rules proposed
in SADE [38].
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5) DIFFERENTIAL EVOLUTION WITH SIMILARITY BASED
MUTATION (DESIM)
DESIM considers the similarity-based mutation strategy, and
was shown to outperform explorative and exploitative vari-
ants of DE [39]. The mutation is as follows:

vt = xt +Fd (xsi−xt )+Fd (x
r1
t −x

r2
t ) (39)

si ∼ U [sil, siu] (40)

siu =
(NP− δ)
�

ω+ δ (41)

sil = siu− δ, (42)

where xsi is the si-th vector from the population sorted by
similarity in descending order with respect to the best (fittest)
individual. Here, similarity is computed in terms of the
Euclidean distance. Also, in the above, si is an integer uni-
formly sampled from U [sil,siu], � is the maximum num-
ber of function evaluations, ω is the number of function
evaluations at iteration t , δ is the intensification parameter
(δ = {5,10,15} are found to be favorable [39]). Furthermore,
the parameters Fd and CR are computed by the adaptation
principles from JADE. Initialization of the population is real-
ized by the Opposition Based Learning.

III. COMPUTATIONAL EXPERIMENTS
In order to evaluate the performance and the feasibility of
our proposed approach, we performed a set of experiments
in which our goal is to evaluate the convergence ability when
minimizing the cost function, and the degree of the smooth-
ness and curvature profiles of the obtained paths.

A. SETTINGS
The robot trajectories are realized by the Boe-Bot hard-
ware [40] with a marker-based localization through an RGB
camera @30FPS located on top. Our algorithms were imple-
mented in Matlab 2018a, in which our computing envi-
ronment consisted of i7-4930K @3.40GHz. The evaluated
algorithms are labeled as follows:
• DERAND: DE/rand/1/bin strategy
• RBDE: Rank-Based Differential Evolution
• JADE: Adaptive Differential Evolution with External
Archive

• SADE: Strategy Adaptation Differential Evolution
• DESIM: Differential Evolution with Similarity Based
Mutation

Our main rationale in using the above described heuristics
is due to our aim in evaluatingwhether initialization, selection
pressure, parameter adaptation, exploration and exploitation
play key roles in the competitive performance to fit and
fair curves to robot trajectory data. Basically, our approach
extends the conventional nonlinear least squares curve fitting
problem to ordered data [41] by allowing the inclusion of
a functional fairness to obtain monotonically varying robot
trajectories. Although it is possible to extend the local algo-
rithms for curve fairing [42], the conjugate gradient-based
methods [43], and the nonlinear constrained optimization

approaches such as Sequential Quadratic Programming [44],
their performance is limited by the ability to approximate
a local minimum, the differentiability of the cost function,
the sequential nature of sampling solutions and the compu-
tational cost involved in computing gradients with respect
to all degrees of freedom of the curve. Thus, our focus of
interest span metaheuristics due to the nonlinearity of the cost
function [41], [43], the inherent parallelization scheme to
sample solutions through a population-based approach, and
the potential to scape local optima, thus enabling to compute
fit and fair curves in the global perspective. The evaluation
of gradient-based and local heuristics is out of the scope
of this paper, whose study and integration to metaheuristic
approaches is left for future work in our agenda.

As for parameters in the above-mentioned metaheuris-
tic algorithms, we used probability of crossover CR =
0.5, scaling factor Fd = 0.7, population size NP = 10
individuals, the bias term θ = 3, initialization constant
η = 2, interpolation constants for initial solutions d1 =
d2 = 2/3, and the termination criterion is set to 2000 and
10000 function evaluations. Also, due to the stochastic
nature of Differential Evolution, 20 independent runs were
evaluated for each configuration. Other parameters fol-
lowed RBDE [36], JADE [37], SADE [38], DESIM [39].
The key motivations of using the above parameters are as
follows:
• Crossover probability withCR= 0.5 enables to consider
equal importance to historical search directions.

• Small population size NP = 10 and number of eval-
uations up to 2000 and 10000 are used in order to
evaluate the (competitive) performance of the gradient-
free classes of Differential Evolution algorithms under
tight evaluation budgets. This setting allows to eval-
uate the feasibility on the fast convergence of Dif-
ferential Evolution during distinct modes of selection
pressure.

• Also, as for initialization of the population, in order to
allow the relevant initialization schemes with reasonable
geometry of the search space, we use η= 2 and interpo-
lation constants d1 = d2 = 2/3. The optimal selection
of initialization parameters is out of the scope of the
paper.

The parameter for smoothness preference in Eq. 8 was
set at λ = 0.01, which showed the reasonable results, after
a number of trials, in balancing the fitting error and the
smoothness of curves. Fine-tuning of the above-described
parameters is out of the scope of this paper.

Furthermore, the mobile robot (Boe-Bot hardware [40]) is
able to generate trajectories as byproduct of navigation. Basi-
cally, by fixing the ratio of Pulse Width Modulation (PWM)
on the servo motors, the expected trajectory is circumference;
yet due to inherent noises in current, the mechanical configu-
ration of the gearboxes and the interactions between thewheel
and the floor, the realized trajectories are rather noisy. Thus,
in order to collect real-world robot trajectories, we employed
the following setup:
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FIGURE 3. Overview of real-world trajectories from Boe-Bot robot
hardware.

• Boe-Bot [40] uses discretized combinations of torque
through Pulse-Width Modulation ratio of the servo
motors of the robot.

• Pulse-Width Modulations are discretized by using a
microcontroller (Arduino UNO) attached to the robot
hardware.

• Trajectories are tracked by an RGB camera located
on the ceiling, and markers located on top of the
robot.

For simplicity and without loss of generality, we collected
trajectories by using feasible values of Pulse-Width Modula-
tions in one side of the servo motor. In order to show the kind
of collected trajectories, Fig. 3 shows the set of coordinates
and trajectories for all discretized Pulse-Width Modulations
of the torque in the left side of the servo motor (inducing
a curved motion to the right). Overall, 28 trajectories were
collected, in which the origin was set at locations close to
(0,0) in Fig. 3, and the end locations are positioned at the
right side of the plot. The reader may note that the accurate
positioning of the robot at (0,0) is irrelevant since curve
modeling considers the relative coordinates of the point q1
(initial point in the curve r(u). We observed that the number
of points m (Eq. 9) were variable in each trajectory, and
the following range was obtained m ∈ [311,766], which is
mainly due to the inherent nature of the noisy and curved
paths.

B. CONVERGENCE PERFORMANCE
To evaluate the convergence ability of our proposed approach,
Fig. 4 and Fig. 5 show the convergence of the minimization
of the cost function (Eq. 8) under � = 2000 and � = 10000
function evaluations, respectively. In these figures, the x-axis
denotes the number of function evaluations, and the y-axis
denotes the value of the cost function F . Both Fig. 4 and
Fig. 5 report the mean of the convergence of each of the
28 trajectories cases over 20 independent runs.
• Furthermore, in order to portray the effect of the greedy
initialization on the convergence performance within
the first � = 2000 function evaluations, Fig. 4 shows
the convergence of the cost function when minimizing
Eq. 8 for 28 trajectories. Here, greedy initialization is
depicted by blue color, whereas the convergence under
random initialization is portrayed in red (DERAND),
black (RBDE), green (SADE), purple (JADE) and
orange (DESIM) colors.

FIGURE 4. Convergence of the function F under � = 2000 function
evaluations.

• Also, in order to show the convergence behaviour under
large number of function evaluations, Fig. 5 shows the
convergence under �= 10000 function evaluations.
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FIGURE 5. Convergence of the function F under � = 10000 function
evaluations.

By observing Fig. 4 and Fig. 5, we note the following facts:
• The number of iterations required for convergence is
around 2000 in the best scenarios, in which RBDE,
JADE and SADE show the best convergence speed.

• Reasonable convergence fulfilling the termination cri-
teria occurs in all studied cases when minimizing the

FIGURE 6. Test to evaluate the statistical significance of using the greedy
initialization scheme. Wilcoxon tests were performed at 5% significance
level over 20 independent runs and overall robot trajectories.

FIGURE 7. Statistical test to evaluate the performance of Differential
Evolution classes. Wilcoxon tests were performed at the 5% significance
level over 20 independent runs and overall robot trajectories. On top
(bottom): the number of cases in which an algorithm in the row is
statistically better (similar) than an algorithm in the column. In the
left (right) side: situations using random (greedy) initialization.

cost function over all collected trajectories and classes
of Differential Evolution algorithms.

• As shown by Fig. 4, the improved convergence perfor-
mance is observed within the stages of the search pro-
cess when the population uses the greedy initialization
scheme (Eq. 20 - Eq. 24).

The above-mentioned observations show the amenability
of the Differential Evolution classes to find solutions within
the basins of the cost function F , suggesting the ability to
compute smooth curve configurations within small number
of function evaluations.

In order to evaluate the statistical significance of the
improvement of the greedy initialization scheme, Fig. 6
shows the Wilcoxon rank test at 5% significance level over
the converged cost function F under � = 2000 function
evaluations. Here, the x-axis shows the robot trajectory
scenario, and the y-axis shows the Differential Evolution
class. As shown by Fig. 6, dark blue colors denote that the
greedy initialization scheme (Eq. 20 - Eq. 24) is signifi-
cantly better than the random initialization at 5% significance
level. Also, the greedy initialization improves the perfor-
mance significantly in RBDE (21 out of 28 cases), SADE
(23 out of 28 cases) and JADE (26 out of 28 cases). How-
ever, no significant improvement was observed in DERAND
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FIGURE 8. Examples of smooth curves extracted from robot trajectories.

and DESIM. We believe that the greedy initialization is
advantageous for better convergence in RBDE, SADE and
JADE due to the exploitation abilities of these schemes com-
pared to DERAND and DESIM. Likewise, the exploration
mechanism of DERAND and DESIM in early generations
enables to counter-balance the lack of greedy solutions.

Furthermore, to show the performance comparison among
the Differential Evolution algorithms, Fig. 7 shows the sta-
tistical comparison of the converged cost function after
� = 2000 function evaluations. Here, Wilcoxon tests were
performed at the 5% significance level over 20 independent
runs and overall robot trajectories. By observing the results
in Fig. 7 we observe the following facts:

• All studied Differential Evolution algorithms achieve
similar performance when using random initialization.

• SADE was shown to outperform DESIM in 21% of
the trajectory cases, yet found to achieve similar results
in 79% of the trajectory cases.

• In greedy initialization, RBDE, SADE and JADE
attained the best results, outperforming DERAND and
DESIM. Also, DERAND and DESIM were found to
attain similar results in 86% of the trajectory cases.

• When using greedy initialization, SADE and JADE
achieved similar results in all trajectory cases. How-
ever, JADE was shown to outperform RBDE and SADE
in 64% and 50% of the trajectory cases, respectively.

The above-mentioned facts confirm the feasibility and
the efficiency for competitive convergence. Also, the above
results show the advantageous properties of the greedy

initialization to improve the convergence of Differential Evo-
lution algorithms with exploitative and parameter adaptation
mechanism such as RBDE, SADE and JADE.

C. CURVATURE PROFILES
In order to show the kind of smooth curves which our pro-
posed approach is able to compute, Fig. 8 shows examples
of curves and curvature profiles rendered as a result of the
minimization problem in Eq. 8. In these figures, the following
elements are portrayed:
• A selected number of points in the robot trajectory are
denoted by nodes colored in red.

• The rendered smooth curves approximating the robot
trajectories are shown in dark color.

• The control points pi of the curve r(u) are denoted by
vertices and lines colored in purple.

• The radius of curvature are shown as curved shapes in
blue, green and orange color, respectively.

By observing Fig. 8, we can note that smooth curves rea-
sonably fit the collected robot trajectories. Also, in order to
show the properties of the curvature profiles and to portray the
(variation of) curvature in all cases of smooth robot trajectory
scenarios, Fig. 9 - Fig. 11 show the profiles of the attained
smooth curves. Here, the x-axis denotes the arc-length of the
smooth curve, and the y-axis denotes the value of the radius
of curvature ρ = 1

κ
. By observing Fig. 9 - Fig. 11, we note the

following facts:
• Under small number of evaluations (�= 2000), RBDE,
SADE and JADE attain a linear-like variation of radius
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FIGURE 9. Radius of curvature profiles as a function of curve length using Random Initialization, � = 2000.

FIGURE 10. Radius of curvature profiles as a function of curve length using Greedy Initialization, � = 2000.

FIGURE 11. Radius of curvature profiles as a function of curve length using Greedy Initialization, � = 10000.

FIGURE 12. Examples of compounded curves from smooth robot trajectories.

of curvature over all studied cases of smooth robot tra-
jectories.

• In particular, the linear-like behaviour is attined when
the greedy initialization scheme is used. The above sug-
gests a monotonically varying curvature, which is due to
the presence of the smoothness factor H (Eq. 12).

• Under large number of evaluations (�= 2000), all algo-
rithms attain the linear-like variation of the radius of
curvature over all studied cases.

The above observations confirm the feasibility of gener-
ating curves which not only are able to approximate robot
trajectories reasonably, but also are able to show linear-like
variation of curvature. These features are useful to suggest
alternative robot trajectories which comply with linear vari-
ation of torque, and whose control laws are computationally
efficient.

Furthermore, in order to exemplify the ability of com-
pounding trajectories generated by smooth curves within the

context of mobile robot navigation (Boe-Bot robot architec-
ture), Fig. 12 shows examples of compounded trajectories
by a plural number of fitted smooth curves. Here, curves are
compounded considering C0 continuity and by matching the
gradient of the curve ṙ8(u) at the connecting node points.
Fig. 12 shows the compounded path segments in green color
and the prescribed input coordinates from the robot trajectory
in blue-colored nodes. In scenario 1, 5 arbitrary path segments
were used to generate an arbitrary compounded trajectory,
whereas in scenario 2, 6 arbitrary path segments were used.
By observing the profile in Fig. 12, we can note that it
becomes possible to compute compounded smooth paths by
using the fitted smooth trajectories. However, as expressed in
section II, the compounded paths will require further pruning
to satisfy the minimal cost function F at the node joints.
Also, the compounded paths are unable to satisfy collision-
free navigation. Our results offer the scheme to generate alter-
native navigation trajectories satisfying not only the closeness
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to real-world achieved trajectories, which are byproduct of
the interaction of the robot dynamics and the environment,
but also showing the linear-varying curvature profile, which
is relevant for comfortability and safety in navigation.

In future work, we aim at deriving efficient methods for
collision-free path planning of smooth paths, and integrating
with the proposed aesthetic B-spline Curves [45]–[48]. Also,
in our agenda is the development of compact trajectories
in the plane and its application in resource distribution and
interaction of Multi-Agent Sytems. Our obtained results offer
the building blocks to further advance towards developing
data-driven path planning algorithms for field areas, which
may find use in several real-world applications in Robotics,
Operations Research and Multi-Agent Systems.

IV. CONCLUSION
In this paper, we have proposed an approach to generate
smooth paths from observed robot trajectories by opti-
mizing criteria for fitting and smoothness using Differ-
ential Evolution under distinct modes of initialization of
the population, selection pressure, exploration and exploita-
tion during sampling. In particular, we the DE/rand/1/bin
strategy (DERAND), the Rank-Based Differential Evolution
(RBDE), the Adaptive Differential Evolution with External
Archive (JADE), the Strategy Adaptation Differential Evolu-
tion (SADE), and the Differential Evolution with Similarity
Based Mutation (DESIM).

Our rigorous experiments using all feasible cases of pulse
width modulation on one side of the (servo) motor of the
Boet-Bot mobile robot architecture showed the feasibility of
our approach to generate smooth curves efficiently, in which
fast convergence to the basins of the search space occurs with
the greedy initialization scheme and Differential Evolution
with exploitative and parameter adaptation schemes, such as
RBDE, SADE and JADE.

Our proposed approach is useful to suggest alternative
trajectories for mobile robots complying with linear variation
of the radius of curvature, and whose control realization
would be computationally efficient, offering the data-driven
planning mechanisms for comfortability in riding.
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