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ABSTRACT To improve the precision and robustness of Unmanned Aerial Vehicle (UAV) integrated
navigation systems, this paper presents an Interacting Multiple Model (IMM) navigation algorithm based on
a Robust Cubature Kalman Filter (RCKF) with modified Zero Velocity Update (ZUPT) method assistance.
This algorithm has a two-level fusion structure. At the bottom level, the Global Positioning System/Inertial
Navigation System (GPS/INS) integrated navigation model and the Dynamic Zero Velocity Update/Inertial
Navigation System (DZUPT/INS) integrated navigation model are established by modifying the Zero
Velocity Update (ZUPT) method. Subsequently, the RCKF algorithm adopts a robust factor to weaken
the influence of measurement outliers on the filter solution. At the top level, the estimation results of the
GPS/INS integrated navigation model and the DZUPT/INS integrated navigation model are fused by the
IMM algorithm. In addition to enhancing the robustness of filter estimation in the presence of measurement
outliers, the proposed navigation algorithm also corrects navigation errors with ZUPT method assistance.
Simulation and experimental analyses demonstrate the performance of the proposed navigation algorithm
for UAVs.

INDEX TERMS Interacting Multiple Model, Robust Cubature Kalman Filter, Dynamic Zero Velocity
Update, integrated navigation.

I. INTRODUCTION
Inertial Navigation System (INS) is a navigation system that
is able to calculate the position, velocity and attitude of a UAV
with fairly good short-term navigation accuracy. In this UAV
navigation system, INS consists of a low-cost inertial mea-
surement unit (IMU) [1]. Due to the drifts of a low-cost IMU,
navigation errors of INS increase over time, which leads to
degradation of the navigation results [2]. GPS can provide
velocity and position information, but the GPS refresh rate is
low. Therefore, GPS/INS integration has been widely used in
UAV navigation systems, which can make full use of these
two independent systems, i.e., the high-precision trajectory
information of GPS and the short-term stability of INS.

TheKalman Filter (KF) is widely used in INS/GPS integra-
tion. However, the essence of the integrated navigation sys-
tem is nonlinear; therefore, the traditional KF, which can only
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be applied to linear systems, is no longer suitable for non-
linear systems. For nonlinear system filtering, Quinchia and
Falco choose an extended Kalman filter (EKF) to linearize
nonlinear systems [3], [4]. EKF linearizes the nonlinear sys-
tem model via the first-order Taylor expansion. However,
EKF is only effective for approximately linear nonlinear
systems, and EKF can only achieve first-order accuracy. The
CubatureKalman Filter (CKF) is an improvement to EKF that
generalizes the Kalman Filter for both linear and nonlinear
systems. The CKF calculates a group of points with the same
weight according to the spherical-radial cubature rule [5], [6].
The algorithm propagates these points directly through a
nonlinear system equation to estimate the state [7]–[10];
the CKF does not need to linearize the nonlinear model and
can achieve third-order accuracy. However, the performance
of the CKF depends on the accuracy of measurement infor-
mation and will seriously degrade when outliers are con-
tained in the measurement. The Robust Kalman Filter (RKF)
can be used to control outliers [11]–[13]. If the observation
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information of the navigation system contains outliers,
the RKF can reduce the interference from the measurement
outliers by reducing their weight [14]–[16]. In addition,
in terms of a low-cost GPS receiver, the GPS velocity will
have residual errors due to the influence of Doppler observa-
tion noise, satellite velocity errors, receiver errors and other
factors in the GPS velocity measurement process [17]–[19].
Therefore, the navigation solution for an INS/GPS navigation
system will be affected by the GPS velocity error.

To reduce interference due to measurement outliers on
the UAV INS/GPS integrated navigation system, Hu applied
the RKF to the system [20], which has better robustness
to deal with measurement outliers than existing algorithms.
However, the GPS velocity error still impacts the navigation
results. To reduce the influence of the accumulation of GPS
velocity errors on the results, Cai applied ZUPT to the vehicle
navigation system, and this method can correct navigation
errors when the vehicle velocity is 0 [21]. However, the
velocity of a fixed wing UAV is not 0 in flight, so the ZUPT
condition is not met. The method used to identify the ZUPT
condition should also be considered, and the fault detection
method was used to identify the ZUPT condition in previous
research [22], [23]. However, these fault detection methods
lead to expensive calculations and have a certain time delay.
In underwater vehicles, Yao uses the IMM algorithm to solve
the ZUPT condition identification problem. The IMM algo-
rithm selects the optimal weight according to the innovation
and innovation covariance and outputs the appropriate navi-
gation parameters [24]–[28], avoiding time delay. However,
because the flight environment of UAVs is different from that
of underwater vehicles, it is necessary to modify the ZUPT
method according to the characteristics of UAVs and to apply
the ZUPT method to integrated navigation systems in UAVs.

To overcome the above problems, this paper proposes the
IMM navigation algorithm, which is based on RCKF, and
applies the ZUPTmethod to a UAV navigation system for the
first time. In the DZUPT method, we only apply ZUPT to the
Z-axis when a UAV is in a level flight state since the Z-axis
velocity of the navigation frame is 0 during the period of level
flight, which meets the ZUPT condition. Then, the GPS/INS
integrated navigation model and the DZUPT/INS integrated
navigation model are established. Subsequently, RCKF is
designed using the CKF and the IGG III weight function,
which could reduce the interference due to truncation errors
and measurement outliers on the filtering results. Based on
the RCKF algorithm, the IMM algorithm is used to fuse
the DZUPT/INS model and the GPS/INS model. The IMM
algorithm calculates the weight of the DZUPT/INS model
and the GPS/INS model in the navigation system. The weight
of the DZUPT/INS navigation model increases when the
system meets the ZUPT condition, and the weight of the
DZUPT/INS navigation model decreases when the system
does not meet the ZUPT condition. Therefore, the proposed
IMM navigation algorithm uses the ZUPT algorithm to cor-
rect the navigation parameters and realize smooth switching
between the DZUPT/INS model and the GPS/INS model.

The main contributions of this paper are summarized
below. First, we present a DZUPT method by modifying the
traditional ZUPT, which is applied to the navigation system of
a UAV for the first time to reduce navigation errors. Second,
we develop the RCKF algorithm to enhance the robustness
of the CKF to measurement outliers. Third, IMM algorithm
is introduced to fuse the GPS/INS navigation model and the
DZUPT/INS navigation model, which improves the precision
and robustness of the navigation system at the same time.

The rest of this paper is arranged as follows. In Section 2,
the model of DZUPT/INS and GPS/INS is given. Then, the
RCKF algorithm is derived in Section 3, and in Section 4,
the implementation process of the IMM navigation algorithm
based on RCKF is introduced. Experiments and analyses are
shown in Section 5, and conclusions are drawn in Section 6.

II. MATHEMATICAL MODEL OF DZUPT/INS
AND GPS/INS
The basic model of the system is mainly composed of the
GPS/INS integrated navigation model and the DZUPT/INS
integrated navigation model. In this section, the state equa-
tion is established based on the INS nonlinear error equa-
tions. Subsequently, the GPS/INSmodel and theDZUPT/INS
model are constructed.

A. STATE EQUATION
Set i as the inertial frame (i frame), select the ‘‘North-East-
Down’’ geographical coordinate system as the navigation
frame (n frame), set the ‘‘Front-Right-Down’’ frame as the
body frame (b frame) and set the e frame as the Earth-
Centered, Earth Fixed (ECEF) frame [29].

The GPS/INS model and the DZUPT/INS model use the
same state equation, which is established by combining the
INS nonlinear error equations with the inertial measurement
unit error equations.

The state vector is defined as

X =
[
φ δv δp εb ∇

b
]T (1)

where φ =
[
φx φy φz

]
is the attitude error, δv =[

δvx δvy δvz
]
is the velocity error, and δp =

[
δL δλ δh

]
is the position error. The constant drift of the gyro is εb =[
εbx εby εbz

]
, and the zero-bias of the accelerometer is ∇b =[

∇
b
x ∇

b
y ∇

b
z
]
.

The attitude and velocity error equations of the INS non-
linear error equations can be described as [30]

φ̇=C−1ω
[(
I−Cn′

n

)
ω̂nin + δω

n
in−C

n′
b ε

b
]
+C−1ω Cn′

b w
b
g (2)

δv̇n= δg+
[
I −

(
Cn′
n

)T]
Cn′
b f̂

b
−
(
2ω̂nie + ω̂

n
en
)
× δvn

−
(
2δωnie+δω

n
en
)
×vn+

(
Cn′
n

)T
Cn′
b ∇

b
+

(
Cn′
n

)T
Cn′
b w

b
a

(3)

where Cn′
n , C

n′
b and Cn

b are the rotation matrices [31]; vn =(
vx vy vz

)T is the velocity in n frame; δgn is the gravity
error, f̂ b is the measurements of the specific force; δf b and
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δωbib are the measurement error of acceleration and gyro-
scope, respectively; ∇b is constant bias; ωba is zero-mean
white noise; εb is the constant drift; ωbg is zero-mean white
noise; ωnie is the earth’s rotational velocity vector; ωnen is the
angular velocity vector generated by carrier movement;ωnin =
ωnie + ω

n
en is the relative rotation angular velocity between

the n frame and the i frame; and δω̂nie, δω̂
n
en and δω̂

n
in are the

calculation error of ωnie, ω
n
en and ω

n
in, respectively. δω̂

n
ie, δω̂

n
en

and δω̂nin can be described as

ωnie =
[
ωie cosL 0 −ωie sinL

]T
δωnie =

[
−δLωie sinL 0 −δLωie cosL

]T
ωnen =

[
vy

Rn + h
−

vx
Rm + h

−
vy tanL
Rn + h

]T

δωnen=



δvy
Rn + h

− δh
vy

(Rn + h)2

−
δvx

Rm + h
+ δh

vx
(Rm + h)2

−
δvy tanL
Rn + h

−δL
vy sec2 L
Rn + h

+δh
vy tanL

(Rn + h)2



(4)

where L, λ and h are latitude, longitude, and height, respec-
tively; Rm and Rn are the radii of the curvature in the
meridian and prime vertical, respectively; and C−1w can be
expressed as [32]

C−1ω =
1

cosφy

 cosφz − sinφz 0
sinφz cosφy cosφz cosφy 0
− cosφz sinφy sinφz sinφy cosφy

 (5)

The position error model is described as follows:
δL̇ =

δvx
Rm + h

− δh
vx

(Rm + h)2

δλ̇ =
δvy secL
Rn + h

+ δL
vy tanL secL

Rn + h
− δh

vy secL

(Rn + h)2

δḣ = −δvz

(6)

The gyro constant drift εb and the accelerometer zero-bias
∇
b are expressed by random constants as{

ε̇bi = 0 (i = x, y, z)
∇̇
b
i = 0 (i = x, y, z)

(7)

The system state equation can be obtained as follows:

Ẋ (t) = f (X (t))+ w (t) (8)

where f (·) is a nonlinear function composed of (2), (3), (6)
and (7), and the process noise vector is described as w (t) =[
(C−1ω Cn′

b w
b
g)
T (Cn

bw
b
a)
T 01×9

]T
.

Discretizing (8) by the improved Euler discretization for-
mulation [33], the discrete state equation of the system can
be described as

Ẋk = f (Xk−1)+ wk (9)

where f (·) is the nonlinear function in discrete form and wk
is the process noise in discrete form.

B. MEASUREMENT EQUATION OF THE GPS/INS MODEL
In the GPS/INS navigation model, (9) is the state equation,
and the difference value Zg,k between the INS velocity vn and
GPS velocity vg is taken as the measurement. The measure-
ment equation is described as

Zg,k = Hg,kXk + vg (10)

where 
Hg,k =

[
03×3 I3×3 03×9

]
Zg,k = vnk − v

g
k =

 vk,x − v
g
k,x

vk,y − v
g
k,y

vk,z − v
g
k,z

 (11)

In (10), vg is the measurement noise of the system and
corresponds to the velocity error of the GPS receiver, and the
variance of vg is Rg.

C. MEASUREMENT EQUATION OF THE DZUPT/INS MODEL
In the DZUPTmethod, the ZUPTmethod can only be applied
to the Z-axis since the Z-axis velocity vz in n frame is close
to 0 when the UAV is in level flight.

In terms of the DZUPT/INS model, the DZUPT velocity is
vd = [ vgx vgy 0 ]T , the state equation is still taken as (9), and
the default Z-axis velocity in the n frame is 0; the difference
value Zd,k between INS velocity vn and DZUPT velocity vd is
taken as the measurement value. Then, there is the following
equation in the n frame. The difference value Zd,k can be
described as

Zd,k = vnk − v
d
k =

 vk,x − vdk,xvk,y − vdk,y
vk,z − 0

 (12)

The measurement equation can be described as

Zd,k = Hd,kXk + vd (13)

where the Hd,k matrix can be described as

Hd,k =
[
03×3 I3×3 03×9

]
(14)

In (13), vd is the measurement noise, corresponding to the
measurement error of the DZUPTmethod and the variance of
vd is Rd .

III. RCKF ALGORITHM
The concept of the CKF is briefly reviewed before the intro-
duction of RCKF. The CKF uses the spherical-radial cubature
rule to solve high-dimensional nonlinear filtering problems,
and the CKF process involves the following steps:
Time Updating: The equations are as follows:

ηi =
√
n[ In −In ]i (15)

where In is the unit matrix, n is the dimension of the state,
[·]i is the column of the matrix [·], and i = 1, 2, . . . , 2n.
Evaluating the cubature points

Xi,k−1/k−1 =
√
Pk−1|k−1ηi + x̂k−1|k−1 (16)
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Using the nonlinear error model to evaluate the propagated
cubature points

X∗i,k/k−1= f
(
Xi,k−1/k−1

)
(17)

x̂k/k−1 =
2n∑
i=1

1
2n
X∗i,k/k−1 (18)

Pk/k−1 =
1
2n

2n∑
i=1

X∗i,k/k−1
(
X∗i,k/k−1

)T
−x̂k/k−1x̂Tk/k−1+Qk

(19)

Measurement Updating: Evaluate the cubature points

Xi,k|k−1 =
√
Pk|k−1ηi + x̂k|k−1 (20)

Evaluate the propagated cubature points and the predicted
measurement

Zi,k|k−1 = H
(
Xi,k|k−1

)
(21)

ẑk|k−1 =
2n∑
i=1

1
2n
Zi,k|k−1 (22)

Calculate the Kalman gain

Pzz =
1
2n

2n∑
i=1

[
Zi,k|k−1 − ẑk|k−1

] [
Zi,k|k−1 − ẑk|k−1

]T
+ Rk

(23)

Pxz =
1
2n

2n∑
i=1

[
Xi,k|k−1 − x̂k|k−1

] [
Zi,k|k−1 − ẑk|k−1

]T (24)

Kk = PxzP−1zz (25)

The update state and the corresponding error covariance
matrix can be obtained from the following equations:

x̂k|k = x̂k|k−1 + Kk
(
zk − ẑk|k−1

)
(26)

Pk|k = Pk|k−1 − KkPzzKT
k (27)

As mentioned previously, the performance of the CKF will
deteriorate in the presence of measurement outliers. In this
paper, RCKF is proposed to enhance the robustness of the
CKF and overcome the aforementioned limitation of the CKF.

RCKF first constructs the CKF model, and then, the algo-
rithm adjusts the weight of the observation information
through the equivalent weight function by adjusting the value
of Rk to reduce measurement outlier interference on the nav-
igation results. The relationship between the measurement
noise matrix Rk and the robust equivalent weight matrix P̃K
is as follows:

Rk = P̃−1K (28)

The robustness of the RCKF estimator mainly depends
on the equivalent weight function. The widely used equiv-
alent weight functions are the Huber weight function,
the Turkey weight function, the Andrews weight function, the
IGG (Institute of the Geodesy and Geophysics) weight func-
tion and the IGG III weight function. The IGG III weight

function was chosen in the RCKF algorithm since it has a
better correction effect than other weight functions when the
measurements contain outliers [34].

The IGG III weight function is shown as Algorithm 1.

Algorithm 1 IGG III Weight Function
Step 1: Take the values of k0 and k1 according to the actual
situation, in general, k0 = 1.0 − 1.5 and k1 = 2.5 − 8.0.
In this paper, k0 = 1.0 and k1 = 4.0.
Step 2: Calculate the standardized residuals sii.

sii =

∣∣zk − ẑk|k−1∣∣√
(PzzPk )iiPkii

(29)

Step 3: Calculate the weight reduction function γii.

γii =


1 sii ≤ k0
k0
sii

(
k1 − sii
k1 − k0

)2

k0 < sii < k1

0 sii ≥ k1

(30)

Step 4: Calculate the robust equivalent weight matrix P̃K .

P̃Kii = γiiPkii (31)

In (31), P̃Kii is the (i, i) element of the robust equivalent
weight matrix, and Pkii is the (i, i) element of the robust
equivalent weight matrix at the previous cycle.

The IGG III weight function divides the measurement data
into three types: effective measurement, available measure-
ment and harmful measurement.

From the equivalent weight function above, we can see
that if sii ≤ k0, then the estimator is equal to the traditional
least square method; if sii ≥ k1, then the corresponding
measurement will be given zero weight; if k0 < sii < k1,
then the weight of the measurement will be reduced, which
could decrease the influence of measurement outliers on the
filter results.

IV. IMM UAV NAVIGATION ALGORITHM BASED ON RCKF
The DZUPT/INS model can correct navigation errors when
the UAV is in level flight; however, when the UAV is not
in level flight, the DZUPT/INS integrated navigation model
no longer plays an important role, and the system mainly
relies on the GPS/INS model to obtain the correct navigation
parameters. The data fusion and weight calculation of the
two integrated navigation models are realized by the IMM
algorithm.

The essence of the IMM algorithm is to obtain the weight
of the DZUPT/INS model and the GPS/INS model, and the
two models run in parallel. After calculating the innovation
and innovation covariance matrix of each model, the overall
state estimate is obtained by combining all the state estimates
from eachmodel.Moreover, the ZUPT detector has been used
to identify the ZUPT condition in prior research. In contrast,
the proposed IMM navigation algorithm employs the innova-
tion and innovation covariance information to autonomously
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identify the optimal model in the current moment, which
avoids complex identification of the ZUPT detector and
reduces the time delay.

A. PRINCIPLE OF IMM NAVIGATION
Each model in the IMM algorithm has its own filter, and the
transfer between each model is determined by the Markov
transfer matrix, which is described as

P =

 p11 · · · p1r
· · · · · · · · ·

pr1 · · · prr

 (32)

where pij represents the probability of the system transfer
from the i model to the j model.
The IMM algorithm can be described in the following four

parts based on theMarkov transition matrix between different
models.
Step 1: Interaction (Model j, j = 1, 2)
Given the state estimation x̂i,k−1|k−1 and the model prob-

ability ui,k−1 of each filter at the end of the previous cycle,
the state estimation x̂0j,k−1|k−1 and estimation covariance
P0j,k−1|k−1 of each filter are updated according the model
transition probability.

µij,k−1|k−1 = pijµi,k−1/
2∑
i=1

pijµi,k−1 (33)

x̂0j,k−1|k−1 =
2∑
i=1

x̂i,k−1|k−1µij,k−1|k−1 (34)

P0j,k−1|k−1 =
2∑
i=1

µij,k−1|k−1

· {Pi,k−1|k−1 +
[
x̂i,k−1|k−1 − x̂0j,k−1|k−1

]
·
[
x̂i,k−1|k−1 − x̂0j,k−1|k−1

]T
} (35)

where, µij,k−1|k−1 is the model transition probability,
x̂0j,k−1|k−1 is the state estimation of model j, and P0 j,k−1|k−1
is the corresponding estimation covariance.
Step 2:Model Filtering (Model j, j = 1, 2)
Given the interacted state estimation covariance matrix of

each model, RCKF is operated in individual filters and the
innovations and their covariance matrices should be recorded
to update the model probability in the next step, which are

vj,k = zk − ẑk|k−1 (36)

Sj,k = HkPj,k/k−1HT
k + Rk (37)

where ẑj,k|k−1 is the predicted measurement of model j and
Pj,k|k−1 is the predicted estimate covariance of model j.
Step 3:Model Probability Update (Model j, j = 1, 2)
The model probability is updated according to the inno-

vation and innovation covariance matrices. Assuming the
innovation obeys the Gaussian distribution with a mean value
of 0 and a variance of Sj,k , the likelihood function is

3j,k =
1

(2π )n/2
∣∣Sj,k ∣∣1/2 exp

{
−
1
2
vTj S
−1
j,k vj

}
(38)

where n is the dimension of the measurement vector. The
probability of model j is updated according to the likelihood
function 3j,k , the Markov model transition probability pij
and the previous model probability µi,k−1. and the model
probability is

µj,k = 3j,k

2∑
i=1

pijµi,k−1/

 2∑
j=1

3j,k

2∑
i=1

pijµi,k−1

 (39)

The likelihood function3j,k characterizes the relative per-
formance of onemodel with respect to the other. It can be seen
from (39) that the closer to zero the innovation vector vj,k is,
the large3j,k will be, leading to a larger model probability for
the model j. Therefore, the IMM estimation always follows
one model that outperforms the other.
Step 4: Output Combination
Given the newly updated weight, the outputs of indi-

vidual filters are integrated according their different model
probability.

x̂k/k =
2∑
j=1

µj,k x̂j,k/k (40)

Pk/k =
2∑
j=1

µj,k{Pj,k/k+[x̂j,k/k−x̂k/k ]·[x̂j,k/k−x̂k/k ]T } (41)

B. STRUCTURE OF THE IMM NAVIGATION
ALGORITHM BASED ON RCKF
From the above sections, the structure of the proposed
IMM navigation algorithm based on RCKF can be divided
into the following four parts: Interaction, Model filtering,
Model probability update, and Output combination, as shown
in Fig. 1.
It can be seen from Fig. 1 that the algorithm first obtains

the state estimation x̂0j,k−1 and the corresponding estimation
covariance P0j,k−1 calculated from the state estimation and
covariance of each filter at the end of previous cycle. Then,
x̂01,k−1 and P

0
1,k−1 are used to solve the navigation parameters

through the GPS/INS model, x̂02,k−1 and P02,k−1 are used
to solve the navigation parameters through the DZUPT/INS
model, and the model probability is updated according the
innovations and innovation covariance matrices. Finally, x̂k/k
and Pk/k of the filter are obtained by weighting the state
estimation and the corresponding estimation covariance of
individual filters according their different model probability.

V. EXPERIMENT AND ANALYSIS
In this section, simulation and experimental analyses were
conducted to verify the effectiveness of the algorithm. First,
the effectiveness of the DZUPT/INS integrated navigation
model was verified by using the experimental data collected
by the UAV when in level flight. Subsequently, experimental
data involving various maneuvers were simulated to verify
the improvements of the proposed IMM navigation algorithm
based on RCKF.
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FIGURE 1. Structure diagram of the IMM navigation algorithm based on RCKF.

TABLE 1. Parameters of Elipse-N inertial navigation system.

The INS/GPS integrated system carried by the fixed-wing
UAV was the Ellipse-N inertial navigation system. The sys-
tem can collect the original gyroscope, magnetometer, GPS
and accelerometer information. The reference navigation
parameters were also obtained by the Elipse-N navigation
system. The roll precision and pitch precision in Elipse-N
were both 0.2◦, the yaw precision was 0.5◦, the horizontal
position precision was 2 m, and the vertical position precision
was 0.1 m. The indexes of the gyroscope, accelerometer, and
GPS receiver in Elipse-N are shown in Table 1.

The experimental data were collected from a flight trial
within a continuous time period of 760 s, including hover,
level, acceleration, and deceleration flight. The starting posi-
tion of the UAV was at north latitude 34.0277615◦, east lon-
gitude 108.6926932◦, and altitude of 599.87 m. The starting
navigation velocity was 19.8 m/s in the north,−8.4 m/s in the
east and 0.41 m/s in the downward direction. The initial yaw
was −28.5◦, and the pitch and roll were both 0◦. The filter
cycle of the INS/GPS model and the INS/DZUPT model was
0.02s. Fig. 2 illustrates the fixed wing UAV equipped with the
Elipse-N navigation system.

The initial error covariance matrices and process noise
covariance matrix were set as

P0 = diag[(0.1◦)2, (0.1◦)2, (0.1◦)2, (0.1m/s)2,
(0.1m/s)2, (0.1m/s)2, (2m)2, (2m)2, (0.1m)2,(
0.2◦/s

)2
· I3×3, (5× 10−3g)2 · I3×3] (42)

FIGURE 2. Fixed wing UAV with the Elipse-N system.

Qk = diag[(0.15◦/
√
h)2 · I3×3, (5× 10−5g×

√
s)2

· I3×3, 09×9] (43)

The measurement noise variances of the GPS/INS model
were set as

Rg,k = diag[(0.1m/s)2 · I3×3] (44)

The measurement noise variances of the DZUPT/INS
model were set as

Rd,k = diag[(0.1m/s)2 , (0.1m/s)2 , (0.01m/s)2] (45)

At the beginning of the flight, the UAV made a circling
motion. After circling to a certain height, the UAV main-
tained a stable altitude and flew to the target point at a speed
of 22 m/s. Then, the UAV turned around at the target point
and returned to the starting point at a speed of 24 m/s. The
trajectory is shown by the blue line in Fig. 3, and the flight site
was in Huyi District, Xi’an City, Shaanxi Province, China.

A. EXPERIMENTS AND ANALYSIS OF THE
DZUPT/INS MODEL
The simulation experiments of the GPS/INS model and
the DZUPT/INS model were conducted using the 10 s
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FIGURE 3. UAV flightpath.

FIGURE 4. Attitude error diagram of the two models.

experimental data that met the DZUPT condition (UAV in
level flight). The navigation parameters of the two models
were compared with the reference navigation parameters to
evaluate the performance of the DZUPT/INS model. The
experimental results are as follows:

Fig. 4 shows that the errors between the output attitude
angles of the two models and the reference values are con-
trolled within 1◦ and that the errors of the output attitude
angles of the DZUPT/INS model are smaller, which shows
that the DZUPT/INS model can correct navigation errors and
improve the navigation accuracy. Table 2 provides the Root

Mean Square Errors (RMSE) of the attitude errors obtained
by GPS/INS model and DZUPT/INS model. The attitude
accuracy of the DZUPT/INS model is 21% higher than that
of the GPS/INS model according to Table 2.

TABLE 2. Attitude error characteristics of the two models.

FIGURE 5. Velocity error diagram of the two models.

TABLE 3. Velocity error characteristics of the two models.

The UAV was in a level flight state, and the vertical veloc-
ity was 0 in the selected time period; therefore, only the
velocity error data of the X-axis and Y-axis are compared
here. Fig. 5 illustrates that the velocity error of both models
can be controlled within 0.2 m/s. However, the accuracy of
the velocity parameters output by the DZUPT/INS model is
higher because the attitude error is reduced by the DZUPT
method, which improves the precision of the velocity mea-
surement through the velocity error model. Table 3 pro-
vides the RMSE of the velocity errors obtained by GPS/INS
model and DZUPT/INS model; the velocity accuracy of the
DZUPT/INS model is 44% higher than that of the GPS/INS
model according to Table 3.

The vertical position was basically unchanged in the
selected time period, so only the position error data of the
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FIGURE 6. Position error diagram of the two models.

X-axis and Y-axis are compared here. Fig. 6 illustrates that
both models can control the position error within 0.3 m.
The accuracy of the position parameters output by the
DZUPT/INS model is higher than that of the GPS/INS model
because the velocity error is reduced by the DZUPT method,
which improves the position precision through the position
error model. Table 4 provides the RMSE of the position errors
obtained by GPS/INS model and DZUPT/INS model. The
position accuracy of the DZUPT/INS model is 41% higher
than that of the GPS/INS model according to Table 4.

TABLE 4. Position error characteristics of the two models.

The experimental results indicate that the DZUPT/INS
navigation model achieves a higher estimation accuracy than
the traditional GPS/INS navigation model algorithm when
the UAV is in level flight.

B. EXPERIMENTS AND ANALYSIS OF THE PROPOSED
IMM NAVIGATION ALGORITHM
A simulation was carried out using the IMM navigation algo-
rithm based on RCKF. The values of the Markov transition
probability matrixP and the initial model probabilityµ0 were
set as

P =
[
0.9 0.1
0.1 0.9

]
, (46)

µ0 =
[
µ1,0 µ2,0

]
=
[
0.9 0.1

]
. (47)

The simulation results of the attitudes and positions are
shown in Fig. 7 and Fig. 8, respectively, and the model
probability is shown in Fig. 9.

FIGURE 7. Attitude error comparison diagram.

Fig. 7 shows the UAV attitude errors achieved by the CKF,
RCKF, and IMM. It can be observed from Fig. 7 that the
performance of the CKF degrades because of interference
from measurement outliers. However, the RCKF algorithm
could control the interference from measurement outliers on
the navigation results by adjusting the value of the measure-
ment noise matrix. RCKF and the proposed IMM algorithm
based on RCKF have strong robustness to measurement out-
liers, resulting in an improved attitude filtering accuracy. The
attitude errors of RCKF are less than 4◦, whereas those of the
IMM algorithm are less than 2◦ since the proposed algorithm
uses the DZUPT method to correct the navigation error and
obtain more accurate navigation parameters in periods of
level flight.

The Mean Absolute Errors (MAE) and RMSE of the atti-
tude errors determined by the CKF, RCKF and IMM algo-
rithms over the entire simulation time are listed in Table 5.
The statistical results presented in Table 5 also verify that
the proposed IMM navigation algorithm has a better attitude
filtering accuracy than the CKF and RCKF in the presence of
measurement errors.
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FIGURE 8. Position error comparison diagram.

FIGURE 9. Probability curve of the DZUPT/INS model.

TABLE 5. MAE and RMSE of attitude errors achieved by CKF, RCKF,
and IMM.

Fig. 8 shows the position errors achieved by the CKF,
RCKF, and IMM. It can be observed from Fig. 8 that the
CKF is significantly disturbed by measurement outliers and
GPS velocity errors, resulting in a large position error. The
MAE of the position errors in the north, east and down-
ward directions are 3.3635 m, 3.7488 m, and 6.2693 m,
respectively. The position error of RCKF is slightly smaller

TABLE 6. MAE and RMSE of the position error achieved by CKF, RCKF,
and IMM.

than that of the CKF since the RCKF algorithm could control
the interference from measurement outliers on the navigation
results. As expected, the position error of the proposed IMM
algorithm is smaller than that of the CKF and RCKF, which in
the north, east and downward directions are within 2.4548 m,
2.3392 m, and 2.1816 m, respectively. This improvement is
because the proposed IMM navigation algorithm not only
uses the RCKF algorithm to control the interference from
measurement outliers but also corrects navigation errors in
the level flight period by using the DZUPT algorithm. The
statistical results presented in Table 6 also verify that the
proposed IMM navigation algorithm has a better position
filtering accuracy than the CKF and RCKF in the presence
of measurement errors.

FIGURE 10. Altitude diagram of the IMM navigation algorithm.

Fig. 9 and Fig. 10 show that the probability of the
DZUPT/INS model changes with UAV maneuvering due to
the adjustment of the IMM navigation algorithm. For exam-
ple, during the time interval from 350 s to 390 s, the UAVwas
in level flight, which met the DZUPT condition; therefore,
the probability of the DZUPT/INS model was close to 0.8.
The altitude of the UAV changed during the time interval
from 390 s to 420 s, which did not meet the DZUPT con-
dition, so the probability of the DZUPT/INS model changed
to approximately 0. In this time period, the GPS/INS model
played a major role. When the UAV was in level flight again
during the time interval from 420 s to 470 s, the probability of
the DZUPT/INSmodel was close to 0.8, and the DZUPT/INS
model played a major role again.

The above experimental results and analyses demonstrate
that the proposed IMM navigation algorithm outperforms the
CKF and RCKF. The proposed IMM navigation algorithm
could improves navigation accuracy with the assistance of the
DZUPT method.
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VI. CONCLUSION
This paper presents an IMMUAV navigation algorithm based
on RCKF. The DZUPT method for a UAV is established
to correct navigation errors, and the RCKF algorithm is
developed to enhance the filter robustness by weakening the
influence of measurement outliers. Therefore, IMM naviga-
tion is introduced to fuse the GPS/INS navigation model and
DZUPT/INS navigation model. Thus, the proposed naviga-
tion algorithm not only enhances the filter robustness but also
corrects navigation errors with the assistance of the DZUPT
method. The experimental results and analyses indicate that
the proposed IMM navigation algorithm has a much higher
navigation accuracy than the CKF and RCKF.

In future work, we will investigate the corresponding
DZUPT methods for each UAV flight mode to further correct
navigation errors and improve navigation accuracy.
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