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ABSTRACT Stator inter-turn fault diagnosis system for electric motors is of a considerable concern due to
its significant effect on industrial production. In this paper, a new method for detecting the inter-turn fault
and quantifying its severity in the line start permanent magnet synchronous motor (LSMPSM) is proposed.
The new method depends on monitoring the stator current during steady-state period to detect the fault. The
convolutional neural network (CNN) method is proposed to correlate the motor steady-state current with
the status of the motor winding conditions and detect any presence of inter-turn faults. The data used in this
study is extracted from both an experimental setup of a one-horsepower LSPMSM and the corresponding
verified mathematical model through several testing cases under various loading conditions. One of the main
features of the proposed technique is that it does not require separate feature extraction phase. The results
indicate that the proposed technique is able to detect the inter-turn fault under different loading conditions
varies from 0NM to 4NMwith accuracy of 97.75% for all defined fault levels. The use of steady-state current
for fault detection regardless of motor load enables the proposed technique to detect the fault online without
disturbing the system functionality and reliability as well as without adding any extra hardware to the system.

INDEX TERMS Convolutional neural network (CNN), diagnosis, fault detection, inter-turn fault, LSPMSM.

I. INTRODUCTION
The use of line start permanent magnet synchronous
motors (LSPMSMs) in industry such as in pumps, fans, com-
pressors, and other constant speed applications is in its early
stages [1]. LSPMSMs are considered among themost promis-
ing types of motors, due to their high efficiency, high oper-
ational power factor, self-starting, high power density, high
operational torque, and low operational temperature [2], [3].
According to literature, LSPMSMs are considered the most
top efficiency motors in the market where their efficiency
meets the IE4 super-premium efficiency [4]. Therefore,
LSPMSMs are excellent choice for the applications where the
reduction of energy consumption is a priority.

Due to the internal and external stresses such as destruc-
tion in insulation material, inefficient cooling, voltage stress,
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overloading, chemical contamination, and partial discharge,
motors can experience several types of faults. The signif-
icant failures are the inter-turn fault, eccentricity, broken
bars, and demagnetization. According to the IEEE and Elec-
tric Power Research Institute (EPRI) surveys, the primary
cause of inter-turn faults is the insulation breakdown [5], [6].
Such failures affect the normal manufacturing processes
and operations resulting in a significant loss of revenue.
In addition, some of these faults may decrease the effi-
ciency and reliability of the motors. Since the number of
LSPMSMs used in the industry is increasing, there is subse-
quent need for maintenance programs. As such, it is crucial to
develop a diagnostic tool that predicts the faults in their early
stages [1]. It is worthmentioning that the focus of the reported
research on faults diagnosis of LSPMSMwas mostly on rotor
faults and demagnetization [7]–[12]. Recently, a few research
works concentrated on stator winding faults [1], [13].
This research work is a serious attempt to close this gap
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and investigate the stator inter-turn fault in the interior-mount
LSPMSMs.

Different raw indicators have been used in detecting elec-
tric machine faults. Among those indicators are Motor Cur-
rent Signature (MCS), Instantaneous Angular Speed (IAS),
Acoustic Signature (AS), and Surface Vibration Signature
(VS). The use of MCS in fault detection basically depends on
the decomposition of current into its harmonic components
that are discriminating each type of fault. Since the current
signature is sensitive to almost all motor faults, it is the
most non-invasive technique used in machine faults diagnosis
[14]–[16]. Moreover, the use of MCS is preferred over the
other signatures since it does not need additional measure-
ment sensors [17].

On the other hand, instantaneous angular speed, vibration,
and acoustic signatures-based techniques are considered to
be convenient for mechanical faults such as bearing defects
and broken bars [17]–[21]. In [17], MCS, IAS, and VS have
been individually employed in detecting the broken bar fault
in induction motor. The effectiveness of these signatures has
been investigated with the help of Fourier transform, with the
Results demonstrating that IAS outperforms other signatures
in detecting the broken bar fault. In [22], the use of vibration
signal in detecting bearing and inter-turn fault in induction
motor has been investigated. The findings indicate that using
the time-frequency analysis for the vibration signature was
better in detecting the bearing failures than inter-turn failures.
In [23], both MCS and VS have been used in detecting
the inter-turn fault in permanent magnet synchronous motor
(PMSM). The authors observed that the simultaneous use of
two signatures in detecting machine faults could give more
accurate results. However, having more than one signature
would be at the expense of data collection and analysis. In this
paper, the use of MCS only in detecting inter-turn fault is
proposed.

Earlier research shows that various early fault detection
techniques have been developed for electric motors where the
signal-, model-, and knowledge-based techniques are widely
implemented. These techniques exhibited good performance
in fault monitoring for all types of electric motors [24].
In signal-based methods, the fault is detected by analysing
the signatures directly collected from the faulty motors and
compared with the healthy signatures. The analysis study is
normally done by time domain, frequency domain, enhanced
frequency domain, or time-frequency domain. Unfortunately,
the performance of the signal-based method degrades with
unknown abnormalities and unbalance conditions [25].

The model-based detection method needs a precise math-
ematical model for the motor. In this method, for fault
detection, the field collected data from a motor is com-
pared with the mathematical model output [24]. On the
other hand, the knowledge-based model is achieved by using
machine-learning tools such as fuzzy logic, artificial neural
network, support vector machine, self-organizing maps or
partial least squares [26]. However, the knowledge-based
model requires extensive experience to perform well in

detecting the motor faults. The quality of training data and
the selected features are the major factors that affect the
performance of the knowledge-based methods.

Artificial Neural Networks (ANN) are widely used in fault
diagnosis and detection in all types of electric motors. They
are characterized by fast processing capabilities, robustness,
ability to find implicit nonlinear relation between different
variables. No prior information related to motor parameters
is required with ANN. Researchers have reported different
types and topologies of neural network applied for moni-
toring the inter-turn faults [27]–[35]. A Multistage Modular
Neural Network (MNN) was proposed for detecting the size
of inter-turn fault in induction motors [27]. A set of statis-
tical features were extracted from the approximated levels
of current wavelet components and then used as inputs to
the proposed tool. Results indicated that the modular neural
network outperforms the Multi-Layer Feed Forward Neural
Network (MLFFNN) in terms of accuracy, simplicity and
learning capability. In [28], both the MLFFNN and Radial
Basis Neural Network (RBNN) were used in detecting the
inter-turn fault in induction machine. Results showed that the
MLFFNN gives better performance in detecting the inter-turn
fault. In [29], the MLFFNN has been proposed for detecting
inter-turn fault under variable speed, load and fault severity
for PMSM. The harmonic components of stator current were
used as inputs to the ANN. The detection of inter-turn fault
in LSPMSM is recently investigated in [30], [31] where
MLFFNN was used in the detection process. The input is a
set of time-domain and frequency-domain statistical features.
Based on the literature, the crucial phase in the design of
diagnostic tool in terms of MLFFNN, RBNN andMNN is the
extraction of distinctive features. Feature extraction is done
separately before the design of the neural network. In Con-
volutional Neural Network (CNN), the feature extraction and
selection are part of the neural network. This results in a more
efficient network in terms of both hardware and speed. There-
fore, CNN is capable of working with the raw data. Several
studies have utilized the CNN in detecting inter-turn fault
in induction and PMSM motors [32]–[35], while no work is
found in the literature for using CNN in LSPMSM. The per-
formance of CNN in detecting inter-turn fault was compared
with the Recurrent Neural Network (RNN), the Support Vec-
tor Machine (SVM), RBNN and MLFFNN. Results showed
that CNN outperforms them in terms of accuracy [32]–[35].
Therefore, this research work suggested the use of CNN in
detecting inter-turn fault for the LSPMSM.

In this paper, a 2D CNN based diagnostic tool for detect-
ing stator inter-turn fault in LSPMSM has been developed.
The developed tool uses the raw steady-state currents data
as an input, with the inter-turn fault severity as the output.
A 1.0-hp interior-mount LSPMSM has been used in devel-
oping and testing the proposed tool. Large experimental and
simulation data set was collected and used in the training
and testing of the developed tool. The data set was collected
under different load conditions, fault severity levels, fault
resistances and different staring conditions (rotor position,
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and supply voltage zero crossing point). Results show that the
proposed tool is able to detect inter-turn fault severity with
high accuracy.

II. CONVOLUTIONAL NEURAL NETWORK
CNNs are artificial intelligence architectures, mainly simu-
lating the behavior of the visual system for the human brain
[36], [37]. They are designed based on multi-layer neural
networks that extract features from collected data. CNN can
perform multiple tasks such as segmentation, detection, clas-
sification, and any data correlation. For classification applica-
tions, CNN is used to identify the labeled data by employing
supervised learning techniques. Whereas supervised learning
is one of the machine learning mechanisms for classifying
collected data based on previously identified training process
in order to find the target values.

CNN has three main design ideas: weight sharing, spatial
sub-sampling, and local receptive fields. The CNN is com-
posed of four layers: convolutional layer, pooling layer, fully
connected layer, and softmax layer. These layers comprise a
set of neurons with biases, weights, and activation functions
[38]. The CNNnetwork consists of twomain stages which are
the feature extraction stage and the classification stage. The
feature extraction stage includes the convolutional layer and
the pooling layer. While the classification stage involves both
fully connected layer and softmax layer. The block diagram
of a typical CNN architecture is shown in Figure 1.

FIGURE 1. Block diagram of CNN architecture.

One of the key points that attracted the authors to use the
CNN over the other techniques is that it includes feature
extraction in its architecture. Accordingly, CNN can mini-
mize the data pre-processing stages comparedwith other clas-
sification techniques. In CNN the feature extraction is done
in the convolutional and pooling layers. The convolutional
layer consists of neurons that are structured to form a set of
filters (kernels) with specific heights and lengths (pixels). The
filter is a matrix/vector of integers that is being used with the
same size as the kernel on a part of the input pixels. Each
pixel is multiplied by the kernel value and the result is added
to a single and simple value for representing a grid cell in the
output feature map like a pixel. In low level techniques, filters
are configured manually for classification purposes, whereas

FIGURE 2. Features learned from the input signal in 2-D.

CNN, with enough training dataset, has the ability to learn
these filters in order to extract the main features that will
improve the classification accuracy of the system [37], [38].

Two-Dimensional (2-D) CNN was applied on the steady
state current signals directly to find the fault level [39].
As reported in literature, 1-D and 2-D CNNs are mostly used
in fault detection scenarios due to their high performance
in feature extraction [40]. The mechanism of learning main
features from any raw signal by using 2-D extraction features
is illustrated in Figure 2. The input is the raw signal amplitude
with respect to time while the output of this feature extraction
stage represents a set of local features extracted from the raw
data.

Typically, CNN consists of convolutional layers and pool-
ing layers along with other supported layers (i.e. activations,
normalizations, . . . etc.) which are grouped into submodules,
then fully connected layers will be used at the end of the CNN
structure based on the design requirements [41].

A. CONVOLUTION LAYER
It convolves an array of the raw signals that comes from the
input layer with a set of filters with defined size to acquire
the suitable feature maps. The feature maps are generated
by moving these filters over the targeted dataset. Usually,
Rectified Linear Unit (ReLU) is used in CNN model to
generate the targeted output feature map. Moreover, Batch
Normalization (BN) can be used to speed up the training
speed of the CNN model by reducing the fluctuation and
internal covariate shift. Consequently, better classification
accuracy can be achieved. The output of the convolution layer
can be represented by:

Y nj = f

 Mj∑
i=1

Xni ∗W
n
ij + b

n
j

 (1)

whereXni and Y
n
j represent the input and output of the nth con-

volution layer, respectively. W n
ij represents the convolution
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kernel of the nth layer with a specific size. bnj represents the
nth bias value. The operator (∗) is the convolution operation.
Mj is the input feature map and f (.) represents the activation
function.

B. POOLING LAYER
It comes directly after the convolutional layer in order to
decrease the dimension of the resulted convolved features.
Indeed, this can be done by down sampling the feature signs
that are constructed by the previous layer. The input signals
are divided into sub-parts and a pooling function is applied to
each part to evaluate a new value. Among pooling functions,
there are two widely used functions which are the average
pooling function and the max pooling function. The average
pooling function evaluates the average value of all selected
inputs while the max pooling function evaluates the maxi-
mum value by using a suitable filter and stride values and
then the resulted values will be propagated to the next layer.
As mentioned before, this layer minimizes the dimension of
the extracted feature maps by changing them into a single
output. Therefore, the computational time is reduced and the
most important features are extracted. The Max-pooling and
Average-pooling can be evaluated, respectively, as:

Pnij = max
Yn∈ B

(
Y ni1,j1 : i ≤ i1 ≤ lB, j ≤ j1 ≤ WB

)
(2)

Pnij = average
Yn∈ B

(
Y ni1,j1 : i ≤ i1 ≤ lB, j ≤ j1 ≤ WB

)
(3)

where Pnij represents the output of the n
th pooling layer, B is

the pooling window size, lB andWB are the length and width
of the window, respectively.

C. FULLY CONNECTED LAYER
The main goal here is to take the output feature maps resulted
from the convolution and pooling layers and use them to
classify the input data into a label. In the fault detection
problem, the output of the fully connected layer represents
the class of a specific fault. The output of the fully connected
layer is determined as:

Y nj = Wf .f

 Mj∑
i=1

Xni ∗W
n
ij + b

n
j

+ Bf (4)

where, Wf and Bf are the weights and biases of the fully
connected layer, respectively.

D. SOFTMAX LAYER
It allows a multi-class task to be run by the CNN. It repro-
duces a vector of labels into a set of values between 0 and 1,
and the summation of all values is equal 1. Therefore,
the number of outputs will be the same as the number of
classes. This layer is the last layer of the fault classification

stage and the output is calculated as:

O =


P(Y = 1|X;W1, b1)
P(Y = 2|X;W2, b2)

...

P(Y = 11|X;W11, b11)



=
1∑k

j=1 e
(WjX+bj)

.


e(W1X+b1)

e(W2X+b2)

...

e(W11X+b11)

 (5)

The 2-D convolution can be applied to an array that
includes various data and shared weights by using a set of
neurons [42]. However, the backward propagation technique
can be used to adjust the shared weights. The benefit of using
the convolution operation is to identify the main features of
the input signals that will be used in the classification stage.
As mentioned before, the convolution layer is combined with
pooling layer to decrease the dimensionality. Generally, many
activation functions that can be used in the learning process
along with ReLU such as: Softmax, hyperbolic tangent func-
tion (Tanh) and sigmoid function (Sigmoid).

One of the popular optimization algorithms is the stochas-
tic gradient descent with momentum (SGDM). It is widely
used during the training process for any machine learn-
ing approach to find the weights and biases with minimal
error rate values. The gradients of the weights and biases
in the CNN model can be obtained by using SGDM algo-
rithm based on the defined loss function. In general, there
are two performance metrics used in identifying the effi-
ciency of optimization technique: generalization and speed of
convergence.

III. PROPOSED METHOD
The goal of this research is to develop a 2D CNN based stator
inter-turn monitoring tool for LSPMSM that provides early
warning of possible failure. The following steps summarize
the work done to develop the proposed tool:

Step 1: Building an experimental setup and a validating
mathematical model to be used to investigate and study the
inter-turn fault and its effect on the stator currents.

Step 2: Collecting the three-phase steady-state stator cur-
rents for different cases under different loads, fault severity,
fault resistances, rotor starting positions, and supply voltage
zero crossing points.

Step 3: Designing and Training of 2D CNN that correlates
the steady-state stator currents with the existing inter-turn
fault severity, if found.

Step 4: Testing of the developed correlation using unseen
fault cases.

IV. EXPERIMENTAL SETUP AND DATA COLLECTION
Motor current signature analysis (MCSA) has been widely
used in literature for detecting several motor faults
[17], [43]–[45]. The main feature of MCSA lies in avoiding
installation of additional hardware or sensors [17]. Current
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signature may be taken for the currents from the starting
condition in which the transient period will be considered.
In this case, the technique is called Advanced Transient
Current Signature Analysis (ATCSA).

Despite MCSA may provide less information than the
ATCSA, it gives benefits such as avoiding the complications
of knowing the initial conditions (motor rotor position and
voltage angle at the starting point). Furthermore, MCSA
facilitates the online detection of faults while the motor is
running without the necessity of isolating the motor. There-
fore, the steady-state stator currents are selected as the fault
indicators. The effect of inter-turn fault on the steady state
stator currents is investigated below.

In this study, both experimental and simulation investiga-
tions of inter-turn fault have been done. The experimental
investigationwas carried out on a 1.0-hp, 60-Hz, 344 turns per
phase, and 4 poles interior mount LSPMSM. The simulation
study was carried out using the validated mathematical model
in [1]. Equations (6-14), as shown at the bottom of the next
page, represent the final mathematical model in qd0 frame.
The validated model has been implemented and simulated
using MATLAB software. Equations (6) and (7) represent
the stator and rotor voltages equations. Equations (8-13) rep-
resent the flux-current relations in matrix form while (14)
represents the torque equation.
where µ is the shorted turns ratio. vsq, v

s
d and v

s
0 are qd0 stator

voltages. vrd
′ and vr0

′ are qd0 rotor voltages. isq, i
s
d and is0 are

qd0 stator currents. irq
′, ird
′ and ir0

′ are qd0 rotor currents. ωr is
the rotor speed. λsq, λ

s
d and λ

s
0 are the qd0 stator linkage fluxes.

rs is the stator resistance per phase. r ′rq is the rotor q-axis
resistance. r ′rd is the rotor d-axis resistance. r ′r0 is the rotor
0-axis resistance. λrq

′, λrd
′ and λr0

′ are the qd0 rotor linkage
fluxes. if is fault current. λ′m is the flux of the permanent
magnet. Tem is the electromagnatic torque. L ′lrq, L

′
lrd are

the q- and d-axis leakage inductances of rotor, respectively.
Rf is the external fault resistance. Lm is the magnetizing
inductance. Lls is the stator leakage inductance. vsa2 is the
shorted turns voltage. Lmd and Lmq are the d- and q-axis
mutual inductances, respectively. λsa2 is the shorted turns flux
linkage. L1m is the inductance due to saliency. Lasas is the
stator phases mutual inductance.

Figure 3 shows the experimental setup built to carry out the
different tests and collect the required data. The setup con-
sists of a CASSY system (CASSY software, current sensors,
voltage Sensor), multi-function meter, instantaneous speed
sensor, and magnetic brake.

To investigate the effect of inter-turn fault on stator cur-
rents, four cases of inter-turn faults have been done exper-
imentally on phase-a while the other motor phases are in
healthy condition. These cases are 4 (1.16%), 9 (2.61%),
26 (7.55%) and 40 (11.62%) shorted turns. For the tested
cases, the stator three-phase currents and the fault current in
the shorted turns were recorded at 10,000 samples per second.
Figure 4 and Figure 5 show the results of the tested cases and
the time of applying the fault. It is worth mentioning that the
fault resistance for all cases was 0.3 ohm.

FIGURE 3. Laboratory LSPMSM experimental setup [1].

FIGURE 4. Experimental steady state stator and fault currents (a) 4 turns
shorted (b) 9 turns shorted.

It is clear from the results that as the size of inter-turn
fault increases, both the fault current and the current of
the fault phase increases as well. Additionally, the other
un-faulted phases are slightly affected. Figure 4.a shows that
at 4 shorted turns, the motor currents are almost not affected,
and the fault current reached a peak of around While at
40 shorted turns (Figure 4.b), the current of the faulted phase
is extremely affected. Additionally, the fault current reached a
peak of more than 20A which is very high and could damage
the winding if it sustains for more time. As a conclusion,
the results show that the current is sensitive enough to this
type of fault and it can be used as a reliable indicator in
developing the proposed diagnostic tool.
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To show the accuracy of the used mathematical model
in the simulation study, the model has been implemented
using MATLAB. Figure 6 shows the simulation and the
experimental stator current of phase-a (faulted phase) during
steady sate. The figure shows that both the simulation and
experimental stator currents are in good agreement under
different fault condition. A successful development of the
diagnostic tool requires large data set. Therefore, 5821 testing
cases (experimental and simulation) were collected. These

were collected under different load conditions, fault severity
levels, fault resistances and different staring conditions (rotor
position, and supply voltage zero crossing point).

V. THE PROPOSED DIAGNOSTIC TOOL DESIGN
The proposed CNN approach begins with 2-D raw data
collected from the motor considered. This data represents
three cycles of steady-state stator current signals of the three
phases. After that, it will pass through the first layer in the



vsq
vsd
vs0
vr
′

q

vr
′

d
vr
′

0


=


rs 0 0 0 0 0
0 rs 0 0 0 0
0 0 rs 0 0 0
0 0 0 r ′rq 0 0
0 0 0 0 r ′rd 0
0 0 0 0 0 r ′ro





isq
isd
is0
ir
′

q

ir
′

d
ir
′

0


+


ωrλ

s
d

−ωrλ
s
q

0
0
0
0

+



dλsq
dt
dλsd
dt
dλs0
dt
dλr

′

q

dt
dλr

′

d

dt
dλr

′

0

dt



+



−2
3
µrsif cos θr

−2
3
µrsif sin θr
−1
3
µrsif
0
0
0


(6)

vsa2 = µrs(i
s
q cos θr + i

s
d sin θr + i

s
0 − if )+

d
dt
λsa2 = Rf if (7)



λsq
λsd
λs0
λr
′

q

λr
′

d
λr
′

0


= M3



isq
isd
is0
ir
′

q

ir
′

d
ir
′

0


+


0
λ′m
0
0
λ′m
0

−



µ(L1m + Lm +
2
3
Lls)cosθr

µ(Lm − L1m +
2
3
Lls) sin θr

µ
1
3
Lls

µ(L1m + Lm)cosθr
µ(Lm − L1m) sin θr

0


(8)

M3 =



Lls + Lmq 0 0 Lmq 0 0
0 Lls + Lmd 0 0 Lsr22 0
0 0 Lls 0 0 0
Lmq 0 0 L ′lrq + Lmq 0 0
0 Lmd 0 0 L ′lrd + Lmd 0
0 0 0 0 0 L ′lr0

 (9)

λsa2 = x1isq + x2i
s
d + x3i

s
0 + x11i

r
q
′
+ x12ird

′
+ x13ir0

′
+−µ2Lasasif + µλm′ sin θr (10)[

x1 x2 x3
]
=

[
µ(

3
2
k1 + Lls)cosθr µ(

3
2
k2 + Lls) sin θr µLls

]
(11)

[
x11 x12 x13

]
=

[
µ(

3
2
k1)cosθr µ(

3
2
k2) sin θr 0

]
(12)

k1 = (L1m + Lm), k2 = (Lm − L1m) (13)

Tem =
P
2


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(14)
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FIGURE 5. Experimental steady state stator and fault currents (a) 26 turns
shorted (b) 40 turns shorted.

FIGURE 6. Phase-a steady state current under no load (a) 0 shorted turns
(b) 26 shorted turns (c) 40 shorted turns.

proposed CNN model in order to extract the main features
by using a convolutional layer along with ReLU function.
Then a pooling layer will be used to down-sample the data.
These two layers will be reused several times to investigate
for proper features. At the end, the output of the previous

TABLE 1. The dataset specifications for the evaluation part.

layers will be fed into more than one fully connected layers.
Softmax will be used as a top classifier for the required fault
classes. As per Table 1 below.

As mentioned in section II, any activation function such
as Tanh, ReLU, Sigmoid, and Softmax can be used. How-
ever, ReLU function is selected in this study due to its effi-
cient and superior performance [41]. For the pooling layer,
max-pooling is used since it achieves higher efficiency over
the average pooling. The proposed CNN model is shown
in Figure 7.

In Figure 7, the feature extraction process is achieved
during the first five stages. Firstly, the input consists of 2-D
array and represents three cycles of the 3-ph steady-state
motor currents with size of 501×3 for each pattern. It is worth
mentioning that the stator current signals during steady state
has been used as a fault indicator. In this work, 3 cycles of the
current signal (50ms in 60-Hz system) is found enough for
detecting the inter-turn fault. In this paper, the sampling rate
of acquiring current is 10,000 sample per second. Therefore,
the number of samples per three cycles is around 501 samples.
Then, 16 and 32 filters were used with a filter size of 3 × 3
in the convolution layer for convolving our input data with
these filters. In the same layer, ReLU function was used to
generate the targeted output feature map. Moreover, batch
normalization was used in this layer to enhance the perfor-
mance as mentioned in Section 2. After that, Max-pooling
function was selected for all pooling layers with size 2 × 1
and stride = 2 since the Max-pooling function has better
performance over the Average-pooling function in the CNN
model. These layers were used several times in order to go
deep in our raw data and extract the main features.

For the classification process, a fully connected layer
is used along with the SGDM optimization algorithm for
achieving the best weights. The output of this layer is a vector
with a size of 11×1, which is equal to the number of targeted
classes. Then, Softmax layer is used after the fully connected
layer at the end of the network in order to change the output
behaviour of the fully connected network into probability
distribution values and the output here is the same as the
number of classes. This gives the number of shorted turns in
the motor considered (see Table 1).
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FIGURE 7. The proposed 2-D, 6-stages CNN Architecture for fault detection.

VI. RESULT AND DISCUSSION
The experiments and simulations were conducted using
MATLAB along with CNN toolbox library. In order to
demonstrate the potential of the proposed intelligent diag-
nostic tool, total of 4666 data samples were used to train the
CNN, and 1155 data samples were used to test the CNN. Our
data samples are composed of experimental and simulation
data for the targeted motor. As the three-phase motor currents
are utilized in this paper, each phase current is investigated
when preparing our data samples. Consequently, a total of
(5821) raw current data samples were prepared for the healthy
motor and for the ten faulty classes based on our classification
and the number of shorted turns, as described in Table 1. The
structure of the intelligent diagnostic tool was specified in
previous section with the suitable number of filters as well
as their sizes. The CNN architecture has parameters that may
lead to different changes in the evaluation (i.e. learning rate).
The value of the learning rate was changed with a specific
range during the training process in order to achieve better
performance for the whole system.

Different structures of convolutional neural networks with
different number of layers and neurons have been used to
form suboptimal convolutional neural network that correlate
the three cycles of the steady state current with its correspond-
ing number of shorted turns. The simplest with the highest
efficiency was the one with 7 layers as shown in Figure 7. The
training phase was completed successfully after 40 epochs
which corresponds to 264.2 sec. Results showed that the train-
ing accuracy was 100%, while the overall testing accuracy for
detecting the occurrence and class of different fault levels was
97.7% under different loading conditions varies from 0 NM
to 4 NM.

The confusion matrix of this model is used to represent
how many true and false predictions of each class along
with the achieved accuracy. Furthermore, it represents not
only the prediction values made by the classification layer,
but also which kind of faults are detected. Figure 8 shows
the confusion matrix, which demonstrates the classification
outputs during the testing process using our trained CNN
model described before. Around 98% of the tested data sam-
ples were correctly identified. Few wrong identified cases are
recorded due to other faulty conditions during the experiment
and simulation steps.

The overall collected results from the experiments using
this real motor data samples are studied with respect to such

FIGURE 8. Test dataset confusion matrix.

common standard performance metrics based on the litera-
ture such as, Accuracy (Acc), Sensitivity (Sen), Specificity
(Spe), and Positive predictively ratio (Ppr), F-Measure, and
G-Mean [46]. These metrics are defined as:

Acc =
TP+ TN

TP+ TN + FP+ FN
(15)

Sen =
TP

TP+ FN
(16)

Spe =
TN

TN + FP
(17)

Ppr =
TP

TP+ FP
(18)

F −Measure =
2TP

2TP+ FP+ FN
(19)

G−Mean =
√
Sen× Spe (20)

where TP: True Positive, FP: False Positive, TN: True Nega-
tive, and FN: False Negative.

The accuracy measures the overall performance of the
detection system over the 11 classes of the tested motor data
sample. The rest of the metrics are mainly used for each class
separately based on the classification layer. Table 2 shows
the percentages of these metrics for the 11 classes. From
Table 2, it can be noticed that the accuracy is around 97.75%
for all classes. The achieved sensitivity is between 91.71% for
C2 and 100% for C6, C7, and C10. However, the range of all
classes for the specificity metric is approximately between
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TABLE 2. Accuracy, sensitivity, specificity, precision, F-measure, G-mean
results.

FIGURE 9. ROC of the proposed model.

99% and 100%. The values the positive predictively metric
are distributed between 92.727% for C1 and 100% for C6,
C7 and C10. The last two metrics F-Measure and G-Mean
have the same range of percentages for all classes (94.118%
for C2 and 99.525% for C11).

From the classification results and the confusion matrix,
it can be clearly seen that the proposed 2D CNN clas-
sifier can extract the local features directly from the raw
current data and achieve a high fault classification perfor-
mance. Moreover, the region of convergence (ROC) fig-
ures are shown in Figure 9 for better visualization of
the performance of the proposed model along with the
11 classes. The area under the ROC curves is an indica-
tor of the performance of the classifier. Larger area values
indicate better classifier performance. The maximum area
is 1, which corresponds to a perfect classifier. The area of
the developed classifier is around 0.98 (micro-averaging)
which indicates that the developed classifier has great
performance.

In order to evaluate and compare the performance met-
rics of the proposed model with other models, two learn-
ing models are selected for comparison purposes with the
same dataset. Table 3 shows a brief comparison between
the proposed model and the MLFFNN that was intro-
duced in [30] and [31]. The proposed model outperforms
MLFFNN in terms of the accuracy and number of classes
that can be discovered without using any pre-processing
stages.

TABLE 3. Comparison between the proposed model and MLFFNN.

VII. CONCLUSION
In this paper, a 2D six stages CNN based diagnostic tool
for detecting stator inter-turn fault in LSPMSM has been
presented. The developed tool uses the raw steady-state three
phase currents as inputs and the fault severity as outputs.
The diagnostic tool inputs/outputs are based on experimental
and simulations for 1.0-hp interior-mount LSPMSM. The
proposed tool results demonstrate its effectiveness to detect
the inter-turn fault severity with high accuracy. The proposed
tool uses 7 layers with 11 classification outputs based on three
cycles of the three-phase steady-statemotor currents. The tool
accuracy for all classes under different loading conditions
varies from 0 NM to 4 NM is 97.75%, which is superior
to the developed tools in the literature. It has been observed
that the classification of the inter-turn fault level is performed
with higher accuracy and shorter training time without the
need of feature extraction phase. Extension of the tool to
generalize the detection regardless of the motor size is under
investigation. The potential of the developed tool in detecting
the low fault levels was also demonstrated.
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