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ABSTRACT The texture edge continuity of a finger vein image is very important for the accuracy of
feature extraction. However, the traditional inpainting methods which, without accurate texture constraints,
are easy to cause the vein texture of the inpainted image to be blurred and break. A finger vein image
inpainting method with Gabor texture constraints is proposed. The proposed method effectively protects
the texture edge continuity of the inpainted image. Firstly, using the proposed vertical phase difference
coding method, the Gabor texture feature matrix of the finger vein image, which can accurately describe the
texture information, can be extracted from the Gabor filtering responses. Then, according to the local texture
continuity of the finger vein image, the known pixels, which have different texture orientationswith the center
pixel in the patch, are filtered out using the Gabor texture constraining mechanism during the inpainting
process. The proposed method eliminates irrelevant information interference in the inpainting process and
has a more precise texture propagation. Simulation experiments of artificially synthetic images and acquired
images show that the finger vein images inpainted by the proposed method have better texture continuity
and higher image quality than the traditional methods which do not have accurate texture constraints. The
proposed method improves the recognition performance of the finger vein identification system with the
acquired damaged images.

INDEX TERMS Finger vein image, Gabor filter, image inpainting, texture feature, vertical phase difference
coding.

I. INTRODUCTION
Compared with other biometrics, finger vein [1], [2] has
these advantages: non-contact, internal characteristics, living
body recognition, high level of security, etc. The recognition
performance of a finger vein identification system is very
dependent on the image quality [3]. However, due to the
multiple scattering interaction in biological tissue, the cap-
tured finger vein images are sometimes degraded, resulting
in blurring of some vein regions. Reference [4] proposed
a bilayer restoration model and [5] proposed a simple and
effective scattering removal model, which effectively solve
the degradation of finger vein images caused by tissue scat-
tering and improve the visibility of the images. Nonetheless,
these methods can be used to restore the degraded image
when the image is unpolluted. However, the pollution on

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

FIGURE 1. The conditions which will cause the loss of finger vein image
information: polluted equipment mirror and peeling finger.

the mirror of iacquisition equipment or the peeling finger as
shown in Fig. 1 will make a part of the acquired image to be
covered, which leads to the loss of image information. The
damaged regions will increase the difficulty of finger vein
feature extraction and reduce the recognition performance.
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Therefore, the research on finger vein image inpainting has
important theoretical and practical significance. However,
the characteristics of finger vein images with different width
and extension orientations of vein branches [6] and weak
texture edge make that work more difficult.

Many image inpainting methods can be classified into
two main categories [7], [8]: structure-based and texture-
based. Structure-based inpainting methods [9]–[15] calculate
the gradient field or second derivative field of the image
and then diffuse information by isophotes from the known
regions to the unknown regions point-by-point. Most of the
structure-based inpainting methods [9]–[14] are also known
as partial differential equations (PDE) based methods or total
variational (TV) based methods. These methods ensure local
intensity smoothness so that they can inpaint small regions
well generally. However, this kind of method essentially
ignores the importance of texture information for finger vein
images, resulting in blurring when inpainting the vein texture
regions. In addition, [15] proposed a fast marching method
(FMM). FMM determines the priority by estimating the
direction isophotes and then uses the neighborhood pixels for
weighting average to fill the damaged region. FMM improves
the time efficiency compared to PDE-based methods, but it is
blind to use all known information in the patch for weighting
calculation, which leads to that the vein texture edge can not
be maintained.

Texture-based inpainting [16]–[18] is capable of inpainting
larger holes by copying and pasting similar patches in the
image using a searching strategy. For example, Criminisi
method [16], which combines the advantages of texture syn-
thesis and diffusion filling. However, the priority of the patch
is easy to be disordered in the Criminisi method, which leads
to the blocky effect in the inpainted image. In recent years,
scholars have also proposed many improved methods. Ref-
erence [17] improved the Criminisi method by using image
structure tensors so that the impact of the image structures
is strengthened during the inpainting process. The proposed
method tackles two limitations of the image structure propa-
gation and the filling-in order in the image inpainting process.
Reference [18] uses a robust priority function to avoid a
dropping effect and region segmentation to determine the
adaptive patch size and reduced search region.

Recently, there have been some inpainting methods,
which combine structure and texture information [19]–[21].
Bertalmio et al. [20] proposed an inpainting method com-
bining texture synthesis and PDE. In this method, the image
is decomposed into texture and structure components. Then
reconstruct each of them separately with structure and texture
filling-in algorithms to complete the inpainting task. Refer-
ence [21] proposed a PDE-based image inpainting method
using an anisotropic heat transfer model, which can simul-
taneously propagate the structure and texture information.
Although this kind of method combines the advantages of
the two, it increases the complexity of the method and has
limited ability to improve the performance in finger vein
image inpainting.

The Criminisi method and those described above improved
methods select the best matching patch by the sum of square
difference (SSD) distance criterion or other grayscale infor-
mation of the patch, which can not accurately describe the
texture of finger vein images. It may lead to matching errors
and image information loss when inpainting the vein texture
regions of the finger vein image.

Recently, with the rapid development of deep learning,
it has achieved good results in such fields as finger vein
image process and recognition. Reference [22] proposed a
convolutional neural network (CNN) to train and restore the
vein patterns, which tackles the problem of vein pattern loss
caused by overexposure or blurred region in the finger vein
images. Reference [23] proposed a new model based on the
pulse coupled neural network (PCNN) to enhance finger
vein image quality and further to improve the reliability of
image recognition. Reference [24] applied CNN to finger
vein recognition and achieved better performance than tra-
ditional algorithms. However, their research topics are based
on the unpolluted finger vein images. There is a lack of deep
learning research on the inpainting methods of the damaged
finger vein images.

In this paper, a finger vein image inpainting method with
Gabor texture constraints is proposed to tackle the texture
edge discontinuity of the inpainted finger vein image. First,
the Gabor texture feature matrix (GTFM) of the finger vein
image is extracted from Gabor filter responses using a pro-
posed vertical phase difference coding method. The GTFM
can accurately describe the texture information of the finger
vein image. Then, the known pixels, which have different
texture orientations with the center pixel in the patch, will
be filtered out by the Gabor texture constraining mechanism
during the inpainting process. The Gabor texture constraining
mechanism makes the proposed method has a more precise
texture propagation. The vein texture of the inpainted finger
vein image is more complete and coherent than the traditional
inpainting methods which do not have accurate texture con-
straints.

The rest of the paper is organized as follows. Section II
presents a vertical phase difference coding method based on
Gabor filter. Section III presents a finger vein image inpaint-
ing method given Gabor texture constraints. The experimen-
tal results and analysis are given in Section IV. Section V
gives a summary of the paper.

II. VERTICAL PHASE DIFFERENCE CODING METHOD
BASED ON GABOR FILTER
Two-dimensional Gabor filter is very sensitive to the texture
edge of the image and its expression of frequency and orien-
tation is consistent with the texture recognition mechanism
of the human vision system [25]. Gabor filter can effectively
enhance the edge, peak, valley, ridge contours and other
underlying feature information. Moreover, the Gabor filter
has good scale characteristic and directivity, which can match
the characteristics of finger vein images, such as different
width and extension orientation of vein branches. And the
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Gaussian kernel component of the Gabor filter can be robust
to noise interference. So compared to the gradient operator
which can be greatly disturbed by light intensity and noises,
Gabor filter can extract texture edge of finger vein images
more stably and accurately.

A. EXTRACT TEXTURE EDGE BY GABOR FILTER BANK
The Gabor filter is a Gaussian function windowed by a sine
plane wave, which is expressed as follows [26], [27]:

g(x, y; λ, θ, ψ, σ, γ ) = e−
x′2+γ 2y′2

2σ2 · ei(2π
x′
λ
+ψ) (1)

where x ′ = x cos θ+y sin θ , y′ = −x sin θ+y cos θ ; λ and ψ
are the wavelength and the phase offset of sine wave function,
respectively; σ is Gaussian standard deviation, also known
as the spatial scale factor; γ is the spatial aspect ratio of the
Gabor filter. The parameters are related to the size of images
used in this paper, 200×84. Thus, set λ = 17,ψ = 0, γ = 1,
and the three scales are σ1 = 3, σ2 = 3.4, σ3 = 3.8. θ is
orientation parameter that determines the directivity of Gabor
filter, which can be expressed as follows:

θk = (k − 1)
π

N
, θk ∈ [0 , π ), k ∈ [1,N ] (2)

where N is the total number of orientations. According to the
characteristics of vein structure, we set N = 8 after a lot
of experiments. θk represents the k th orientation, π/N is the
angular interval.

The real component gre and the imaginary component gim
of the Gabor filter can be obtained by decomposing the sine
wave part of Eq. 1:

gre(x, y; λ, θ, ψ, σ, γ ) = e−
x′2+γ 2y′2

2σ2 · cos(2π
x ′

λ
+ ψ) (3)

gim(x, y; λ, θ, ψ, σ, γ ) = e−
x′2+γ 2y′2

2σ2 · sin(2π
x ′

λ
+ ψ) (4)

After convoluting them with the original finger vein image
F(x, y), the coefficient amplitude can be obtained by taking
the modulo according to

Hk,σ (x, y) =
√
Hk,σ (x, y)re

2
+ Hk,σ (x, y)im

2 (5)

whereHk,σ (x, y)re = F(x, y)∗gre(x, y; θk , σ ),Hk,σ (x, y)im =
F(x, y) ∗ gim(x, y; θk , σ ), are the filter responses of the real
component and the imaginary component at k th orientation
and σ scale respectively. Hk,σ (x, y) is the coefficient ampli-
tude, which represents the energy of images in that orienta-
tions and scales as shown in Fig. 2.

The larger the coefficient amplitude is, the richer the
texture edge information is saved on that scale. Thus, firstly,
we select the largest of the three scales as the amplitude
coefficient of each point in that orientation:

Hk (x, y) = max(Hk,σi (x, y)), i = 1, 2, 3 (6)

The responses Hk (k = 1, 2, . . . , 8) in 8 orientations are
obtained by using Eq. 6.

FIGURE 2. Test image and the Gabor filtering responses in different
orientation θ (σ = 3.4).

B. VERTICAL PHASE DIFFERENCE CODING METHOD
According to the principle that the texture edge information
difference between the two orientations along the finger vein
and vertical to the finger vein is the largest, a vertical phase
difference codingmethod is proposed in this paper. The filter-
ing responses Hk in 8 orientations are divided into 4 groups
(H1 and H5, H2 and H6, H3 and H7, H4 and H8) according to
the mutual vertical orientation. After calculating the absolute
value of the difference of each group, the group with the
largest result will be picked as follows

1Hkmax = max(
∣∣Hk − Hk⊥ ∣∣) , k⊥ = k + 4 (7)

where k ∈ [1, 4], the orientations kmax and kmax
⊥ of the group

1Hkmax are the possible texture orientations of the pixel to be
repaired. The larger the response amplitude is, the stronger
the texture edge information energy is in that orientation.
Therefore, the Gabor texture feature matrix of the finger vein
image can be finally obtained by using the following equation

GTFM(x, y) =
{
kmax, Hkmax (x, y) > Hkmax

⊥ (x, y)
kmax

⊥, else
(8)

where Hkmax and Hkmax
⊥ are the Gabor filtering responses at

the kmax direction and the kmax
⊥ direction respectively.

Fig. 3 shows the test image and the corresponding GTFM.
Combining Fig. 3(a) and Fig. 3(b) shows that the GTFM
of finger vein image clearly indicates the texture trend of
the vein regions and the background regions, including some
texture edge of slight veins. In addition, the texture feature
distribution of the image blocks located on the same vein
structure has a high degree of similarity. These characteris-
tics demonstrate that GTFM accurately describes the texture
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FIGURE 3. (a) Test image; (b) The GTFM extracted from (a).

information of the finger vein image. ThusGTFMcan be used
for auxiliary correction to protect the vein texture edge of the
finger vein image during the inpainting process.

As for the damaged finger vein images, the convolution
window on the contour of the damaged border contains
unknown pixels. The grayscale values of the unknown pixels
in the window are set to zero so that those pixels do not affect
the accuracy of convolution calculation. Finally, the known
pixels are encoded and assigned texture feature values, while
the texture feature value of the unknown pixels (damaged
pixels) is set to zero, according to

GTFM(x, y) =



kmax, Hkmax(x, y) > Hkmax
⊥(x, y),

is known
kmax

⊥, Hkmax(x, y) <= Hkmax
⊥(x, y),

F(x, y) is known
0, F(x, y) is unknown

(9)

III. IMAGE INPAINTING WITH GABOR TEXTURE
CONSTRAINTS
As for the traditional methods which do not have accurate
texture constraints, due to mixing low texture correlation
information in the filling calculation, the vein texture of the
inpainted image will be discontinuous. The proposed method
utilizes GTFM to constrain the texture propagation in the
inpainting process. The specific steps of the proposed method
are as follows.

A. DETERMINATION OF PRIORITY
Priority is an important factor affecting the performance
of image inpainting methods. Sethian [28] proposed
fast-marching level-set methods to track the moving edge,
which can simulate the curve evolution process of the contour
of a damaged region. It starts from the contour and gradually
spreads to the interior, point by point, until all unknown
pixels are filled. It ensures that the filling sequence is more
in line with the human visual psychology. The time of the
contour passes through each pixel can be expressed as T (i, j)
and the priority of the proposed inpainting method can be
determined by T (i, j). The pixels with the smallest T (i, j)
value will be filled first. The diffusion of the contour satisfies

the conditions of the Eikonal equation [28]:

|∇T | = 1/vi,j (10)

where vi,j is the diffusion speed of the contour of the damaged
region and vi,j = 1 means moving one pixel at a time.
Using the inverse differencemethod to solve Eq. 10, we can

get T (i, j) of each unknown pixel:{[
max (D−xi,j T ,D

+x
i,j T , 0)

2
+

max (D−yi,j T ,D
+y
i,j T , 0)

2

]} 1
2

= 1 (11)

where D−xi,j T , D
+x
i,j T , D

−y
i,j T , D

+y
i,j T are the forward and back-

ward differences of the time function T in the horizontal x
orientation and the vertical y orientation respectively. The
detailed calculation process can be found in [28].

B. DETERMINATION AND UPDATE OF THE MAIN TEXTURE
ORIENTATION
Fig. 4(b) and Fig. 4(c) show the Gabor texture feature infor-
mation in the patch centered on damaged pixels A and B,
respectively. The pixel A is located in the vein region, while
the pixel B is located in the background region. The feature
values of the unknown pixels are zero and other non-zero
values are the known pixels. Combining the observations
in Fig. 4(a) to 4(c) shows again that the texture trends of the
vein regions or the background regions in the local image are
continuous. Those pixels with the same texture trend have
the same texture feature value. Therefore, we select the mode

FIGURE 4. (a) Damaged pixels A and B; (b) The Gabor texture features of
the patch centered on pixel A, located in the vein region; (c) The Gabor
texture features in the patch centered on pixel B, located in the
background region.
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of the Gabor texture feature value of all known pixels in the
patching window as the main texture feature of that window.

As shown in Fig. 5, Bε(p) is the patch centered on
pixel p and its diameter is ε. The known regions and the
unknown regions can be determined by the mask binary
image, in which the value of pixels in the known region is 1,
while that in the unknown region is 0. And the mask binary
image can be obtained by the fuzzy c-means (FCM) segmen-
tation algorithm [29]. GTFM Bε(p)| known represents the Gabor
texture feature of all known pixels in Bε(p). Then the texture
feature value of p is updated as follows:

mtoBε(p) = Mode(GTFM Bε(p)| known) (12)

GTFM(p) = mtoBε(p) (13)

where mtoBε(p) is the main texture orientation of Bε(p). Too
small a patch may lead to too little known pixels being
available during the inpainting, and too large a patch may
introduce too much noise, affecting the determination of the
main texture orientation. The size of the patch is set to 7× 7
after a lot of experiments. As a result, the texture feature of
damaged pixels A and B in Fig. 4(a) will be updated to 2 and
7 after filling, respectively. It is in line with the texture trend
of the finger vein image.

FIGURE 5. Schematic of patch Bε(p).

C. GABOR TEXTURE CONSTRAINING MECHANISM AND
WEIGHT COEFFICIENT OF INPAINTING
Considering that texture continuity is very important for the
inpainted finger vein image, the proposed method gives the
priority to the texture correlation between the pixels during
inpainting. Firstly, according to the main texture direction
obtained in Eq.12, the proposed method uses the Gabor
texture constraining mechanism to eliminate the interfer-
ence of information with different texture orientations in the
filling calculation. The Gabor texture constraining mecha-
nism enables the proposed method achieve a more precise
texture propagation. Secondly, according to the grayscale
and distance correlation between the pixels, the proposed
method inpaints the damaged finger vein image by weighting
the remaining known pixels which are in the same texture
direction.

In Fig. 5, the pixels in the dotted box part outside � are
known. Those known pixels will be used to fill the unknown
pixel p. Before this, the known pixels that have different
texture orientations with the center point will be filtered

out by the Gabor texture constraining mechanism as shown
in Fig. 6.

FIGURE 6. Schematic of the Gabor texture constraining mechanism.

Fig. 6 shows the distribution of the Gabor texture features
in the patch and different colors represent different texture
direction features. The white points and the center point of the
patch are the damaged pixels whose information is unknown
and the other color points (except the center point) are known.
The texture feature value of the center point has been assigned
by the main texture orientation of that patch. The green
points and the center point are located on the same vein
texture trend and have the same texture orientation, while
the other non-green points have different texture orientations
with the center point. The proposed method will filter out
the points with different texture orientations and select the
green points for weighting calculations. The Gabor texture
constraining mechanism makes the inpainting process free
from the ’noises’ with low texture correlation, which plays
a role in maintaining the vein texture edges and avoiding
blurring the inpainted region.

Fig. 7(a) to 7(c) are the GTFM extracted from the original
image, the damaged image (obtained by manually adding
a damaged region to the original image), and the inpainted
image (obtained by inpainting the damaged image by the
proposed method) respectively. It can be seen that the GTFM
of the inpainted image restores the vein texture trend of the
original image, which demonstrates that the Gabor texture
constraining mechanism can constrain the inpainting process
accurately following the texture trend.

FIGURE 7. (a) The GTFM extracted from the original image; (b) The GTFM
extracted from the damaged image; (c) The GTFM extracted from the
inpainted image.

i At the same time, considering the spatial and the grayscale
correlation between the pixels of the finger vein image,
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FIGURE 8. The flowchart of the proposed method.

the proposed method sets the distance factor and the gray
factor to weight the remaining known pixels as follows:

1) Firstly, calculate the average grayscale avg of the
remaining known pixels. Then the absolute values of the
difference between q and avg, and the Euclidean distance
between q and the center pixel p can be calculated as follows

avg = Mean(F(q)), q ∈ {x |GTFM(x) = GTFM(p) }

(14)

gray(p, q) = |F(q)− avg| (15)

dst(p, q) = ‖p− q‖2 (16)

where x ∈ Bε(p)|known, q is one of the remaining known
pixels. gray is the gray factor. The pixels whose grayscale
value is closer to avg get greater weight. dst is the distance
factor. The pixels which are closer to the center pixel p get
greater weight.

2) The weight of each remaining known pixel q is obtained
by using the exponential component of the standard normal
distribution model:

w(p, q) = exp(−
(gray(p, q) · dst(p, q))2

2
) (17)

3) Weights normalization:

W (p, q) =
w(p, q)
sum(w)

(18)

4) The final weighting equation is defined as follows:

F̂(p) =
∑

x∈Bε(p)|known
W (p, q) · F(q),

q ∈ {x |GTFM(x) = GTFM(p) } (19)

where F̂(p) is the value of pixel p after inpainting.

D. THE OVERALL FLOW OF PROPOSED METHOD
Fig. 8 shows the flowchart of the proposed method and the
specific steps are as follows:

(1) Firstly, the proposed method uses the fuzzy c-means
(FCM) segmentation algorithm [29] to get the mask binary
image and then extract the GTFM of the finger vein image
by the vertical phase difference coding method proposed in
Section II.

(2) Using a fast-marching level-set method, the time value
of the damaged pixels on the contour of the damaged region
can be obtained to determine the priority.

(3) The main texture orientation of the patch can be deter-
mined by GTFM. Then the method uses the Gabor texture
constraining mechanism to filter out the known pixels, which
have different texture orientations from the main texture ori-
entation in the patch.

(4) The remaining known pixels are used for weighting
calculation to fill the damaged pixel. Then the time value
and the Gabor texture feature of the inpainted pixel will be
updated.

(5) Repeat Steps (2), (3) and (4) until finish inpainting.

IV. EXPERIMENT RESULTS AND EVALUATION
The proposed method is compared with three traditional
inpainting methods by experiments on the artificially syn-
thetic finger vein images and the acquired finger vein images,
respectively. The iteration times of the method based on TV
model [9] are set to 1000. The patch size of the Crinimisi
method [16] and the FMM method [15] are the same as
that of the proposed method, which is set to 7 × 7. Besides
the subjective evaluation of the human visual system, mean
square error (MSE) and peak signal to noise ratio (PSNR)
are used to evaluate the inpainting quality of the artificially
synthetic damaged images. False rejection rate (FRR) and
false acceptance rate (FAR) are also used to evaluate the
inpainting quality of the acquired damaged images.

A. ARTIFICIALLY SYNTHETIC DAMAGED IMAGE
As shown in Fig. 9, the artificially synthetic damaged image
Fig. 9(b) was obtained by adding four damaged regions to the
test image Fig. 9(a). The location of each region is different:

FIGURE 9. (a) Test image; (b) Artificially synthetic damaged image
obtained by (a).
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A horizontally covers a wider vein; B is located in a smooth
background region; C covers a vein vertically; D covers a
slight vein with blurred texture. The types of damaged images
in practical applications are mostly included in these cases.

1) SUBJECTIVE EVALUATION AND ANALYSIS
Fig. 10(a) to 10(d) show the results of three traditional
inpainting methods and the proposed method and the
inpainted regions are enhanced for the convenience of
observation.

FIGURE 10. Comparison of inpainting using different methods.
(a) Method based on TV model; (b) Crinimisi method; (c) FMM method;
(d) The Proposed method.

It can be seen that for the damaged region A and C,
where the veins are masked, the vein texture of the result
Fig. 10(a) inpainted by the method based on TV model is
blurred and incoherent and the vein is cut off visually; The
result Fig. 10(b) inpainted by the Crinimisi method has an
obvious blocky effect, which affects the edge of a vein; In the
result Fig. 10(c) of the FMM method, the vein edge was
blurred or the boundary of the inpainted region was obvious,
and the effect of edge retention is unsatisfactory. For the
damaged region B located in the smooth background region,
all these methods work well. As for the damaged region D
with low contrast, the vein structure in this region is slight
and blurred. The method based on TVmodel or FMM caused
blur and rupture to the vein structure, while the Crinimisi
method and the proposed method do better in inpainting
slight veins. As shown in Fig. 10(d), due to the Gabor texture
constraining mechanism, the proposed method has a precise
texture propagation and the image inpainted by the proposed

method has a better effect on vein edge retention and visual
connectivity.

2) OBJECTIVE EVALUATION AND ANALYSIS
The comparison of the performance parameters in Table 1
shows that the proposedmethod has higher image quality than
the other three traditional methods without accurate texture
constraints.

TABLE 1. Image quality evaluation comparison inpainted by different
methods.

B. ACQUIRED DAMAGED IMAGE
The above experiments have demonstrated the effectiveness
of the proposed method for the artificially synthetic dam-
aged images. The research in this part will be performed on
the acquired damaged images. Because of the vein images
in the current public databases are all acquired under nor-
mal conditions, such special case images are lacking. Thus,
the databases used in this part consist of the images acquired
under damaged conditions and the same users under normal
conditions, by a laboratory at Hangzhou Dianzi University
(HDU).

The damaged image includes two conditions: the mirror
of the acquisition equipment is polluted or the fingers are
peeling. A total of 40 fingers of 20 volunteers (15 men
and 5 women), whose fingers have peeled, were acquired.
Under normal condition and two kinds of damage condi-
tions, 10 images are collected for each finger respectively,
40 × 10 × 3 = 1200 in total. These acquired images
constitute a normal finger vein image database named NFVI
and two damaged finger vein image databases named DFVI.
Then, the NFVI and two other DFVIs are respectively com-
posed into two mixed finger vein image databases named
MFVI, each finger class in MFVI contains 10 normal images
and 10 damaged images. For the acquired damaged images,
the original images cannot be obtained, so it is no longer
meaningful to use MSE and PSNR for evaluation. There-
fore, the FRR and FAR of intra-class and inter-class samples
are used to verify the effectiveness of inpainting methods.
After the damaged images in the MFVIs being inpainted
by different inpainting methods, all of the images in the
MFVIs will be processed by the guide filter enhancement
method [30], the Niblack [31] segmentation method, and the
Zhang-Suen thining method [32] to obtain the finger vein
skeleton features. Finally, the modified Hausdorff distance
(MHD) [33] method is used for recognition and each MFVI
can obtain 7,600 intra-class matching data and 312,000 inter-
class matching data. The recognition performance compari-
son is shown in Table 2.
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FIGURE 11. Inpainting comparison of different methods on the image of peeling finger, and the skeletons extracted from corresponding
images. (a) Normal image; (b) Damaged image; (c) Crinimisi method; (d) FMM method; (e) Method based on TV model; (f) The proposed
method.

TABLE 2. FRR(%) comparison when FAR is 0 after being inpainted by
different method.

1) MFVI WITH IMAGES OF PEELING FINGERS
It can be seen from Fig. 11(b) that, when the user’s finger is
peeling, there will be a slender strip-shaped damaged region
in the acquired image. The damaged region is similar to the
vein structure in grayscale and covers a part of the vein struc-
ture, which causes the vein structure in this region to break in
the skeleton. In the result Fig. 11(c) inpainted by the Crinimisi
method, the blocky effect existing in the inpainted region can
be clearly seen and that region in the corresponding skeleton
is also disordered. From the result Fig. 11(d) of the FMM
method, the vein edge becomes blurred after being inpainted,
which causes the vein of that region in the skeleton to break.
From the result Fig. 11(e) inpainted by the method based
on the TV model, it can be seen that the connection of the
vein structure is incoherent, causing a false skeleton trend in
that region. While inpainted by the proposed method, both
the result and the skeleton in Fig. 11(f) are more in line with
the vein texture structure of the image acquired under normal
conditions.

The receiver operating characteristic (ROC) curve [34]
in Fig. 12 shows that such a peeling region seriously affects
the grayscale distribution of the image, which leads to inaccu-
rate segmentation and reduces the recognition performance.
Combined with Table 2, it can be seen that, when the
FAR is 0, the FRR of the proposed method is 23.25%,
TV model is 24.39%, FMM method is 27.43%, Crinimisi

FIGURE 12. Recognition performance of MFVI with images of peeling
fingers, after being inpainted by different methods.

method is 28.6%, while without any inpainting method is
31.51%, respectively. It shows the best recognition perfor-
mance after being inpainted by the proposed method.

2) MFVI WITH IMAGES OF POLLUTED EQUIPMENT MIRROR
Fig. 13(b) shows another type of damaged image in practical
applications. When there is a dirty block on the mirror of the
acquisition equipment, a black block region will appear on
the acquired image, resulting in the loss of image information
in this region. Although the black block has been removed
in the result Fig. 13(c) of the method based on TV model,
the visual continuity is poor and the skeleton is not consistent
with the original vein trend. In the result Fig. 13(d) of the
FMM method, there are certain obvious repair boundaries in
that region, which leads to the false trend of the vein skeleton.
In the result Fig. 13(e) of the Crinimisi method, the edges
of the veins are blurred, resulting in a false skeleton. The
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FIGURE 13. Inpainting comparison of different methods on the image of polluted equipment mirror, and the skeletons extracted from
corresponding images. (a) Normal image; (b) Damaged image; (c) Method based on TV model; (d) FMM method; (e) Crinimisi method;
(f) The proposed method.

proposed method uses the GTFM to constrain texture prop-
agation, which maintains the texture edges of the inpainted
result Fig. 13(f) better, so that the skeletonmaintains the same
vein structure as the image acquired under normal conditions.

The ROC curve in Fig. 14 shows that, if such a block
damaged region exists in the finger vein image, the original
vein structure will be masked and the recognition perfor-
mance will be reduced. Combined with Table 2, it can be seen
that, when the FAR is 0, the FRR of the proposed method
is 20.12%, Crinimisi method is 22.12%, FMM method is
23.10%, TV model is 23.54%, while without any inpainting
method is 28.91%, respectively. It shows the best recognition
performance after being inpainted by the proposed method.

FIGURE 14. Recognition performance of MFVI with images of polluted
equipment mirror, after being inpainted by different methods.

The analysis of the above experiments demonstrate that
both for the artificially synthetic damaged images and two
kinds of acquired damaged images, the proposed method per-
forms better compared with the other three traditional meth-
ods. Due to using the Gabor texture constraining mechanism

during the inpainting process, the vein texture edge of the
images inpainted by the proposedmethod is more continuous.
As a result, the vein skeleton features are more accurate
and the recognition performance is also better than three
traditional methods without accurate texture constraints.

V. CONCLUSION
This paper proposes a finger vein image inpainting method
with Gabor texture constraints, which makes full use of tex-
ture information to constrain texture propagation during the
inpainting process. The Gabor texture constraining mecha-
nism ensures that the proposed method has a more precise
texture propagation so that the vein texture continuity of
the inpainted image is better. The proposed method effec-
tively overcomes the problems that the traditional inpainting
methods, without accurate texture constraints, easily cause
the vein texture edge of the inpainted finger vein images
to be blurred and break. Simulation experiments of artifi-
cially synthetic images and acquired images demonstrate that
the images inpainted by the proposed method have better
texture edge continuity and higher quality than traditional
image inpainting methods. The proposed method improves
the recognition performance of the finger vein identification
system for damaged images.

ACKNOWLEDGMENT
The authors would particularly like to thank the anonymous
reviewers for their valuable suggestions.

REFERENCES
[1] M. Kono, H. Ueki, and S. Umemura, ‘‘A new method for the identification

of individuals by using vein pattern matching of finger,’’ in Proc. Sumpo-
sium Pattern Meas., Yamaguchi, Japan, 2000, pp. 9–12.

[2] J. Yang, Y. Shi, and J. Yang, ‘‘Personal identification based on finger-vein
features,’’ Comput. Hum. Behav., vol. 28, pp. 1565–1570, Sep. 2011.

[3] L. Yang, G. Yang, Y. Yin, and R. Xiao, ‘‘Finger vein image quality evalu-
ation using support vector machines,’’ Opt. Eng., vol. 52, no. 2, Feb. 2013,
Art. no. 027003.

VOLUME 8, 2020 83049



H. Yang et al.: Finger Vein Image Inpainting With Gabor Texture Constraints

[4] W. You, W. Zhou, J. Huang, F. Yang, Y. Liu, and Z. Chen, ‘‘A bilayer
image restoration for finger vein recognition,’’ Neurocomputing, vol. 348,
pp. 54–65, Jul. 2019.

[5] J. Yang and Y. Shi, ‘‘Towards finger-vein image restoration and enhance-
ment for finger-vein recognition,’’ Inf. Sci., vol. 268, pp. 33–52, Jun. 2014.

[6] J. Yang and J. Yang, ‘‘Multi-channel Gabor filter design for finger-vein
image enhancement,’’ in Proc. 5th Int. Conf. Image Graph., Xi’an, Shanxi,
Sep. 2009, pp. 87–91.

[7] P. M. Patil and B. H. Deokate, ‘‘Image mapping and object removal in
image inpainting using wavelet transform,’’ in Proc. Int. Conf. Inf. Process.
(ICIP), Pune, India, Dec. 2015, pp. 114–118.

[8] H. Li, W. Luo, and J. Huang, ‘‘Localization of diffusion-based inpainting
in digital images,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 12,
pp. 3050–3064, Dec. 2017.

[9] T. F. Chan, S. H. Kang, and J. Shen, ‘‘Total variation denoising and
enhancement of color images based on the CB and HSV color models,’’
J. Vis. Commun. Image Represent., vol. 12, no. 4, pp. 422–435, Dec. 2001.

[10] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, ‘‘Filling-
in by joint interpolation of vector fields and gray levels,’’ IEEE Trans.
Image Process., vol. 10, no. 8, pp. 1200–1211, Aug. 2001.

[11] T. F. Chan and J. Shen, ‘‘Nontexture inpainting by curvature-driven dif-
fusions,’’ J. Vis. Commun. Image Represent., vol. 12, no. 4, pp. 436–449,
Dec. 2001.

[12] M. Bertalmio, ‘‘Image inpainting,’’ Siggraph, vol. 4, no. 9, pp. 417–424,
2005.

[13] J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, ‘‘Algorithms and
software for total variation image reconstruction via first-order methods,’’
Numer. Algorithms, vol. 53, no. 1, pp. 67–92, Jan. 2010.

[14] W. Zuo and Z. Lin, ‘‘A generalized accelerated proximal gradient approach
for total-variation-based image restoration,’’ IEEE Trans. Image Process.,
vol. 20, no. 10, pp. 2748–2759, Oct. 2011.

[15] A. Telea, ‘‘An image inpainting technique based on the fast marching
method,’’ J. Graph. Tools, vol. 9, no. 1, pp. 23–34, Jan. 2004.

[16] A. Criminisi, P. Perez, and K. Toyama, ‘‘Region filling and object
removal by exemplar-based image inpainting,’’ IEEE Trans. Image Pro-
cess., vol. 13, no. 9, pp. 1200–1212, Sep. 2004.

[17] S. Z. Siadati, F. Yaghmaee, and P. Mahdavi, ‘‘A new exemplar-based image
inpainting algorithm using image structure tensors,’’ in Proc. 24th Iranian
Conf. Electr. Eng. (ICEE), Shiraz, Iran, May 2016, pp. 995–1001.

[18] D. J. Tuptewar and A. Pinjarkar, ‘‘Robust exemplar based image and video
inpainting for object removal and region filling,’’ in Proc. Int. Conf. Intell.
Comput. Control (IC), Coimbatore, India, Jun. 2017, pp. 1–4.

[19] A. Bugeau and M. Bertalmio, ‘‘Combining texture synthesis and diffusion
for image inpainting,’’ in Proc. Int. Conf. Comput. Vis. Theory Appl., 2009,
pp. 26–33.

[20] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, ‘‘Simultaneous structure
and texture image inpainting,’’ IEEE Trans. Image Process., vol. 12, no. 8,
pp. 882–889, Aug. 2003.

[21] C. Qin, S. Wang, and X. Zhang, ‘‘Simultaneous inpainting for image
structure and texture using anisotropic heat transfer model,’’ Multimedia
Tools Appl., vol. 56, no. 3, pp. 469–483, Feb. 2012.

[22] H. Qin and M. A. El-Yacoubi, ‘‘Deep representation-based feature extrac-
tion and recovering for finger-vein verification,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 12, no. 8, pp. 1816–1829, Aug. 2017.

[23] L. Lei, F. Xi, and S. Chen, ‘‘Finger-vein image enhancement based on pulse
coupled neural network,’’ IEEE Access, vol. 7, pp. 57226–57237, 2019.

[24] W. Liu, W. Li, L. Sun, L. Zhang, and P. Chen, ‘‘Finger vein recognition
based on deep learning,’’ in Proc. 12th IEEE Conf. Ind. Electron. Appl.
(ICIEA), Siem Reap, Cambodia, Jun. 2017, pp. 205–210.

[25] Y. Zhang, W. Li, L. Zhang, X. Ning, L. Sun, and Y. Lu, ‘‘Adaptive
learning Gabor filter for finger-vein recognition,’’ IEEE Access, vol. 7,
pp. 159821–159830, 2019.

[26] Y. Lu, S. Yoon, S. J. Xie, J. Yang, Z. Wang, and D. S. Park, ‘‘Finger
vein recognition using histogram of competitive Gabor responses,’’ in
Proc. 22nd Int. Conf. Pattern Recognit., Stockholm, Sweden, Aug. 2014,
pp. 1758–1763.

[27] J. Wu, P. Wei, X. Yuan, Z. Shu, Y.-Y. Chiang, Z. Fu, and M. Deng, ‘‘A new
Gabor filter-based method for automatic recognition of hatched residential
areas,’’ IEEE Access, vol. 7, pp. 40649–40662, 2019.

[28] J. A. Sethian, ‘‘Fast-marching level-set methods for three-dimensional
photolithography development,’’ in Proc. 15th Opt. Microlithography,
vol. 2726, Jun. 1996, pp. 262–272.

[29] T. Junwei, H. Yongxuan, and T. Junwei, ‘‘Histogram constraint based fast
FCM cluster image segmentation,’’ inProc. IEEE Int. Symp. Ind. Electron.,
Vigo, Spain, Jun. 2007, pp. 1623–1627.

[30] S. Juan Xie, J. Yang, S. Yoon, L. Yu, and D. S. Park, ‘‘Guided Gabor filter
for finger vein pattern extraction,’’ in Proc. 8th Int. Conf. Signal Image
Technol. Internet Based Syst., Naples, Italy, Nov. 2012, pp. 118–123.

[31] X. M. Guo, W. D. Zhou, and C. Y. Wang, ‘‘The segmentation algorithm for
hand vein images based on improved Niback algorithm,’’ Adv. Mater. Res.,
vols. 532–533, pp. 1558–1562, Jun. 2012.

[32] M. Sudarma and N. Putu Sutramiani, ‘‘The thinning Zhang–Suen applica-
tionmethod in the image of balinese scripts on the papyrus,’’ Int. J. Comput.
Appl., vol. 91, no. 1, pp. 9–13, 2014.

[33] M.-P. Dubuisson and A. K. Jain, ‘‘Amodified Hausdorff distance for object
matching,’’ in Proc. 12th Int. Conf. Pattern Recognit., Jerusalem, Israel,
vol. 1, 1994, pp. 566–568.

[34] A. Kumar and Y. Zhou, ‘‘Human identification using finger images,’’ IEEE
Trans. Image Process., vol. 21, no. 4, pp. 2228–2244, Apr. 2012.

HANG YANG is currently pursuing the master’s
degree with the School of Communication Engi-
neering, HangzhouDianzi University. His research
interests include biometric recognition and image
processing.

LEI SHEN received the B.Eng. and Ph.D.
degrees in electronic engineering from Zhejiang
University, Hangzhou, China, in 2002 and 2007,
respectively. From 2014 to 2015, he was a Vis-
iting Scholar with the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA. He is currently
a Professor with the College of Communica-
tion Engineering, Hangzhou Dianzi University,
Hangzhou. His research interests include vein
image processing and signal processing.

YU-DONG YAO (Fellow, IEEE) received the
B.Eng. and M.Eng. degrees in electrical engineer-
ing from the Nanjing University of Posts and
Telecommunications, Nanjing, China, in 1982 and
1985, respectively, and the Ph.D. degree in
electrical engineering from Southeast University,
Nanjing, in 1988. From 1987 to 1988, he was a
Visiting Student with Carleton University, Ottawa,
ON, Canada. From 1989 to 2000, he was with
Carleton University, Spar Aerospace Ltd., Mon-

treal, QC, Canada, and Qualcomm Inc., San Diego, CA, USA. Since 2000,
he has been with the Stevens Institute of Technology, Hoboken, NJ, USA,
where he is currently a Professor and the Chair of the Department of
Electrical and Computer Engineering. He holds one Chinese patent and over
13 U.S. patents. His research interests include wireless communications,
cognitive radio, machine learning, and deep learning techniques. He served
as an Associate Editor for the IEEE COMMUNICATIONS LETTERS, from 2000 to
2008, and the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, from 2001 to
2006. He also served as an Editor for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, from 2001 to 2005. For his contributions to wireless com-
munications systems, he was elected as the National Academy of Inventors,
in 2015, and the Canadian Academy of Engineering, in 2017.

83050 VOLUME 8, 2020



H. Yang et al.: Finger Vein Image Inpainting With Gabor Texture Constraints

HUAXIA WANG (Member, IEEE) received the
B.Eng. degree in information engineering from
Southeast University, Nanjing, China, in 2012,
and the Ph.D. degree in electric engineering from
the Stevens Institute of Technology, Hoboken, NJ,
USA, in 2018. From 2016 to 2017, he was a
Research Internwith theMathematics of Networks
and Systems Research Department and Nokia Bell
Labs, Murray Hill, NJ, USA. He joined Futurewei
Technologies Inc., Bridgewater, NJ, USA, in 2018.

He is currently a Co-Professor with the Oklahoma State University, Still-
water, OK, USA. He has published more than 15 articles in premium
conferences and peer-reviewed journals, including ICLR, the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS, the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, the IEEE TRANSACTIONS ONNEURALNETWORKSAND LEARNING

SYSTEMS, the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and so on. His
research interests include image processing, wireless communications, cog-
nitive radio networks, reinforcement learning, and deep learning. He was a
recipient of the Outstanding Ph.D. Dissertation Award in electrical engineer-
ing and the Edward Peskin Award with the Stevens Institute of Technology,
in 2018.

GUODONG ZHAO received the Ph.D. degree in
communication and information system from the
Chinese Academy of Sciences, Shanghai, China,
in 2008. He is currently a Chief Technology Offi-
cer with Top Glory Tech Limited Company, China.
His current research interest includes biometric
identification technology.

VOLUME 8, 2020 83051


