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ABSTRACT In real-world networks, nodes are usually organized into modules or communities of densely
connected nodes. In situations where nodes can belong to multiple communities we say that the communities
overlap, and the nodes shared by more than one community are called the overlapping nodes. This occurs
especially in social networks where an individual belongs to various social groups and organizations such as
working circles, family, friendship or virtual groups on the Internet. Complex networks are known to have a
heavy tail degree distribution. Indeed, they are organized with a vast majority of nodes with few interactions
and a small set of highly connected nodes called hubs. In this paper, our goal is to study the relationship
between the overlapping nodes and the hubs. Indeed, we suspect that the hubs are in the vicinity of the
overlapping nodes. If this assumption is confirmed, it gives a new perspective on how the communities are
organized and of the crucial importance of the overlapping nodes. In an attempt to investigate the ubiquity of
this property, we perform series of experiments on various real-world networks with overlapping community
structure. Results show that the hubs represent always a large proportion of the one-step neighbors of
overlapping nodes. These results may have implications in various contexts. For example, searching for
the hubs in large networks can be done starting from the overlapping nodes. Furthermore, this study may
also provide new directions for designing new community detection algorithms.

INDEX TERMS Complex networks, community structure, overlapping nodes, hubs.

I. INTRODUCTION
In the study of complex networks, such as social, biological
and information networks, many different topological fea-
tures have been observed to occur commonly. One of themain
common characteristic is the degree distribution of the nodes.
It is well described by a non-homogeneous distribution with
a heavy tail. This results in the majority of nodes share a
low amount of connections and a small number of remaining
nodes that have a large number of connections. The latter
ones commonly referred as hubs [1] tend to be extremely
influential. Indeed, in transportation networks, for example,
the underlying topology based on a small number of hubs
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allows efficient travel services. Hubs play also the role of
super-spreaders in the context of epidemic spreading.

Community structure is another characteristic frequently
observed. Indeed, the majority of real-world networks
are found to be naturally partitioned into multiple mod-
ules or communities. Many studies have been conducted
to model and to analyse the community structure of a net-
work [2]–[14]. Until now, there is no consensual definition
of the community structure. The most influential informal
definition considers the community structure as a partition
of the networks into groups of vertices which are densely
interconnected while being loosely connected with vertices
of other communities. In other words, a community is a
subset of highly connected nodes sparsely connected with the
rest of the network. This assumption has been challenged.
Indeed, other works [15]–[22] have shown that real-world
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networks can display overlapping and nested communities.
While non-overlapping communities are made of modules
where nodes belong to a single community, in overlapping
communities, nodes can belong to more than one community.
This is typical of social networks, where individuals can
belong to various groups at the same time such as family,
school, hobby and so on. Our goal here is to go deeper into
the understanding of the interplay between the microscopic
themesoscopic organization of real-world complex networks.
Indeed, the heavy-tail degree distribution of the networks is
characterized by the emergence of a small set of highly con-
nected nodes. Furthermore, overlapping nodes is one of the
main organizing principles of modular networks. Investigat-
ing the relations between those two types of nodes is essential
to develop an effective analysis and modeling tools for real-
world networks. Analyzing the topological properties of the
community structure is of prime interest. Indeed, it allows a
better understanding of one of the main organizing principles
encountered in real-world networks. It may also provide clues
about the emergence of the community structure in real-
world networks. Despite the interest of the issue, there are
few works that dive deeply into the subject, in particular
in the case of overlapping community structure. The main
contribution of this paper is to characterize the relationship
between the overlapping nodes and the hubs. Our aim is to
give a clear answer about the relations between the hubs and
the overlapping nodes in networks with overlapping commu-
nity structure. To our knowledge, this is the first attempt to
conduct a systematic study in order to check if hubs lie in
the vicinity of overlapping nodes, and if this is a ubiquitous
property of real-world complex networks. Based on a series of
experiments (using different evaluation measures) performed
on a variety of real-world networks originating from various
fields, we show that the overlapping nodes are neighbors of
the hubs. Exploring this property is a challenging issue from
the perspective of the network structure. Indeed, our analysis
sheds more light on how the communities are organized.

The rest of the paper is organized as follows. In Section 2,
related work about the topological properties of the overlap-
ping community structure of real-world networks presented.
Section 3 introduces the data and the community detection
algorithms used to perform the experiments. Section 4 is
devoted to the presentation of the various measures and meth-
ods used to compare the set of overlapping nodes with the set
of hubs. In Section 5, we report and discuss our empirical
findings. Finally, conclusions are given in section 6.

II. RELATED WORK
In a seminal paper, Palla et al. [15] show that real-world net-
works can display significant overlap between communities.
They introduce four relevant quantities in order to character-
ize the overlapping community structure in large networks.
The membership number of a node quantifies the number of
communities to which it belongs. The overlap size between
two communities is the number of nodes they share. The
community degree is the number of communities overlapping

with it. Finally, the community size is the number of nodes
of a given community. In their work, they investigate the
distributions of these four quantities. Their results show that
the community size exhibits a power-law distribution. These
latter show also that the power-law distribution presents a
good fit for the overlap size as well as the membership num-
ber. However, the community degree distribution exhibits a
different behavior. We can distinguish two parts: an exponen-
tial decay followed by a power-law tail.

Another important study has been conducted by
Yang et al. [23] in order to characterize the overlapping areas
of the community structure. The authors show that nodes
belonging to the overlapping zones between communities are
more densely connected than those belonging to the non-
overlapping areas of the network. This behavior has been
observed in a series of experiments conducted on six large
networks of various origins. These results contradict the
conventional assumption that the overlapping nodes are more
sparsely connected than the non-overlapping parts of the
communities. In their work, they study the edge probability
of a pair of overlapping nodes as a function of the number
of their shared communities. Results show that the edge
probability between two overlapping nodes increases with
the number of communities they have in common. In their
experiments, they also investigate if the most connected node
in each community belongs to the overlapping zone. More
precisely, they study the probability that a hub belongs to
the community overlap as a function of the overlap size.
Results show that community hubs are not central in a
community. They actually tend to reside in the overlapping
zone. In addition, the probability that a hub belongs to the
overlap area increases linearly with the overlap size. Another
work reported in [8] studies the relationship between the
transitivity and the community structure strength measured
by the network modularity. Extensive experiments show that
transitivity increases accordingly with the community struc-
ture strength. Furthermore, if a weak community structure is
associated with a low transitivity value, the opposite is not
true. A network with a close to zero transitivity can still have
a well-defined community structure.

More recently Kudelka et al. [24] presented a new per-
spective on the problem of group detection bridging the gap
between structural and ground-truth communities. Using the
non-symmetric structural similarity between pairs of nodes,
they introduce an algorithm to detect groups referred as
zones. Their approach allows highlighting the prominent
nodes responsible for large zone overlaps. Results of their
investigations on real-world networks clearly show the exis-
tence of large and dense overlaps of detected groups.

Besides these works on the topology of the community
structure, there have been some other attempts to characterize
the overlapping nodes mainly in the context of diffusion
dynamics [25]–[28]. Indeed, overlapping nodes play a highly
relevant role in the network due to their ability to reach
multiple communities. We recently reported their importance
on the epidemic spreading process [29], and how they can
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be used in order to design effective immunization strategies.
Indeed, when an epidemic outbreak occurs, it is not possible
to immunize every individual through vaccination due to
the limited amount of resources or time. Designing effective
immunization strategies is therefore crucial to control the epi-
demic spreading and to reduce the cost of vaccine resources.
Classically, deterministic targeted immunization strategies
select the most influential spreaders to immunize according
to a given centrality measure and an immunization budget.
Nodes are ranked in the decreasing order of their centrality
value and immunized in that order until the budget of the
vaccine is over. We show that overlapping nodes deserve
special treatment in deterministic immunization strategies.
Indeed, these nodes have a higher level of both local influence
and global influence as compared to nodes belonging to a
single community.

Works in the same vein have been reported in [27], but
in the random immunization strategy context. In order to
mitigate the epidemic outbreaks in networkswith overlapping
structure, Kumar et al. proposed the so-calledOverlapNeigh-
borhood strategy. It immunizes randomly selected neighbors
of the overlapping nodes. This local strategy is agnostic
about the global structure of the network. It requires only to
locate the overlapping nodes. It is, therefore, more appropri-
ate for large scale networks than a deterministic strategy that
requires to rank all the nodes according to a centrality mea-
sure. The main idea of the OverlapNeighborhood strategy
is that there is a high probability that overlapping nodes are
neighbors of high degrees nodes. Thus, once the overlapping
nodes are identified, one can target the hubs in their neigh-
borhood for immunization. Experiments performed with four
empirical networks showed that it is almost as effective as
the deterministic degree strategy where nodes are ranked in
decreasing order of their degree. Therefore OverlapNeigh-
borhood can select highly connected nodes for immunization.
It performs sometimes as well as the betweenness strategy
while using less information about the overall network struc-
ture. Remember that usually random immunization strategies
are less effective than deterministic ones. These results cor-
roborate the importance of the overlapping nodes. The fact
that the randomOverlapNeighborhood strategy is as effective
as the deterministic degree centrality strategy suggests that
the same set of nodes are targeted in both case. Consequently,
there is a high probability that the hubs targeted by the deter-
ministic strategy are immediate neighbors of the overlapping
nodes.

To summarize, there is a great deal of work on complex
networks topological properties. It is commonly admitted that
they are organized around a small set of highly connected
nodes, and that the overall structure is modular with nodes
belonging to multiple communities. However, how these two
types of nodes interact is still an open question. In this
paper, we investigate the assumption that the overlapping
nodes are the neighbors of the hubs. This idea is inspired by
the effectiveness of the OverlapNeighborhood immunization
strategy as compared to the degree deterministic strategy.

Note that, to our knowledge, no previous work that system-
atically explores the relationship between overlapping nodes
and hubs has been reported.

III. DATA AND METHODS
In this section, we present briefly the data under investigation
and the community detection algorithm used in the study.
Indeed, as there is no information about the true community
structure of these networks, different community detection
algorithms are used to uncover it. This allows us to check the
sensitivity of the results to the variations of the community
structure linked to the algorithms.

A. DATASET DESCRIPTION
The selected networks come from a variety of domains
(social, co-appearance, collaboration and e-commerce
networks). Their size varies from hundreds to thousands
of nodes and millions of edges to cover a wide range of
situations. A short description of these networks follows, for
more information refer to [34].

1) ZACHARY’s KARATE CLUB
It is a social network of 34 members of a karate club at a US
university in 1970. The nodes represent the members of the
club while the edges represent their friendship.

2) DOLPHINS
It is a social network of frequent associations between
62 dolphins in a community living in Doubtful Sound, New
Zealand.

3) TERRORIST
It is a social network of known social association of the
hijackers responsible for the September 11th, 2001 terrorist
attacks.

4) ECOLOGY
This network represents the interactions among species and
organisms within an ecosystem.

5) LES MISERABLES
It is a co-appearance network of characters in Victor Hugo’s
novel ’Les Miserables’. The nodes in this network represent
the characters of this book and an edge between two nodes
exists if they appear in the same chapter of the novel.

6) GAME OF THRONES
It is a co-appearances network of the characters of the Game
of Thrones series. An edge between two nodes exists if they
appear within 15 words of each other in the text.

7) ADJNOUN
This network contains the common adjective and noun
adjacencies for the novel ‘‘David Copperfield’’ of Charles
Dickens. An edge exists if two pairs of words occur in adja-
cent positions in the text of the book.
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8) AMERICAN COLLEGE FOOTBALL
It is a network of American football games between Division
IA colleges during regular season Fall 2000.

9) EUROROAD
This network represents the international road network
located mostly in Europe. It is an undirected network where
nodes stand for cities and an edge between two nodes denotes
that they are connected by a road.

10) CRIME
This network contains persons who appeared in at least one
crime case as either a suspect, a victim, a witness or both a
suspect and victim at the same time.

11) YEAST PROTEIN INTERACTION
It is a network of the protein interactions contained in
yeast. Nodes represent proteins while edges stand for their
metabolic interaction.

12) EGO-FACEBOOK
The ego-Facebook network is collected from survey
participants using the Facebook app.

13) ca-GRQC
It is a collaboration network which has been collected from
the e-print arXiv. It covers scientific collaborations between
authors of papers submitted to the General Relativity and
Quantum Cosmology category.

14) GNUTELLA PEER-TO-PEER
It is a sequence of snapshots of the Gnutella peer-to-peer file
sharing network from August 2002. The nodes represent the
hosts in the Gnutella network while the edges are connections
between the Gnutella hosts.

15) WIKIPEDIA VOTE
This network contains all the Wikipedia voting data from
the inception of Wikipedia until January 2008. The nodes
represent wikipedia users and an edge from node i to node
j means that user i voted on user j.

16) ca-HepTh
It is a collaboration network extracted from arXiv. It covers
scientific collaborations between authors of the High Energy
Physics - Theory category. The network contains an edge
from i to j if an author i co-authored a paper with author j.

17) ca-AstroPh
This network represents scientific collaborations between
author’s papers submitted to Astro Physics category. It con-
tains an undirected edge from i to j if an author i co-authored
a paper with author j.

18) FACEBOOK LARGE PAGE-PAGE
It is a network of verified Facebook sites collected in
November 2017 and restricted to pages from four categories
(television shows, politicians, companies and organizations).

The nodes stand for official Facebook pages while the edges
represent mutual likes between sites.

19) ca-CondMat
It is a collaboration network extracted from arXiv. It covers
scientific collaborations between authors of the Condense
Matter category. The network contains an edge from i to j
if an author i co-authored a paper with author j.

20) ENRON EMAIL
It is a communication network where nodes represent email
addresses. A given node i is connected to j if the address i sent
at least one email to address j.

21) AMAZON CO-PURCHASING NETWORK
This network is collected from Amazon web site. If a product
i is frequently co-purchased with product j, the graph contains
an undirected edge from i to j.

22) DBLP
The DBLP computer science bibliography contains the list of
research papers in computer science. Nodes represent authors
and edges connect nodes that have co-authored a paper.

The basic topological properties of these networks are
given in Table 1. There is eight small networks with sizes
ranging from 34 to 115 nodes. Zachary’s karate club network
is the onewith the smallest size. Seven big empirical networks
are also used with sizes ranging from 9877 to 334863 nodes.
Amazon and DBLP are the networks with the biggest sizes.
Six networks have a medium size. All the networks have
a relatively high clustering coefficient value ranging from
0.258 to 0.633. They are disassortative except for American
college football and the collaboration networks. The networks
of medium and big sizes have a very small density, while it
is relatively high for small networks. The basic properties of
these empirical networks are very typical of what is generally
observed in many real-world situations.

B. COMMUNITY DETECTION ALGORITHMS
Community structure is a common property of many real-
world networks [29], [36]–[44]. Research on community
detection is very active and a plethora of new algorithms
based on various definitions are regularly published. In this
paper, three influential overlapping community detection
algorithms belonging to two different classes are used.
Lancichinetti Fortunato Method and EAGLE (LFME) [45] is
a local expansion and optimization algorithm. The Speaker-
listener Label Propagation Algorithm (SLPA) together with
the Democratic Estimate of the Modular Organization of a
Network (DEMON) [46] belong to the label propagation
category. More details are given in recent surveys about
community detection methods [6], [7].

1) LANCICHINETTI FORTUNATO METHOD AND
EAGLE (LFME)
This algorithm is a combination between the Lancichinetti
Fortunato Method (LFM) [47] and the agglomerativE hierar-
chicAl clusterinG based on maximaL cliquE (EAGLE) [48]
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TABLE 1. Common Topological properties of the real-world networks under study. N is the total number of nodes. E is the number of edges. < k > is the
average degree. kmax is the max degree. C is the average clustering coefficient. α is the degree assortativity of the network. µ represents the density.

algorithm. It is commonly known that communities are usu-
ally overlapping and hierarchical. Yet, the majority of algo-
rithms investigate these two properties in a separate way. The
Lancichinetti FortunatoMethod and EAGLE (LFME) use the
fitness function optimization of the LFM algorithm to iden-
tify with accuracy the overlapping communities. In addition,
the hierarchical structure is defined using EAGLE algorithm.
The LFME algorithm begins by picking a random seed node
as the original member of a community. Then, nodes are
added to this community until a fitness function is locally
maximal. After uncovering one community, the same process
is applied to another seed node until all the vertices of the
network are assigned to at least one community. The sec-
ond stage of this algorithm consists on selecting a specific
similarity function. After that, the pair of communities with
the maximum similarity are merged into one community.
Then, the similarity function is computed between the new
community and other communities. This process stops when
we obtain just one community. Thus, the whole process can
form a dendrogram. This means that the hierarchical struc-
ture is uncovered. Through this dendrogram, the overlapping
modularity is computed. Finally, the dendrogram is cut when
the overlapping modularity has a maximum value.

2) SPEAKER-LISTENER LABEL PROPAGATION
ALGORITHM (SLPA)
SLPA [35] is an extension of the Label Propagation Algo-
rithm (LPA). While in LPA, each node holds only a single
label that is iteratively updated by adopting the majority label
in the neighborhood, in SLPA each node possesses a memory
containing multiple labels. Starting from a node selected as
a listener, its neighbors send out a label following certain
speaking rules. The listener selects one label according to a
listening rule and adds it to its memory. Once all the nodes

have been visited, the communities are extracted from the
node’s memory converted into a probability distribution of
labels that defines the membership degree to communities.

3) DEMOCRATIC ESTIMATE OF THE MODULAR
ORGANIZATION OF A NETWORK (DEMON)
DEMON [46] tends to affect a node to the most frequent com-
munity by the application of a label propagation algorithm on
its neighbors sub-graphs. In other words, for each node, their
neighbors vote for its community membership. All the votes
are then combined to construct the overlapping community
structure.

IV. EVALUATION MEASURES
We suspect that the hubs are neighbors with the overlapping
nodes. In order to investigate this hypothesis, we need to
form and compare these two sets. To do so, first of all,
the overlapping community structure of real-world networks
is uncovered using an overlapping community detection algo-
rithm. The overlapping nodes and the set of their neighbors
are extracted. Note that n is the size of the neighbors of the
overlapping nodes. Then, the set of hubs is formed using the
n highest degree nodes of the network (Top n nodes). Strictly
speaking, the size of the set of hubs is not necessarily of the
same size that the set of the neighbors of the overlapping
nodes. Nevertheless, this choice is conservative. It is moti-
vated by the fact that some similarity measures need to be
computed on sets of the same size. In fact, some nodes in
the hub set may not have a high degree enough to be called
hubs, however, rather than speaking of this set as ‘‘the set of
the top degree nodes’’, we choose to call it the set of hubs for
short. As our purpose is to investigate the similarities between
these two sets, we compute classical measures such as the
proportion of common nodes of the two sets, the Jaccard
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Algorithm 1 Extraction of the Set of Hubs
Input : Graph G(V ,E)
Output: Set of neighbors of the overlapping nodes X

and set of hubs Y
1 Extract the set of overlapping nodes So using a given
overlapping community detection algorithm

2 Initialize the size of X the set of neighbors of the
overlapping nodes n←− 0

3 for each v ∈ So do
4 Add all the neighbors of the node v to the set X
5 n← n+ 1
6 end
7 Sort the set of neighbors of the overlapping nodes X in
decreasing order according to their degree

8 Sort all the nodes of the network in decreasing order
according to their degree

9 Add the top n nodes of the network to the set of hubs Y
10 Return X , Y

Index, the Rank-biased overlap and the correlation measures
between the two sets (Pearson and Spearman). We also com-
pare their degree distribution. Secondly, we form the sub-
network restricted to the overlapping nodes, the hubs and
their links (the so-called Overlap-Hub network), in order to
compare some of its topological properties (diameter, mean
shortest path) with the original network. Indeed, we can
expect that the distances are smaller in the Overlap-Hub
network as compared to the original network if the proportion
of hubs that are immediate neighbors of the overlapping node
is high enough.

A. COMPARISON BETWEEN THE SET OF NEIGHBORS OF
THE OVERLAPPING NODES AND THE SET OF HUBS
Various measures are computed on real-world data to com-
pare the set of neighbors of the overlapping nodes and the set
of hubs. They are defined as follows:

1) PROPORTION OF COMMON NODES IN THE SET OF
NEIGHBORS OF THE OVERLAPPING NODES AND
THE SET OF HUBS
This measure assesses how many hubs are directly connected
to the overlapping nodes. The set of hubs is computed accord-
ing to the algorithm 1. At first, all the neighbors of the over-
lapping nodes are added to the set X . Next, all the repeated
elements are removed from the set X . The size of the set of
neighbors of the overlapping nodes n is defined as (n = |X |).
After that, the set of hubs is computed. All the nodes of the
network are sorted in a decreasing order according to their
degree. Finally, the set of hubs Y is defined as the top n nodes
of the network.

The proportion of common nodes in the set of neighbors
of the overlapping nodes and the set of hubs (proportion
of hubs for short) is defined as the ratio of the size of the
intersection of the two sets to the size of the neighborhood

of the overlapping nodes set. For a given network G, it is
given by:

An =
|X ∩ Y |

n
(1)

where X and Y are the set of neighbors of the overlapping
nodes and the set of hubs respectively. n is the size of
the neighborhood of the overlapping nodes. If the hubs are
randomly distributed, this proportion should be very small.
We consider that if this value is greater than 50%, a high pro-
portion of the hubs are neighbors of the overlapping nodes.

2) RANK-BIASED OVERLAP
The measure, presented in [30], quantifies how well two
ranking sets are in agreement with each other. It computes
the fraction of overlapping elements of the two rankingswhile
incrementally increasing their depths. Furthermore, the over-
lap of each rank in this measure has a fixed weight. It is set
by a parameter that gives more weight to the top elements
of the set if it has a low value. Consequently, the top of the
set gets a higher weight than the tail. Let’s X and Y be two
infinite rankings. The set of elements ranges from position 1
to position d in set X is denoted as X:d . The proportion of the
overlap of two sets X and Y at depth d can be defined as:

Ad =
|X:d ∩ Y:d |

d
(2)

where |X:d ∩Y:d | is the size of the intersection between sets X
and Y at depth d . The Rank-biased overlap between two sets
X and Y is defined as follows:

r(X ,Y ) =
∑
d

wd ∗ Ad (3)

where wd is the weight at position d , which is equal to: wd =
(1− p) ∗ pd−1, so that

∑
d wd = 1. The Rank-biased overlap

belongs to the interval [0, 1]. The value 0 means that the sets
X and Y are disjoint, while 1 means that they are identical.
The parameter p determines the weights of the elements. The
smaller p, the more top-weighted the metric. When p = 0,
only the top-ranked item is considered, and the RBO score
is either zero or one. When p approaches 1, the evaluation
becomes deep in both sets.

3) JACCARD INDEX
The Jaccard index is a statistic used tomeasure the similarities
between two finite sample sets. It is formally known as the
ratio of the size of the intersection between the sets to the
size of their union. It is defined as follows:

J (X ,Y ) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X | + |Y | − |X ∩ Y |
(4)

where X and Y are two sets. The Jaccard index can take
values ranging between 0 and 1. It is equal to 0 when there is
no overlap and 1 when there is a complete overlap between
the sets.
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4) CORRELATION
The correlation is used to measure the association between
the set of neighbors of the overlapping nodes and the set
of hubs. Two different types of correlation coefficients are
employed:

a: PEARSON CORRELATION
The Pearson’s correlation coefficient is a common measure
of association between two vectors. Let’s consider X and Y
the vectors of degrees of nodes belonging respectively to the
ordered set of neighbors of the overlapping nodes and the
ordered set of hubs. The Pearson correlation coefficient ρ
between the two vectors X and Y can be obtained by:

ρ(X ,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(5)

where:

x =

∑n
i=1 xi
n
; y =

∑n
i=1 yi
n

(6)

b: SPEARMAN CORRELATION
Spearman’s correlation coefficient is a rank-based version of
the Pearson’s correlation coefficient.We compute the Pearson
correlation between the ranked set of neighbors of the over-
lapping nodes and the ranked set of the hubs of the same size.
The ranks are computed according to the degree of nodes. The
Spearman correlation coefficient denoted ρs between the two
vectors X and Y can be written as follows:

ρs(X ,Y )

=

∑n
i=1(rank(xi)− rank(x))(rank(yi)− rank(y))√∑n

i=1(rank(xi)−rank(x))2
∑n

i=1(rank(yi)−rank(y))2

(7)

where rank(xi) and rank(yi) represent the ranks of the ele-
ments xi and yi respectively. Both correlation coefficients
range from −1 to +1. The values of the two vectors tend
to increase or decrease simultaneously (a positive monotonic
association) results in ρ > 0, and the values of one vector tend
to increase when the values of the other decrease (negative
monotonic association) results in ρ < 0. The absence of a
monotonic association between the two vectors results in ρ
equals to 0. In addition, the correlation is moderate if the
coefficient ranges between 0.5 and 0.7. The correlation is
significant if the coefficient ranges between 0.7 and 1.0.

5) DEGREE DISTRIBUTION
Real-world networks have some common topological fea-
tures that distinguish them from random graphs. The most
popular property is the heavy-tailed degree distribution [31].
The degree of a node represents the number of connections
the node has to other nodes in the network (number of neigh-
bors). Thus, the degree distribution P(k) of a network is esti-
mated as the proportion of nodes in the networkwith degree k .
It is a relevant characteristic of networks which indicates the
overall pattern of connections. For a large amount of real-
world networks, it often follows a heavy-tailed distribution

such as a power-law [32]. The power-law distribution can be
denoted as P(k) = k−γ , where γ is a positive exponent. The
exponent value ranges usually between 2 and 3 according
to several experimental studies [32], [33]. The power-law
exponent γ can be employed to characterize the networks. in
order to estimate the degree distribution of a network, a well-
known approach is to fit a power-law distribution and to find
its power-law exponent.

B. COMPARISON BETWEEN THE OVERLAP-HUB
NETWORK AND THE GLOBAL NETWORK
Our aim is to compare the main properties of the global
network and the sub-network called the ‘‘Overlap-Hub net-
work’’. It is formed with the overlapping nodes, the hubs and
their interactions. To this end, we analyze different properties.
Wemeasure the average distance, the median distance as well
as the diameter of the Overlap-Hub network. These values are
compared to their counterpart in the global network. Before
describing these properties, we provide a formal definition of
the Overlap-Hub network.

1) OVERLAP-HUB NETWORK
Let’s consider a network G(V ,E), where V = {v1,
v2, . . . , vn} and E = {(vi, vj) \ vi, vj ∈ V } denotes the set
of nodes and edges respectively. The set of its overlapping
nodes is denoted Vo = {vo1, v

o
2, . . . , v

o
m} ⊂ V where m is the

number of the overlapping nodes. The set of hubs is denoted
Vh = {vh1, v

h
2, . . . , v

h
k} ⊂ V where k represents the numbers

of hubs. The Overlap-Hub network is formed from the union
of the set of overlapping nodes and the set of hubs. It is
obtained by removing all nodes that do not belong to one of
the two sets. The Overlap-Hub network is denoted S(Vq,Eq),
where Vq = Vo ∪ Vh and Eq = {(v

q
i , v

q
j ) \ vi, vj ∈ Vq} are

respectively its set of nodes and edges. Figure 1 illustrates the
representation of the Global and the Overlap-Hub network for
the Karate club network.

2) DISTANCES
Three topological properties are introduced in this subsection.
They are computed on both the original network and the
Overlap-Hub network.

a: AVERAGE DISTANCE
A shortest path between two vertices in a network is a path
with the minimum number of links. The average distance
computes the average shortest path lengths in a network. Let’s
consider that d(vi, vj) denotes the distance or the length of the
shortest path between nodes vi and vj. The average distance l
of a given network G is defined as:

l =
1

n(n− 1)
∗

∑
i6=j

d(vi, vj) (8)

where n is the number of nodes of network G.

b: MEDIAN DISTANCE
The median distance is the value separating the higher
half from the lower half of the length of shortest paths in
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FIGURE 1. Representation of the Global and Overlap-Hub networks formed from Karate club data. Nodes are highlighted in different colors according
to the community they belong to. Nodes with the same color belong to the same community. Those in gray represent the overlapping nodes. We note
that the left column of the global network represents the overlapping nodes, the nodes in the middle column are the hubs while those located in the
right column represent the remaining nodes. The size of the nodes is proportional to their degree. Overlapping nodes of the Overlap-Hub networks
are at the left while hubs are at the right. The community structure is revealed using the SLPA detection algorithm.

the network. The basic advantage of computing the median
distance as compared to the average distance is that it may
give a better idea of a more meaningful shortest path value.
Indeed, the median distance is not skewed by a small pro-
portion of extremely small or large values. To compute this
value, the shortest paths between all the pairs of nodes of
the network are sorted in an increasing order. Then, the mid-
dle value is picked as the median distance if there is an
odd number of shortest paths values. Otherwise, the median
distance is defined as the average of the two middle
values.

c: DIAMETER
The diameter of a given network represents the largest
distance between any two nodes in the network. A small
diameter denotes that the nodes of the network are tightly
connected. The diameter δ of a network is defined as follows:

δ = max
i,j

d(vi, vj) (9)

V. RESULTS AND DISCUSSION
In this section, we report and discuss our empirical findings.

Various evaluation criteria are used to analyze the relation-
ship between the overlapping nodes and the hubs. At first,
we compare the set of neighbors of the overlapping nodes
with the set of hubs. To this end, the proportion of common
nodes in the two sets and the Rank-biased overlap mea-
sures are computed. The correlation is also used to measure
the statistical association between the two sets. Moreover,
the degree distribution of both sets is estimated and com-
pared. In the second part of our experiment, keeping only the
overlapping nodes, the hubs and their connections from the
original networks, the so-called Overlap-Hub networks are
formed. Topological properties of the Overlap-Hub networks
are then compared with their original counterpart. To do so,
we analyze some popular topological network properties such
as the average and the median distance for both networks.
Furthermore, the influence of both the neighborhood size
and the membership degree of the overlapping nodes are
investigated. In the following, results are reported first based
on the SLPA uncovered community structure. Then, in order
to evaluate the impact of the community detection algorithms,
comparisons are performed with the community structures
uncovered by LFME and DEMON.
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FIGURE 2. Representation of the Global and Overlap-Hub networks formed from Les Miserables network. Nodes are highlighted in different colors
according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping
nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs while those located
in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes, the nodes in the middle
column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the SLPA detection algorithm.

A. COMPARISON BETWEEN THE SET OF NEIGHBORS OF
THE OVERLAPPING NODES WITH THE SET OF HUBS
1) PROPORTION OF COMMON NODES IN THE SET OF
NEIGHBORS OF THE OVERLAPPING NODES AND
THE SET OF HUBS
In this experiment, we compute the proportion of identical
nodes in the set of hubs and set of the neighbors of the
overlapping nodes. A high value of this proportion needs
to be uncovered in order to validate the assumption that

the two sets are similar. Let’s first consider the small size
networks. Indeed, in this case, we can compare the two sets
visually. The figs. 1 to 8 illustrate the tripartite representation
of Zachary’s Karate Club, Les Miserables, Game of thrones,
Dolphin, Terrorist, Ecology, Adjnoun and American college
football networks respectively. The grey nodes of the left
column are the overlapping nodes, the nodes in the middle
column are the hubs and those located in the right column
represent the rest of the nodes. Note that the size of nodes is
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FIGURE 3. Representation of the Global and Overlap-Hub networks formed from Dolphins network. Nodes are highlighted in different colors
according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping
nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs while those located
in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes, the nodes in the middle
column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the SLPA detection algorithm.

proportional to their degree. These networks have a number
of overlapping communities ranging from 2 to 5. One can
notice that all the overlapping nodes are connected to the
hubs and that these hubs belong to different communities.
As shown in all the figures, the overlapping nodes are densely
connected with the hubs while being sparsely connected with
the rest of the nodes. Another way to compare both sets is
to rank the nodes in both sets in degree decreasing value
and to compute the maximum size of the sets where there
is always 100% of the nodes that are common in both sets.

This gives us a conservative value as compared to the pro-
portion of common nodes. However, it allows to see if we
can reasonably accept the assumption that the hubs are the
neighbors of the overlapping nodes. Indeed, we know that the
proportion of hubs in a network with a heavy-tailed degree
distribution is quite small. If the top 10% of the nodes are
common in both sets there is a high probability that they
include all the hubs of the network. Table 2 reports the set of
overlapping nodes, the set of the neighbors of the overlapping
nodes as well as the set of hubs for these small networks.

VOLUME 8, 2020 79659



Z. Ghalmane et al.: Exploring Hubs and Overlapping Nodes Interactions

FIGURE 4. Representation of the Global and Overlap-Hub networks formed from Game of thrones network. Nodes are highlighted in different colors
according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping
nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs while those
located in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes, the nodes in the
middle column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the SLPA detection
algorithm.

The nodes are ranked in decreasing order of their degree
values. Labels that are common to the set of neighbors of
the overlapping nodes and the set of hubs are written in blue.
One can notice that there is a high overlap between these two
sets. Furthermore, nodes that are different in the two sets are
the ones with the lowest degree values. In the Karate Club
network, the top 5 high degree nodes are in the overlapping
nodes neighborhood. As the network is made of 34 nodes,
this value represents 14.7% of the nodes with the highest
degree. In Les Miserables, it is the 23 top high degree nodes
out of 77 nodes of the network that belong to the overlapping

nodes neighborhood. It is, therefore, 29.8% of nodes with the
highest degree which are in the vicinity of the overlapping
nodes. The top 16 high degree nodes out of the 107 nodes of
the Game of Throne network are neighbors of the overlapping
nodes. This represents 14.9% of the highest degree nodes.
In the Dolphin network, the node Jet (node ranked with the
fifth-highest degree) does not belong to the neighborhood of
the overlapping nodes. So, we can say that the top 4 high
degree nodes are in the vicinity of the overlapping nodes. This
corresponds to 6.8% of the nodes with the highest degree in
the network. For the Ecology network, the top 6 high degree
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FIGURE 5. Representation of the Global and Overlap-Hub networks formed from Terrorist network. Nodes are highlighted in different colors according
to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping nodes.
We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs while those located in
the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes, the nodes in the middle
column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the SLPA detection algorithm.

nodes out of 69 nodes of the network are neighbors of the
overlapping nodes. This represents 9% of the highest degree
nodes. In addition, in Adjnoun, the top 15 high degree nodes
out of 112 belong all to the neighborhood of the overlap-
ping nodes except for the node ‘little’ which is one of the
overlapping nodes. So, this represents 12.5% of the highest
degree nodes. In Terrorist network, not all the highest-ranked
nodes belong to the neighborhood of the overlapping nodes.
If we consider the top six nodes with the highest degrees,

we can notice that only three nodes (‘32’, ‘51’ and ‘24’)
are neighbors with the overlapping nodes. However, the node
‘38’ which is the second most connected node is one of the
overlapping nodes. In the American college football, only
the top 6 high degree nodes out of 115 nodes are neighbors
of the overlapping nodes (5.21%). This small percentage is
due to the fact that this network does not exhibit a heavy-
tailed degree distribution. Thus, the majority of nodes in the
American college football have the same degree. In some
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FIGURE 6. Representation of the Global and Overlap-Hub networks formed from Ecology network. Nodes are highlighted in different colors
according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the
overlapping nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the
hubs while those located in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the
overlapping nodes, the nodes in the middle column are the hubs. The size of the nodes is proportional to their degree. The community
structure is revealed using the SLPA detection algorithm.

networks, it is also noticed that the set of hubs and the set of
overlapping nodes have some nodes in common. Labels that
are common to these two sets are written in red. In Terrorist
network, two nodes belonging to the set of overlapping nodes
(‘38’ and ‘22’) are also considered as hubs. This corresponds
to 8% of the hubs. Furthermore, the node ‘38’ is the second-
ranked node of the network. The same for Ecology network,

two overlapping nodes belong to the set of hubs. They repre-
sent 4.44% of the hubs. In Adjnoun network, six overlapping
nodes are also considered as hubs. They represent 11.11%
of the hubs. Additionally, one of these nodes (node ‘little’)
is the most connected node of the network. That being said,
there is a very high proportion of hubs that belongs to the
neighborhood of the overlapping nodes in small networks.
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FIGURE 7. Representation of the Global and Overlap-Hub networks formed from Adjnoun network. Nodes are highlighted in different colors
according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent the
overlapping nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs
while those located in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes,
the nodes in the middle column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the
SLPA detection algorithm.

Another quite smaller proportion belongs to the set of over-
lapping nodes. The hubs excluded from this area are the ones
with low degrees. All these results are a strong indication that
hubs are neighbors of the overlapping nodes.

Results for all the networks under test are reported on
Table 3. We can consider that the fraction of common nodes
in both sets is high if its value is higher than 50%. If we look

at all the networks, the proportion of hubs belonging to the
overlapping nodes neighborhood is ranging from 59.25% to
87.27%. It is always above 50%.However, the highest value is
for small size networks. As the network size grows, there are
more and more peripheral hubs that are not in the vicinity of
the overlapping nodes. Indeed, overlapping nodes are in the
core of the communities. Moreover, as for small networks,

VOLUME 8, 2020 79663



Z. Ghalmane et al.: Exploring Hubs and Overlapping Nodes Interactions

FIGURE 8. Representation of the Global and Overlap-Hub networks formed from American college football network. Nodes are highlighted in
different colors according to the community they belong to. Nodes with the same color belong to the same community while those in gray represent
the overlapping nodes. We note that the left column of the global network are the overlapping nodes, the nodes in the middle column are the hubs
while those located in the right column represent the rest of the nodes. The left column of the Overlap-Hub network are the overlapping nodes,
the nodes in the middle column are the hubs. The size of the nodes is proportional to their degree. The community structure is revealed using the
SLPA detection algorithm.

we also check if the top-ranked nodes of the set of hubs are
neighbors to the overlapping nodes. To do so, we compute
the proportion of the most connected nodes located in the
neighborhood of the overlapping nodes. We note that the
top-ranked nodes represent 10% of nodes with the highest
degrees of the network. Experimental results show that the
proportion of the top-ranked hubs is always very high for
most of the networks. That means that the nodes belonging

to the set of hubs with the highest degrees are neighbors of
the overlapping nodes. Additionally, it can be noticed that
the set of hubs and the set of the overlapping nodes have
some nodes in common. This is consistent with the results
of Yang et al. study [23] showing that the overlapping nodes
are densely connected. However, the proportion of common
nodes is relatively small as compared to the proportion of
common nodes in the set of the neighborhood of overlapping
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TABLE 2. The set of neighbors of overlapping nodes and the set of hubs for small networks. Nodes are sorted in decreasing order according to their
degree.

nodes and the set of hubs. Therefore, the majority of hubs are
neighbors of the overlapping nodes, and a small proportion
of them are also overlapping nodes.

2) JACCARD INDEX
We compute the Jaccard index between the set of neighbors
of the overlapping nodes and the set of hubs. This mea-
sure is used to emphasize the similarity between both sets.

Results are reported in Table 3. One can notice that the
Jaccard index displays high values for the vast majority of
the networks. Only 5 networks out of the 22 understudy
exhibit a Jaccard index value below 50%. Results are well
correlated with the previous observations. Values are smaller
as compared to the proportion of common nodes in both sets.
This is due to the fact that the size of the neighborhood of
the overlapping nodes is sometimes very large. Its size is
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TABLE 3. Estimated parameters of real-world networks under study for the SLPA community detection algorithm. N is the size of the network. µ is the
density. on is the fraction of overlapping nodes. S is the size of the neighborhood of the overlapping nodes. An is the proportion of hubs in the
neighborhood of the overlapping nodes while σA is its standard deviation. J represents the Jaccard index between the set of neighbors of the overlapping
nodes and the set of hubs while σJ is its standard deviation. At (%) is the proportion of the top connected nodes in the neighborhood of the overlapping
nodes, where t is equal to 10% of the most highly ranked nodes of the network (t = 0.1 ∗ n). Ao

n is the proportion of hubs belonging to the set of
overlapping nodes. We note that each proportion value is the average of 10 SLPA simulation runs.

even greater than 65% in some small networks. Consequently,
some nodes belonging to the set of hubs have small degrees,
since it has the same size as the set of neighbors of the
overlapping nodes. So, there is a high chance that these nodes
with a low degree do not take part in the neighborhood of the
overlapping nodes. This explains the dissimilarities between
the set of neighbors of the overlapping nodes and the set of
hubs.

3) RANK-BIASED OVERLAP
The Rank-biased overlap (RBO) is also computed in order to
compare the set of neighbors of the overlapping nodes and the
set of hubs. This measure quantifies the fraction of the over-
lapping elements of two sets while incrementally increasing
their depths. Two sets are similar if theirRBO value is equal to
1, whereas they are disjoint if the value is equal to 0. The RBO
is computed between the set of neighbors of the overlapping
nodes and the set of hubs while assigning different weights
to the elements for both sets. The parameter p determines
the weights of the elements (see Subsection II.A). More
importance is given to the comparison of the top elements of
the two sets when the p value is small. Results of the RBO
computation for various p values are reported in Table 4.
One can notice that the RBO values are quite high when
almost all the elements have the same weight (p = 0.98).
Indeed, the overlap between the two sets ranges between
83.4% and 99.9%. This value increases when more weight
is given to the top-ranked elements of the sets. The overlap
between both sets ranges from 98.9% to 100% in this case
(p = 0.5). These results confirm the previous observations
reported in Table 2. Indeed, almost all the top-ranked nodes

are colored in blue. Thus, these nodes belong to the set of
neighbors of the overlapping nodes. Therefore, almost all
the most highly connected nodes of the network are located
in the neighborhood of the overlapping nodes. To conclude,
the set of neighbors of the overlapping nodes is generally very
similar to the set of hubs. This validates the assumption that
hubs are neighbors of the overlapping nodes. Furthermore,
the top-ranked nodes according to their degree are always in
the vicinity of the overlapping nodes.

4) CORRELATION
In this section, we report results on the correlation between
the set of hubs and the set of neighbors of the overlapping
nodes. First, the Pearson correlation coefficient, given in
Equation 5, is used to measure the degree of relationship
between both sets. It is computed using the degrees of these
sets sorted in decreasing order. Secondly, we use also the
Spearman correlation to measure the strength of the mono-
tonic relationship between the ranks of the set of neighbors
of the overlapping nodes and the set of hubs. The ranks of the
sets are computed according to the degree of nodes. We note
that the value of both correlation measures varies between
−1 (perfect negative correlation) and 1 (perfect positive cor-
relation). To illustrate the process, Table 5 represents the
correlation between the set of neighbors of the overlapping
nodes and the set of hubs for Karate club network. At first,
we define both sets based on algorithm 1. Pearson correlation
is then computed between the degrees of nodes belonging
to these two sets. The nodes are sorted in decreasing order
of their degree and each degree is associated with a rank.
We note that the highest degree has a rank equal to 1.
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TABLE 4. Rank-biased overlap r between the set of neighbors of the overlapping nodes and the set of hubs. p determines the weights of the elements.
More weights is given to the first elements of both sets if p has a small value. Each proportion value is the average of 10 SLPA simulation runs. The
standard deviation of RBO values are omitted from this table because the ranges are very small (close to 0).

TABLE 5. The correlation between the set of neighbors of the overlapping nodes and the set of hubs for Karate club network. ρ is the Pearson correlation
while ρs is the Spearman correlation.

Spearman correlation is then computed based on the set of
ranks of neighbors of the overlapping nodes and the set of
ranks of hubs according to Equation 7. It is noticed from
Table 5 that nodes belonging to the set of neighbors of the
overlapping nodes as well as the set of hubs have about the
same degrees and ranks (the overlapping elements of both
sets are in the blue color). That explains why the values of
both Pearson and Spearman correlation are very high (close
to 1). Therefore, there is a very strong monotonic relationship
between the set of neighbors of the overlapping nodes and the
set of hubs in Karate club network.

Results of Pearson and Spearman correlation for all the
other empirical networks are reported in Table 6. One can
notice that the values of the correlation measures are most
of the time greater than 0.9 for different networks whatever
their size and origin. Therefore, it clearly indicates that there
is a very strong relationship between the set of hubs and the
set of neighbors of the overlapping nodes for all the networks
under test. Indeed, the degrees, as well as the ranks of nodes
belonging to the set of neighbors of the overlapping nodes,
decrease in the same way as those belonging to the set of
hubs. Globally, both sets have nearly the same degrees and
ranks. These results corroborate the findings made using the
previous measures. Thus, one can say that a large amount of
nodes belong to both sets.

TABLE 6. Correlation between the set of neighbors of the overlapping
nodes and the set of hubs. ρ is the Pearson correlation while ρs is the
Spearman correlation. Each proportion value is the average of 10 SLPA
simulation runs.

5) HUB DISTRIBUTION ACCORDING TO THE DEGREE
OF OVERLAPPING NODES
One interesting question is to know if hubs tend to link
more with overlapping nodes with a high degree. In order to
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TABLE 7. α1 and α2 represent the estimated Power-Law exponent of the
degree distribution for respectively the set of neighbors of the
overlapping nodes and the set of hubs. Each proportion value is the
average of 10 SLPA simulation runs. The standard deviation values are
omitted in this table because their values are close to 0.

answer it, we compute the proportion of hubs in the neigh-
borhood of the overlapping nodes as a function of the degree
of overlapping nodes. Results for the various networks are
reported in Figure 9. One can see from these figures that the
distributions are quite uniform. This result is valid for almost
all the overlapping nodes whatever their degree and for all the
networks. Therefore, we can conclude that hubs are linked to
overlapping nodes quite uniformly.

6) DEGREE DISTRIBUTION
Here, we examine the degree distribution of both the set
of neighbors of the overlapping nodes and the set of hubs.
Our purpose is to check if they present the same empirical
distribution. The degree distribution can be appropriately
described as a power-law (P(k) = k−α) for a wide number of
networks [32], [49]. The value of the exponent of the power-
law ranges between 2 and 3 according to many experimental
studies [32]. Figure 10 represents the cumulative degree dis-
tribution of neighbors of the overlapping nodes as well as the
hubs for the various empirical networks. These figures show
that the cumulative degree distribution of both sets displays
the same behavior. In addition, the neighbors of the over-
lapping nodes as well as the hubs have approximately the
same cumulative degree distribution. This is more apparent
namely for Condense matter collaboration and Enron Email
networks. Moreover, Figure 11 reports the empirical degree
distribution of the sets of neighbors of the overlapping nodes
together with the hubs for all the real-world networks. It is
shown in this figure that the two sets exhibit similar degree
distribution (described by a heavy tail degree distribution).
Their estimated distribution under the power-law hypothesis
is also represented in this figure. The maximum likelihood
estimators [31] is used to compute the exponent values which
are reported in Table 7. For all the networks, it is noticed
that the estimated exponents of the theoretical distribution for
neighbors of the overlapping nodes and hubs have quite the
same values. Therefore, one can conclude from this experi-
ment that the power-law seems to be a suitable distribution for
both sets. Additionally, their exponents have about the same
values.

B. COMPARISON BETWEEN THE GLOBAL NETWORK
AND THE OVERLAP-HUB NETWORK
In this experiment, we compare the mean and median dis-
tance values of the Overlap-Hub network (containing only the

overlapping nodes and the hubs) with those of the original
network. figs. 1 to 8 (b) are the bipartite representation of
the Overlap-Hub network for respectively Karate club, Les
Miserables, Dolphin and Game of thrones networks. Nodes
in the left column (colored in gray) are the overlapping nodes
while the nodes in the right column are the hubs of the
overall network presented in figs. 1 to 8 (a). The distance
of the Overlap-Hub network is quantified by its average and
median measure. It tells us how much the overlapping nodes
are close to the hubs. The smaller the value of this measure,
the more likely the overlapping nodes are neighbors to the
hubs. Table 11 reports the average and the median distance of
the Overlap-Hub network (distance between the overlapping
nodes and the hubs) together with the same measures for the
global network.

Results show that the average distance values for the
Overlap-Hub network are quite small. They are lower than
the average distance of the global network. In small networks
(Karate club, Les Miserables, Dolphin, Game of Thrones
and American football network), one can also notice that
the average distance of the Overlap-Hub network is slightly
lower than the one of the global network. In these networks,
the density of links is quite high as compared to the density
of large networks. On top of that, small networks have also a
relatively small diameter. So, the nodes are tightly connected
even if we consider the entire network. That what makes the
average shortest path for the global network has also a small
value. This explains the small differences between the values
of these measures computed on both networks.

In medium and large networks, the average distance of
the Overlap-Hub network has always a relatively very small
value as compared to the same measure computed on the
global network. These networks have very low links density
while having a large diameter. That explains why the average
distance between overlapping nodes and hubs ismuch smaller
than the average distance of the global network. This means
that the overlapping nodes and the hubs are tightly connected
as compared to the rest of the network. Moreover, results also
show that the median distance displays the same behavior as
for the average distance. Indeed, the median distance of the
Overlap-Hub network is slightly lower or equal to the one
of the global network for all the networks with small sizes.
However, the difference is more significant in medium and
large networks. Therefore, this confirms that each overlap-
ping node can be neighbor to a large amount of hubs.

C. INFLUENCE OF THE NEIGHBORHOOD SIZE OF
OVERLAPPING NODES
In the previous experiments, we checked if the hubs are
immediate neighbors of the overlapping nodes. Now, wewant
to know if there are more hubs in the vicinity of the overlap-
ping nodes. To do so, we increase the size of the neighborhood
of the overlapping nodes by increasing the size of themax dis-
tance to define the neighborhood. This parameter represents
the maximum number of links that must be taken from an
overlapping node to reach the perimeter of its neighborhood.
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FIGURE 9. Proportion of hubs in the neighborhood of overlapping nodes as a function of their degree for real-world networks under study.

Thus, we select only the immediate neighbors of the over-
lapping nodes if we set the distance to 1. By incrementing
the distance, we increase also the circle of the overlapping
nodes’ neighborhood. The purpose of this investigation is to
examine the influence of the size of the overlapping neigh-
borhood on the proportion of hubs belonging to this area.
Table 10 reports the proportion of hubs in the neighborhood of
overlapping nodes as a function of the distance. One can see

that the values of the proportion of common nodes in the set
of hubs and the set of neighbors of overlapping nodes hubs
exhibit the same behavior. They increase with the distance.
Note that it is equal to 100% for small size networks when
the distance is only incremented once. This is because these
networks have a small diameter. In networks of medium and
big sizes, the proportion of hubs does not reach its maximum
value until setting the distance to 5 or 6. This is due to their
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FIGURE 10. Cumulative degree distribution of neighbors of the overlapping nodes (blue) and the hubs (red) for the networks under study.

relatively larger diameter. We note the maximum value of the
proportion of hubs in the neighborhood of overlapping nodes
is usually less than 100%. This is because some hubs belong
also to the set of overlapping nodes. Actually, by increasing
the size of the neighborhood of the overlapping nodes, there

is a high chance that it contains more hubs belonging to
different communities. That is the reason why the proportion
of hubs always increases while increasing the size of the
neighborhood of the overlapping nodes whatever the network
origin and size.
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FIGURE 11. Log-log representation of degree distribution for different real-wold networks. The empirical degree distribution of neighbors of
the overlapping nodes is in blue. It is in red for the hubs. Power-Law estimates are in black.

D. INFLUENCE OF THE MEMBERSHIP NUMBER OF
THE OVERLAPPING NODES
The aim of this experiment is to study the influence of the
membership number of overlapping nodes on the proportion

of hubs in their neighborhood. Remember that the member-
ship number is the number of communities to which the over-
lapping node belongs. Table 8 reports the example of Dolphin
networks. This network has thirteen overlapping nodes with
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TABLE 8. Proportion of hubs in the neighborhood of overlapping nodes as a function of their membership for Dolphin network. om is the membership
degree of the overlapping nodes. An is the proportion of hubs in the neighborhood of the overlapping nodes.

a membership degree equal to 2, while it has eleven over-
lapping nodes with a membership degree equal to 3. It is
shown in this table that the overlapping nodes with the lower
membership (om = 2) has also a lower proportion of hubs in
their neighborhood. However, this proportion reaches 100%
in the neighborhood of the overlapping nodes with the higher
membership (om = 3). Table 9 reports the proportion of hubs
in the neighborhood of overlapping nodes as a function of
their membership number for the other networks under study.
In some networks, all the overlapping nodes have the same
membership number (Karate club, Les Miserable, Game of
thrones, Dolphins and ego-Facebook). They are not repre-
sented in this table. First, note that the values of the overlap
with the set of hubs generally increases with the member-
ship number value. In ca-GrQc, for instance, the proportion
of hubs is around 86% if the overlapping nodes belong to
only two different communities, while it is 100% when the
membership of the overlapping nodes is equal to 6. Indeed,
if the overlapping node belongs to several communities, it is
more likely to be neighbor to a high number of hubs belonging
to these multiple modules. In other words, the proportion of
hubs in the neighborhood of an overlapping node is higher
if it belongs to a higher number of communities. However,
as the size of the networks increases, differences are less
pronounced.

E. INFLUENCE OF THE COMMUNITY
DETECTION ALGORITHMS
In this section, we report the same series of experiments
conducted on all the empirical networks of various sizes using
alternative overlapping community detection algorithms to
SLPA. Both Lancichinetti Fortunato Method and EAGLE
(LFME) [45] and Democratic Estimate of the Modular Orga-
nization of a Network (DEMON) [46] detection algorithms
are used in these experiments. Our main goal is to check the
validity of our hypothesis while using a different overlapping
community detection algorithm.

1) COMPARISON OF THE UNCOVERED
COMMUNITY STRUCTURES
Here, we analyze five measures to highlight the differences
between the revealed communities by the 3 community detec-
tion algorithms used in the experiments. The Normalized

Mutual Information (NMI), the mixing parameter estimate,
the number of communities, the fraction of overlapping
nodes and the overlapping modularity measure are computed
to compare the community structures uncovered by SLPA,
LFME andDEMON. Results for all the networks are reported
in Table 12.

In the community detection literature, [50] the Normalized
Mutual Information (NMI) is commonly used to compare two
community structures. Its value is close to 1 if the community
structures are very similar and close to 0 if they do not share
any information. In small networks, the NMI between the
three algorithms has medium values. Yet, it is slightly higher
between SLPA and LFME algorithms. This shows that there
are significant similarities between the communities revealed
by the three algorithms. In medium and large networks,
the NMI has relatively small values for all the algorithms. It is
higher between SLPA and LFME detection algorithms. This
indicates that in this type of networks, the community struc-
tures are quite different. We also report the mixing parameter
in this table. This measure represents the fraction of the inter-
community links of nodes. It determines the strength of the
community structure. For small values, the communities are
well defined. For all the networks, the mixing parameter has
small values for the three detection algorithms. However, its
values are quite close between SLPA and LFME algorithms
while it is higher for DEMON algorithm. Thus, the commu-
nity structure defined by both SLPA and LFME algorithms
has similar strengths. Moreover, for small networks, the three
algorithms detect nearly the same number of communities.
This confirms the similarity of the community structure
in this type of networks. In medium and large networks,
we observe a larger variation of this measure. The proportion
of overlapping nodes is another evaluated parameter. The
results show that LFME detects the lower fraction of overlap-
ping nodes followed by SLPA algorithm while this measure
is quite high for DEMON algorithm.

Furthermore, the modularity is also used to quantify the
quality of the community structure. It assesses the internal
connectivity of the identified communities as compared to
a random network with no community structure. Note that
the overlapping modularity values are low for all the three
detection algorithms. However, SLPA has the highest values
followed by LFME while DEMON has the lowest values.
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TABLE 9. Proportion of hubs in the neighborhood of overlapping nodes
as a function of their membership. om is the membership degree of the
overlapping nodes. on(%) is the proportion of overlapping nodes. An is
the proportion of hubs in the neighborhood of overlapping nodes. Each
proportion value is the average of 10 SLPA simulation runs. The standard
deviation values are omitted in this table because of their small values.

Therefore, according to this measure for all the various net-
works, SLPA is the most accurate algorithm, followed by
LFME then DEMON.

2) COMPARISON OF THE DISCOVERED
OVERLAPPING NODES
Here, we compare the sets of overlapping nodes defined by
the various detection algorithms. Our purpose is to check if all
the community detection algorithms uncover the same set of
overlapping nodes. To do so, wemeasure the proportion of the
overlaps between the sets two by two using the Jaccard index
as well as the Rank-biased overlap. Let’s start with the small
networks that can be visualized. Figure 12 and 13 present the
tripartite representation of respectively Karate club and Les
Miserables networks using (a) SLPA (b) LFME (c) DEMON
algorithms.We note that the left column of the network repre-
sents the overlapping nodes, the nodes in the middle column
are the hubs while those located in the right column are
the remaining nodes. In Karate club, the sets of overlapping
nodes detected by SLPA, LFME and DEMON have only one
node in common (node 30), while two overlapping nodes
are shared by SLPA and DEMON (nodes 30 and 8). In this
network, the overlap proportion between SLPA and LFME is
higher than the one between SLPA and DEMON. The same
behavior is noticed in LesMiserables. The sets of overlapping
nodes detected by SLPA, LFME and DEMON have only two
nodes in common (Fantine and Marius). In these networks,
DEMON algorithm detects a larger number of overlapping
nodes as compared to the two other algorithms. In addition,
it is also noticed that some nodes defined as hubs with SLPA
and LFME algorithms belong to the set of overlapping nodes
for DEMON algorithm. That is why the overlaps between the
sets of overlapping nodes for SLPA and LFME algorithms are
higher than when DEMON algorithm is used. This is true in
Karate club and Les Miserables networks. Table 13 reports
the proportion of overlaps between the sets of overlapping
nodes for all real-world networks when different detection
algorithms are used. Results show that the overlaps between
the sets of overlapping nodes for the different algorithms are
small. They do not exceed 34%. However, unlike the previ-
ous networks (Karate club and Les Miserables), SLPA and
DEMON algorithms have generally more nodes in common
as compared to the LFME algorithm. Table 13 reports also
the Rank-biased overlap between these sets. In this measure,
we set the parameter p to the value 0.5 to give more weights
to the top-ranked nodes. The values of the RBO confirm the
findings obtained by the previous results. They display small
values. However, they are higher between SLPA andDEMON
algorithms. That means that there are usually higher simi-
larities between the sets of overlapping nodes generated by
SLPA and DEMON algorithms. These two algorithms detect
a large proportion of overlapping nodes while LFME detects
a smaller proportion. Therefore, the sets of overlapping nodes
defined by SLPA and DEMON algorithms have more nodes
in common than the one defined by LFME algorithm.

3) COMPARISON OF THE DISCOVERED NEIGHBORS
OF THE OVERLAPPING NODES
Here, we repeat the same experiments between the sets of
neighbors of the overlapping nodes defined by SLPA, LFME
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TABLE 10. Proportion of hubs in the neighborhood of overlapping nodes as a function of the distance. The distance is the maximum number of links
from an overlapping node to reach the perimeter of its neighborhood. An is the proportion of hubs in the neighborhood of overlapping nodes. Ao

n is the
proportion of hubs belonging to the set of overlapping nodes. S represents the size of the neighborhood of the overlapping nodes. Each proportion value
is the average of 10 SLPA simulation runs. The standard deviation values are omitted in this table because of their small values ranging from 0 to 3.7.

TABLE 11. Distance measures of the empirical networks. δG represents the diameter of the global network while δ is the diameter of the Overlap-Hub
network. lG represents the average distance of the global network while l is the average distance between the overlapping nodes and the hubs. lGm is the
median value of the average distance of the global network while lm is the median value of the average distance of the Overlap-Hub network. Each
proportion value is the average of 10 SLPA simulation runs. The standard deviation values are omitted in this table because the ranges are very small.

and DEMON algorithms. Wemeasure the proportion of over-
laps as well as the Rank-biased overlap between these sets
two-by-two.

It can be noticed from Figure 12 and 13 that the sets
of neighbors of the overlapping nodes revealed by SLPA
and LFME have the majority of nodes in common for both
Karate club and Les Miserables networks. DEMON has less
nodes in common with SLPA and LFME algorithms in these
networks. This is because the set of neighbors of the overlap-
ping nodes revealed by DEMON is very large as compared

to the other algorithms. Table 14 reports the proportion of
overlaps between the sets of neighbors of overlapping nodes
for different empirical networks when various community
detection algorithms are used. Results show that the overlap
between the sets of neighbors of overlapping nodes for the
different algorithms is usually high. They can even reach
78%. Yet, unlike in Karate club and Les Miserables net-
works, SLPA and DEMON algorithms have generally higher
proportion of overlap as compared to the LFME algorithm.
Indeed, both SLPA and DEMON detect a large proportion of
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TABLE 12. The estimated number of communities Nc , fraction of overlapping nodes on, the mixing parameter µ, the overlapping modularity Q and the
Normalized Mutual Information (NMI) in the networks under study for community structures uncovered by SLPA, DEMON and LFME algorithms.

FIGURE 12. Tripartite representation of Karate network using (a) SLPA (b) LFME (c) DEMON. Nodes are highlighted in different colors according to the
community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping nodes. We note
that the left column of the network are the overlapping nodes, the nodes in the middle column are the hubs while those located in the right column
represent the rest of the nodes. The size of the nodes is proportional to their degree.

overlapping nodes. Thus, their neighborhood of the overlap-
ping nodes is also large as compared to LFME algorithm.
Table 14 reports also the Rank-biased overlap between the
sets of neighbors of the overlapping nodes. The parameter
p is set to the value 0.5 to give more weights to the top-
ranked nodes. It is noticed that the RBO exhibits also very
high values (close to 1). That means that the most highly
connected nodes belong to all the sets of neighbors of the
overlapping nodes defined by the three community detection
algorithms.

4) COMPARISON OF THE DISCOVERED
OVERLAP-HUB NETWORKS
In this part of the experiment, we measure the similari-
ties between the discovered sets of the nodes forming the

Overlap-Hub network (overlapping nodes and hubs) when
SLPA, LFME and DEMON algorithms are used. To do so,
we compute the Jaccard index as well as the Rank-biased
Overlap between the revealed sets.

It can be noticed fromFigure 12 and 13 that the nodes of the
Overlap-Hub network (left and middle column) uncovered
by, the three community detection algorithms in Karate club
and Les Miserables networks have a majority of nodes in
common. Indeed, some nodes can be identified as overlap-
ping nodes by some algorithms and as hubs by others. For
instance, nodes 33, 0 and 32 in Karate club network are
considered as hubs with SLPA and LFME algorithms and as
overlapping nodes with DEMONalgorithm. The same behav-
ior appears in Les Miserables network for nodes Valjean,
Gavroche, Javert and Enjolras. They are considered as hubs
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FIGURE 13. Tripartite representation of Les Miserables network using (a) SLPA (b) LFME (c) DEMON. Nodes are highlighted in different colors according to
the community they belong to. Nodes with the same color belong to the same community while those in gray represent the overlapping nodes. We note
that the left column of the network are the overlapping nodes, the nodes in the middle column are the hubs while those located in the right column
represent the rest of the nodes. The size of the nodes is proportional to their degree.

for SLPA and LFME algorithms and as overlapping nodes for
DEMON algorithm. One can find the explanation in the study
reported by Yang et al. [23]. Indeed, the authors show that the
overlapping nodes are more densely connected than the other
nodes of the network. Thus, they can be considered as hubs
by some community detection algorithms. Table 15 reports
the Jaccard index between the sets of overlapping nodes and
hubs revealed by different community detection algorithms.
Experimental results show that the Jaccard index values are
very high (close to 1). The values are even higher between
SLPA and DEMON algorithm. Therefore, the Overlap-Hub
networks defined by the different algorithms have a majority
of nodes in common. Table 15 reports also the Rank-biased
overlap between the same sets for the three tested algorithms.
We note that the parameter p is set to the value 0.5 to give
more weights to the top-ranked nodes. It can be noticed that
the RBO values are in most of the time equal to 1. These val-
ues consolidate the results obtained using the Jaccard index.
It shows that the Overlap-Hub networks uncovered by SLPA,
LFME and DEMON algorithms are very similar.

5) COMPARISON BETWEEN THE SET OF NEIGHBORS OF
THE OVERLAPPING NODES AND THE SET OF HUBS
In this section, we use the same evaluation criteria to examine
the relationship between the overlapping nodes and the hubs
using LFME and DEMON algorithms. At first, the set of
neighbors of the overlapping nodes and the set of hubs are
compared. To do so, the previous measures (proportion of
hubs, Rank-biased overlap and correlation) are computed.
We also analyze their degree distribution.

Table 16 represents the proportion of hubs in the neigh-
borhood of the overlapping nodes. As for SLPA, in all the
studied networks, the proportion of hubs in the overlapping
neighborhood has always high values for both LFME and
DEMON. However, the fraction of hubs neighbors of the
overlapping nodes is higher for DEMON algorithm. This is
due to the higher number of the overlapping nodes revealed by
this detection algorithm. In this case, we have a larger neigh-
borhood of the overlapping nodes. Thus, there is a higher
chance that it contains more hubs. Table 17 reports the Rank-
biased overlap for LFME and DEMON algorithms. Note that
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TABLE 13. Overlap between the sets of overlapping nodes discovered by
SLPA, LFME and DEMON for different real-world networks. J represents
the Jaccard Index. r is the Ranked-biased Overlap. Its parameter p is set
to the value 0.5 to give more weight to the top-ranked nodes.

the RBO values are quite high for all the community detection
algorithms. As for the previousmeasure, DEMONhas always
slightly higher values. In addition, the values of the RBO get
higher when more weight is given to the top-ranked nodes.
That means that the most highly connected nodes of the
network belong to the neighborhood of the overlapping nodes
for all the community detection algorithms. We also compute
both Pearson and Spearman correlation for both detection
algorithms. The results are illustrated in Table 18. For all
the empirical networks, the values of the two coefficients are
most of the time very close to 1 when LFME andDEMON are
employed. Therefore, there is a strongmonotonic relationship
between the set of neighbors of the overlapping nodes and
the set of hubs for the three detection algorithms. Globally,
DEMON gives better results (in terms of the proportion of
hubs, RBO and correlation) as compared to the other algo-
rithms. However, this algorithm defines a very large set of
neighbors of the overlapping nodes. It can reach sometimes
71% of the size of the network. In this case, several nodes
can be identified as hubs even if they have a small degree.
This is because the set of hubs has the same size as the set of
neighbors of the overlapping nodes. Thus, LFME identifies a
more meaningful set of hubs followed by SLPA.

The degree distribution of the set of neighbors of the
overlapping nodes and the set of hubs is also studied for
LFME and DEMON algorithms. Figure 14 presents the

TABLE 14. Overlap between the sets of neighbors of the overlapping
nodes discovered by SLPA, LFME and DEMON for different real-world
networks. J represents the Jaccard Index. r is the Ranked-biased Overlap.
Its parameter p is set to the value 0.5 to give more weight to the
top-ranked nodes.

degree distribution of neighbors of the overlapping nodes
and the hubs for LFME and DEMON algorithms. It can be
noticed that the two sets exhibit the same behavior for both
algorithms. They display a heavy-tailed degree distribution.
The estimated exponents under the power-law hypothesis
are also computed and reported in Table 19. Results show
that the exponents of the set of neighbors of the overlap-
ping nodes and the set of hubs are very close whatever the
used community detection algorithm. Furthermore, we also
compute the proportion of hubs while increasing the size
of the neighborhood of the overlapping nodes when LFME
and DEMON are used. Results reported in Table 21 show
that, as for SLPA, the proportion of hubs increases when we
increase the neighborhood of the overlapping nodes for both
algorithms. Moreover, Table 20 represents the proportion of
hubs as a function of the membership of the overlapping
nodes. Results show also that the proportion of hubs increases
as the membership of the overlapping nodes gets higher for
all the community detection algorithms.

6) COMPARISON BETWEEN THE GLOBAL NETWORK
AND THE OVERLAP-HUB NETWORK
In the second part of this experiment, we compare also the
Overlap-Hub network and the global network using LFME
and DEMON algorithms. Table 22 represents the average and
themedian distance of both networks for LFME andDEMON
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TABLE 15. Overlap between the sets of the union of the overlapping nodes and the hubs discovered by SLPA, LFME and DEMON for different real-world
networks. J represents the Jaccard Index. r is the Ranked-biased Overlap. Its parameter p is set to the value 0.5 to give more weight to the top-ranked
nodes.

TABLE 16. Estimated parameters of the real-world networks for LFME and DEMON detection algorithms. on is the number of overlapping nodes. S is the
size of the neighborhood of the overlapping nodes. An is the proportion of hubs in the neighborhood of the overlapping nodes while σA is its standard
deviation. We note that each proportion value is the average of 10 simulation runs.

TABLE 17. Rank-biased overlap r between the set of neighbors of the overlapping nodes and the set of hubs. This measure is computed using LFME and
DEMON detection algorithms. p determines the weights of the elements. More weights is given to the first elements of both sets if p has a small value.
Each proportion value is the average of 10 simulation runs. The standard deviation of RBO values are omitted in this table because the ranges are very
small (close to 0).

algorithms. We aim to measure how much the overlapping
nodes are close to the hubs when different community detec-
tion algorithms are used. In small networks, as for SLPA,

the average and median distance of the Overlap-Hub network
is slightly better than the one of the global network when
LFME and DEMON are used. This is due to the high density
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FIGURE 14. Log-log representation of degree distribution for real-wold networks under study using LFME and DEMON detection algorithms. The
empirical degree distribution of neighbors of the overlapping nodes is in blue, it is in red for the Hubs. Power-Law estimates representation are in
black.

of links in these types of networks. In medium and large
networks, the average and the median distance between over-
lapping nodes and hubs are much smaller compared to those
of the global network for both algorithms. However, the val-
ues of the average and median distance of the Overlap-Hub
network get higher when DEMON algorithm is used. Indeed,
this algorithm uncovers a large number of overlapping nodes

having a large neighborhood size. Thus, the Overlap-Hub
network has also a larger size in this case. That explains
why the average and the median distance of the Overlap-
Hub network are higher for DEMON algorithm. Globally,
the distance of the Overlap-Hub network is much smaller
than the one of the global network whatever the community
detection algorithm used. Therefore, the overlapping nodes
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TABLE 18. Correlation between the set of neighbors of the overlapping
nodes and the set of hubs for both LFME and DEMON detection
algorithms. ρ stands for the average value of Pearson correlation while ρs
stands for the average value of Spearman correlation. Each proportion
value is the average of 10 simulation runs.

TABLE 19. α1 and α2 represent the estimated Power-Law exponent of the
degree distribution for respectively the set of neighbors of the
overlapping nodes and the set of hubs. Each proportion value is the
average of 10 simulations for LFME and DEMON detection algorithms.
The standard deviation values are omitted from this table because their
values are close to 0.

and the hubs are tightly connected as compared to the rest of
the network when the communities are uncovered by all the
three community detection algorithms.

7) SUMMARY
To summarize, the community detection algorithms uncover
similar communities in small networks. Indeed, they have
a medium values of the NMI and close values of the mix-
ing parameter and number of communities. In medium and
large networks, their community structure can be quite dif-
ferent. They have small NMI values (relatively higher val-
ues between SLPA and LFME), and a different number of
communities. Furthermore, we also use the overlapping mod-
ularity to measure the quality of the community structure
revealed by the algorithms. The modularity values using the
different algorithms are small with the lowest values for
DEMON algorithm. Thus, SLPA is the most accurate detec-
tion algorithm followed by LFME, then DEMON algorithm.
Moreover, we measure the overlap proportion between the
sets of overlapping nodes defined by the three community
detection algorithms. Results show that the overlap propor-
tion between the algorithms is small. However, it is most of
the time higher between SLPA and DEMON algorithms. The
same experiment is performed between the sets of neighbors
of the overlapping nodes. Results show there is generally a
large intersection of these sets for all the community detection
algorithms. Yet, there are smaller overlaps between LFME
and both SLPA and DEMON algorithms. This is because
LFME usually detects a smaller number of overlapping

TABLE 20. Proportion of hubs in the neighborhood of overlapping nodes
as a function of their membership. om is the membership degree of the
overlapping nodes. on(%) is the proportion of overlapping nodes. An is
the proportion of hubs in the neighborhood of overlapping nodes. Each
proportion value is the average of 10 simulations for LFME and DEMON
detection algorithms. The standard deviation values are omitted in this
table because of their small values.

nodes having then a smaller neighborhood size. Additionally,
the most highly connected nodes of the network belong to the
sets of neighbors of the overlapping nodes revealed by the
three community detection algorithms.

Besides comparing the community detection algorithms,
we also perform the same experiments using LFME and
DEMON algorithms to check the robustness of the results
obtained using the SLPA algorithm. We first compare the
set of neighbors of the overlapping nodes and the set of
hubs. The proportion of hubs, Rank-biased overlap, corre-
lation and the degree distribution of both sets are analyzed.
Experimental results show that all the measures display quite
similar behavior as compared to the ones obtained based on
SLPA.Generally, we get slightly better results whenDEMON
algorithm is used even though it is the less accurate com-
munity detection algorithm. Indeed, this algorithm detects a
large amount of overlapping nodes. Thus, the ego-network of
overlapping nodes has a big size for all the networks (it can
reach 71% of the network). This is why the results are better
when DEMON algorithm is used. However, we obtain close
results when LFME and SLPA algorithms are employed.
Secondly, we compare the Overlap-Hub network and the
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TABLE 21. Proportion of hubs in the neighborhood of overlapping nodes
as a function of the distance. The distance is the maximum number of
links from an overlapping node to reach the perimeter of its
neighborhood. An is the proportion of hubs in the neighborhood of
overlapping nodes. Ao

n is the proportion of hubs belonging to the set of
overlapping nodes. S represents the size of the neighborhood of the
overlapping nodes. Each proportion value is the average of 10 simulation
runs for LFME and DEMON detection algorithms. The standard deviation
values are omitted in this table because of their small values.

TABLE 22. Distance measures of the empirical networks. δG represents
the diameter of the global network while δ is the diameter of the
Overlap-Hub network. lG represents the average distance of the global
network while l is the average distance between the overlapping nodes
and the hubs. lGm is the median value of the average distance of the
global network while lm is the median value of the average distance of
the Overlap-Hub network. Each proportion value is the average
of 10 simulation runs for LFME and DEMON detection algorithms. The
standard deviation values are omitted in this table because the ranges
are very small.

global network by computing their average and median dis-
tance using LFME and DEMON algorithms. Results show
that the distance of the Overlap-Hub network is always much
smaller than the same measure computed on the global net-
work. Yet, this difference gets slightly smaller when DEMON
algorithm is used. That being said, both experiments show
that the overlapping nodes are neighbors with a large propor-
tion of hubs. Therefore, our hypothesis seems valid whatever
the community detection algorithm used to uncover the com-
munity structure.

VI. CONCLUSION
The community structure is one of the main topological
features of a vast majority of real-world networks. Unveiling
their properties is of great interest in order to gain a better
understanding of the structure and dynamics of complex net-
works. In this paper, we characterize the relationship between
the overlapping nodes and the highly connected nodes of
the networks (hubs). The overlapping nodes can belong to
multiple communities. Thus, we believe that there is a high
chance that they can be neighbors with the highly connected
nodes in their respective communities. In order to character-
ize the relation between the hubs and the overlapping nodes,
a series of experiments have been performed on a set of
real-world networks of different sizes and origins. At first,
we compare the set of neighbors of overlapping nodes and
the set of hubs using some evaluation measures (the propor-
tion of hubs, Rank-biased overlap and correlation). Extensive
investigations show that there is a big overlap between these
two sets. It appears that a high proportion of the hubs are
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one-step neighbors of the overlapping nodes. This confirms
the assumption that overlapping nodes are neighbors of the
highly connected nodes of the network. Results show also
that the Ranked-biased Overlap between the set of neighbors
of the overlapping nodes and the set of hubs has very high
values. It confirms that there is a great similarity between
the two sets. Additionally, there is a very high correlation
between the set of neighbors of the overlapping nodes and
the hubs. Moreover, the degree distribution analysis of both
sets shows that they display comparable empirical distribu-
tion. They exhibit a power-law degree distribution with very
close exponent values. Secondly, the global network has been
compared with its sub-network formed by the overlapping
nodes and the hubs (the so-called Overlap-Hub network). The
average and median shortest paths of both networks have
been compared in order to examine how overlapping nodes
are close to the hubs. Experimental results show that the
distance between overlapping nodes and hubs ismuch smaller
as compared to the overall network.

Furthermore, the influence of the neighborhood size of the
overlapping nodes on the proportion of hubs has been investi-
gated. Results show that using a n-steps neighborhood allows
finding a larger proportion of hubs in this neighborhood.
In addition, we also look at the influence of the membership
degree of overlapping nodes on the proportion of hubs in their
neighborhood. Results show that if overlapping nodes belong
to a higher number of communities, the proportion of hubs
in their neighborhood becomes higher. We also performed
the same experiments using LFME and DEMON detection
algorithms to uncover the communities. Results of the investi-
gations show that the conclusions are quite comparable. Even
if the community structures are not the same, the evaluation
measures of the proximity of overlapping nodes and hubs
have overall close values. This is quite valid for all the net-
works under test. This confirms that the overlapping nodes
are neighbors with a large amount of hubs.

Results of our investigations are relevant in multiple set-
tings. Indeed, our analysis sheds light on the organization of
complex networks and provides new directions for research
on community detection. This work can also help to elaborate
new strategies to target the most influential nodes in modular
networks.
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